Какие существуют свойство элементов
Каждый элемент имеет свое строго уникальное строение, в соответствии с которым он и занимает свое постоянное, четко определенное место в периодической системе.
При рассмотрении периодической таблицы элементов, зная химические и физические свойства каждого элемента, можно сделать выводы о закономерностях изменения этих свойств.
Повторение свойств элементов
С увеличением атомной массы происходит периодическое повторение свойств элементов.
Так, одиннадцатый элемент ряда – натрий – имеет общие свойства с третьим химическим элементом – литием. В рамках ряда от лития до фтора металлические свойства соединений постепенно уменьшаются и при этом возрастают неметаллические свойства. И действительно, после активного щелочного металлического элемента лития четвертым размещен тоже металлический элемент бериллий, но уже с амфотерными свойствами соединений. Пятый, шестой, седьмой, восьмой, девятый и десятый элементы – неметаллические. Активность простых веществ и соединений этих элементов с увеличением порядкового номера возрастает и достигает максимума у фтора.
Причиной периодической повторяемости свойств химических элементов и образованных ими соединений является образование у элементов одинакового строения внешнего энергетического уровня (для элементов главных подгрупп) и предпоследнего энергетического уровня (для элементов побочных подгрупп).
Закономерности изменений свойств
Таким образом, рассмотрев свойства каждого из соединений и их изменения в группах и периодах можно составить определенные закономерности.
В рамках одного периода с увеличением порядковых номеров элементов (при движении вниз по периоду) прослеживаются закономерные изменения, характерные для всей таблицы.
При движении вниз по периоду металлические и основные свойства у простых веществ ослабляются, а неметаллические и кислотные – усиливаются.
Кроме размещения в горизонтальных рядах — периодах, элементы входят в состав вертикальных столбиков — групп. Рассмотренные свойства природных семей щелочных элементов, галогенов и инертных элементов дают возможность сделать вывод, что наиболее активные металлы размещены в группе под номером 1, то есть в начале периодов, а самые активные неметаллы — в группе под номером 7, то есть в конце периодов.
Инертным элементом 18 группы заканчивается каждый период.
Если провести воображаемую линию через элементы алюминий, германий, олово, стибий, свинец, полоний, которая разделит периодическую систему на две не равных части, то верхняя правая часть будет содержать неметаллы, нижняя левая — металлы, а элементы, образующие линию разделения, — это металлы с амфотерными свойствами оксидов и гидроксидов.
Зависимость от строения электронных оболочек атомов
На основе современной теории строения атома ученые объясняют, что характер химических свойств и его изменение в периодах находятся в зависимости от изменения строения электронных оболочек атомов. Чтобы понять, какие различия в строении электронных оболочек вызывают ослабление металлических и усиление неметаллических свойств, сравним электронные формулы атомов пары элементов — алюминия и фосфора.
Как видим, количество энергетических уровней у атомов алюминия и фосфора одинаково — их 3. Однако у каждого из них разное число электронов на внешнем (крайнем) энергетическом уровне, которое с увеличением порядкового номера элемента (13 у алюминия и 15 у фосфора) растет. Делаем вывод, что причиной ослабления металлических и усиления неметаллических свойств элементов одного периода является рост числа электронов на внешнем энергетическом уровне.
Итак, в зависимости от собственно строения атома элемента и, соответственно, в какой части периодической системы размещен этот элемент, его соединения проявляют или основные, или кислотные, или амфотерные химические свойства.
Рассмотренные зависимости еще раз подтверждают универсальный характер периодического закона и доказывают, что он является фундаментальным законом природы.
Источник
Анонимный вопрос
3 апреля 2018 · 16,9 K
Свойства металлов делятся на несколько групп: физические, химические, механические и технологические.
1) Физические свойства: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность.
2) Химические свойства: окисляемость, растворимость и коррозионная стойкость.
3) Механические свойства: прочность, твердость, упругость, пластичность.
4) Технологические свойства: прокаливаемость, жидкотекучесть, ковкость, обрабатываемость резанием.
Слишком примитивно, кое-что неверно, что-то устарело (терминология). Не советую использовать.
Какие металлы относятся к драгоценным?
Engineer – programmer ⚡⚡ Разбираюсь в компьютерах, технике, электронике, интернете и… · zen.yandex.ru/gruber
Драгоценные металлы — это металлы, чья стоимость существенно выше стоимости других металлов из-за сложности их добычи или малого количества.
К драгоценным металлам относятся следующие:
- Золото;
- Серебро;
- Платина;
- Палладий.
- Иридий
- Родий;
- Осмий;
- Рутений.
Прочитать ещё 3 ответа
Как на практике используют пластичность металлов?
Невское Оборудование поставщик металлообрабатывающего оборудования и станков · spbstanki.ru
Пластичность металов – это одно из самых важных свойств, благодаря которому металлы, стли и сплавы получили такой широкое распространение в мире. Благодаря этому свойству из металлов и сталей возможно изготовление очень широкого спектра изделий: металлы и стали хорошо куются и штампуются (некоторые как в горячем, так и в холодном виде), металлы отлично загибаются и им можно придать практически любую форму прокаткой (как горячей так и холодной).
Какова твердость стали?
Дорога под названием «потом» ведет в страну под названием «никуда»…
Твердость стали зависит от многих факторов – это и содержание углерода, и наличие других элементов в сплаве (например, хрома, молибдена, никеля, азота), а еще твердость стали зависит от технологии ее создания.
Главный фактор твердости стали – это содержание в ней углерода. Низкоуглеродистые стали, которые содержать от 0,05 до 0,25% углерода, обычно мягкие, тогда как высокоуглеродистые стали, содержащие до 2% углерода, могут быть очень твердыми. Но конечная твердость зависит от режима термической обработки – например, закалка может увеличить твердость углеродистой стали в четыре раза.
Твердость стали можно определять разными методами – Бринелля, Виккерса, Шора, Роквелла. Каждый метод имеет свои особенности: например, по методу Шора твердость определяется по высоте отскока бойка, падающего на твердую поверхность с определнной высоты; а по методам Бринелля, Виккерса и Роквелла в поверхность под нагрузкой вдавливаются стальные или алмазные тела – инденторы (шарики, наконечники. пирамиды – для разных методов свое тело), и по отпечаткам на поверхности определяют твердость.
По методу Ровелла, для измерения твердости стали применяют три шкалы:
A – обозначается HRA, индентор – алмазный конус, диапазон измерений: 60-80 HRA. Применима к высокоуглеродистым легированным инструментальным сталям, а также твердым сплавам.
B – обозначается HRB, индентор – закаленный шарик, диапазон измерений: 35-100 HRB. Это уже стали средней твердости и сплавы цветных металлов.
C – обозначается HRC, индентор – алмазный конус, диапазон измерений: 20-90 HRC. Для сталей средней твердости.
Много теории и общих слов, а теперь приведу пример попроще для понимания, какова бывает твердость стали. Например, ножевых сталей с твердостью свыше 70HRC не существует. А на практике не встречается ножей из стали твердостью свыше 65HRC. Самыми распространенными и прекрасно используемыми являются ножи из дамасской стали с твердостью 56-62HRC.
Прочитать ещё 1 ответ
Сколько неметаллов в периодической системе менделеева?
Водород, гелий, бор, углерод, азот, кислород, фтор, неон, кремний, фосфор, сера, хлор, аргон, германий, мышьяк, селен, бром, криптон, йод, ксенон, астат, радон – всего 22 элемента.
Значение металлов и сплавов и применение их в машиностроение?
Металлы хорошо образуют химические соединения с неметаллами (оксиды, нитриды, бориды и т.п.), а также с другими металлами (интерметаллиды). Машиностроительные предприятия активно используют более 60 видов металлов, на их основе более 5000 сплавов. Сплавы могут создаваться как при чистом физическом процессе (плавка, растворение, перемешивание), так и химическими воздействиями между элементами. Сплавы на основе металлов называются черными, на основе других элементов – цветными.
Прочитать ещё 2 ответа
Источник
Электронные аналоги
Периодический закон и система Д.И. Менделеева
В 1869г. Д.И.Менделеев сформулировал периодический закон:«свойства простых веществ, а также формы и свойства соединения элементов находятся в периодической зависимости от величины их атомных весов» и создал систему, отражающую электронное строение атомов.
В 1913г. Мозли определил, что порядковый номер элемента в таблице Д.И.Менделеева численно равен заряду ядра атома. Поэтому современная формулировка периодического закона такова: «свойства химических элементов, а также форма и свойства их соединений находятся в периодической зависимости от порядкового номера элемента».
Периодические изменения в свойствах элементов связаны с периодической повторяемостью электронных структур атомов.
Порядковый номер элемента характеризует заряд ядра атома и количество электронов в оболочке. Элементы располагаются по мере увеличения заряда ядер их атомов.
Периодическая система состоит из периодов и групп. Период– это последовательный горизонтальный ряд элементов с одинаковым значением главного квантового числа. Группа – это вертикальный ряд элементов с одинаковым количеством валентных электронов. Элементы одной группы разделяются на две подгруппы: главную и побочную. В главной подгруппе объединяются элементы, у которых валентные электроны располагаются на s- и p- подуровнях внешнего квантового уровня. В побочную подгруппу – элементы, у которых валентные электроны располагаются на внешнем s- и предвнешнем d-подуровнях.
Химические элементы, у которых имеется одинаковая конфигурация валентных электронов, называются электронными аналогами.
У полных аналогов совпадают электронные конфигурации двух последних периодов.
Например: 32Ge: 1s2 2s2 2p63s2 3p6 4s2 3d10 4p2
50Sn: …………. 4s2 4p6 5s2 4d10 5p2
У неполных аналогов совпадают электронные конфигурации только последнего периода.
Например: 6C: 1s22s22p2
14Si: 1s2 2s2 2p63s2 3p6
Электронные аналоги, являющиеся химическими аналогами, характеризуются одинаковым количеством валентных электронов, которые участвуют в образовании химических связей.
Очень важной характеристикой элемента с точки зрения строения атома является радиус атома. С ростом положительного заряда ядра радиус у элементов изменяется. В периоде слева направо радиус уменьшается вследствие сжатия электронной оболочки (заряд ядра увеличивается, электроны сильнее притягиваются к ядру). В группах сверху вниз радиус увеличивается вследствие увеличения количества квантовых уровней. Чем больше радиус атома, тем слабее удерживаются валентные электроны, тем легче отдает их атом в химических реакциях. Как отдача электронов, так и принятие электронов характеризуется энергетическим эффектом, который определяется тремя видами энергии:
· энергия ионизации (J)– энергия, которая необходима для отрыва валентных электронов от атома и превращения атома в положительно заряженную частицу – ион. Она измеряется в эВ/атом или кДж/моль.
Энергия ионизации зависит от радиуса атома. С увеличением радиуса энергия ионизации уменьшается в группе сверху вниз, увеличивается в периоде с ростом количества валентных электронов. Энергия ионизации характеризует металлические (восстановительные) свойства, его активность. Чем больше величина энергии ионизации, тем меньше металлические свойства;
· энергия сродства к электрону (Е) – энергия (единицы измерения эВ/атом или кДж/моль), которая выделяется при присоединении валентных электронов к атому, при этом атом превращается в отрицательно заряженную частицу. Эта энергия характеризует неметаллические (окислительные) свойства химических элементов; в группе сверху вниз уменьшается, в периоде увеличивается;
· электроотрицательность – это полусумма энергии ионизации и энергии сродства к электрону: Э.О. = (I+E) / 2
Электроотрицательность – способность атома в молекуле притягивать к себе электроны. За единицу принята элетроотрицательность лития Li. В группе электроотрицательность уменьшается cверху вниз, в периоде увеличивается слева направо. Зная значение энергии для каждого из атомов, мы можем дать окислительно-восстановительную характеристику элемента. (Значения электроотрицательности атомов по Полингу представлены в приложении)
Источник
Анонимный вопрос
30 октября 2018 · 400,3 K
По каким закономерностям изменяются свойства элементов в таблице Менделеева?
Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂 · vk.com/mendo_him
При движении по группе главной подгруппы сверху вниз⬇️
????Радиус атома увеличтвается
????Электроотрицательность уменьшается
????Окислительные свойства ослабевают
????Восстановительные свойства усиливаются
????Неметаллические ослабевают
????Металлические усиливаются
По периоду слева направо всё наоброт????
????Радиус уменьшается
????ЭО возрастает
????Окислительные свойства усиливаются
????Восстановительные ослабевают
????Неметаллические увеличиваются
????Металлические свойства ослабевают
Педагог, музыкант, начинающий путешественник и немножко психолог
В периодах (слева направо): увеличивается заряд ядра, число электронов на внешнем уровне, уменьшается радиус атомов, в связи с этим увеличивается прочность связи электронов с ядром и электроотрицательность, что в свою очередь ведет к усилению окислительных свойств (неметаличности) и ослаблению восстановительных (металличности).
В группах (сверху… Читать далее
Можете зайти на этот форум и найти нужный вам ответ!!Осень будем рады вас там видеть!♥️https://blog.pachca.com/post… Читать дальше
Могут ли или существуют ли вещества во Вселенной, которых нет в таблице Менделеева?
ALBA synchrotron, postdoc
Безусловно. Потому что в таблице Менделеева вообще нет веществ, там только элементы.
Могут ли быть элементы, которых нет в таблице Менделеева? Тоже да. Можно делать атомы не только из протонов, нейтронов и электронов. Есть позитроний, есть мюоний, есть мюонные атомы. Для них в принципе нет места в таблице, но их умеют делать и даже заставлять вступать в реакции.
Далее, по сути, любая нейтронная звезда – это огромное атомное ядро, при желании можно прикинуть количество оставшихся в живых после коллапса протонов и выдать получившемуся атому полагающееся ему место в периодической системе.
Прочитать ещё 2 ответа
Как расставлять заряды ионов и Степень Окисления в Веществах?
Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂 · vk.com/mendo_him
Что такое ион? ????
Это частица, которая образуется из атома, если ему подарят электроны????ну или отберут их????
Есть элементы, которые имеют всегда один и тот же заряд иона) у других надо смотреть по обстоятельствам????
Они находятся в 1А,2А и 3А группах в таблице Менлелеева????
????Если 1 группа А подгруппа, то всегда +1 (у них достаточно забрать всего один электрон????)
????Если 2А, то +2 (отбирают уже 2 электрона)
????Если 3А,то +3
????Что такое степень окисления? ????
Это условная величина, которая показывает заряд атома в соединении)
Максимальная степень окисления равна номеру группы, минимальная N группы-8????????
Возьмём для примера Na2SiO3????
Na имеет степень окисления +1, он лежит в 1А группе
О имеет всегда – 2,хотя и находится в 6А???? Это нужно запомнить
У Si +4, он лежит в 4А группе
А теперь с зарядами ионов разберемся)
У Na +1, но в Na2SiO3 таких ионов 2????
Значит, получаем SiO3 2-
Прочитать ещё 1 ответ
Объясните,как правильно нужно расставлять коэффициенты в уровнении реакций (химия)?
Химик, книгоголик, театрофил, сентиментальный пирожок
Прежде всего, нужно убедиться, что реакция записана правильно, что из данных реагентов получаются данные продукты, нет где-нибудь потерявшейся воды или лишнего осадка. Если речь о школьной химии, то, скорее всего, у вас на руках уже есть готовая реакция с исходниками слева и продуктами справа, в которой нужно только расставить коэффициенты, так что перейдём к следующему шагу.
В левой и правой частях уравнения должно сойтись количество атомов одного и того же элемента (если слева пять кислородов, то и справа должно быть тоже пять). Обычно проблема с расстановкой коэффициентов возникает в окислительно-восстановительных реакциях (ОВР), и тут удобнее всего, на мой взгляд, пользоваться методом электронного баланса. Сначала нужно определить, какие элементы в процессе реакции меняют свою степень окисления и на сколько. Вот, например, простая реакция образования оксида фосфора (V):
xP + yO2 = zP2O5
У элементного фосфора степень окисления равна нулю. У элементного кислорода – тоже. У фосфора же в оксиде степень окисления равна +5, а степень окисления кислорода в оксиде равна -2. Значит (е = электрон):
Р(0) – 5е = Р(+5) – фосфор отдаёт 5 электронов;
О2 + 4е = 2 О(-2) – кислород принимает 4 электрона.
Чтобы количество отданных и принятых электронов уравнялось и не было ничего лишнего/недостающего, нужно первое уравнение умножить на 4, а второе – на 5. Тогда 4 атома фосфора отдадут 20 электронов, а 5 молекул кислорода примут 20 электронов. Получаем:
4Р + 5 О2 = zP2O5
Отсюда:
4Р + 5 О2 = 2 Р2О5. Реакция уравнена.
Это достаточно простой пример, который, тем не менее, неплохо иллюстрирует электронный баланс. Вот здесь можно ознакомиться с более сложными примерами. И, конечно, теорию нужно закреплять на практике: берите уравнения и расставляйте в них коэффициенты, и очень скоро всё начнёт получаться даже с объёмными реакциями со всякими страшными перманганатами и перхлоратами. Удачи! (:
Прочитать ещё 1 ответ
Источник
Периодический закон был открыт Д.И. Менделеевым в 1868 году. Его современная формулировка: свойства химических элементов и образуемых ими
соединений (простых и сложных) находятся в периодической зависимости от величины заряда атомного ядра.
Периодический закон лежит в основе современного учения о строении вещества. Периодическая система Д.И. Менделеева является наглядным отражением
периодического закона.
В периодической таблице элементы расположены в порядке увеличения атомного заряда, группируются в “строки и столбцы” – периоды и группы.
Период – ряд горизонтально расположенных химических элементов. 1, 2 и 3 периоды называются малыми, они состоят из одного ряда элементов.
4, 5, 6 – называются большими периодами, они состоят из двух рядов химических элементов.
Группой называют вертикальный ряд химических элементов в периодической таблице. Элементы собраны в группы на основе степени окисления в
высшем оксиде. Каждая из восьми групп состоит из главной подгруппы (а) и побочной подгруппы (б).
Периодическая таблица Д.И. Менделеева содержит колоссальное число ответов на самые разные вопросы. При умелом ее использовании вы сможете
предполагать строение и свойства веществ, успешно писать химические реакции и решать задачи.
Радиус атома
Радиусом атома называют расстояние между атомным ядром и самой дальней электронной орбиталью. Это не четкая, а условная граница, которая
говорит о наиболее вероятном месте нахождения электрона.
В периоде радиус атома уменьшается с увеличением порядкового номера элементов (“→” слева направо). Это связано с тем, что с увеличением номера группы
увеличивается число электронов на внешнем уровне. Запомните, что для элементов главных подгрупп номер группы равен числу электронов на внешнем уровне.
С увеличением числа электронов они становятся более скученными, так как притягиваются друг к другу сильнее: это и есть причина маленького радиуса атома.
Чем меньше электронов, тем больше у них свободы и больше радиус атома, поэтому радиус увеличивается в периоде “←” справа налево.
В группе радиус атома увеличивается с увеличением заряда атомных ядер – сверху вниз “↓”. Чем больше период, тем больше электронных орбиталей вокруг атома,
соответственно, и больше его радиус.
С уменьшением заряда атома в группе радиус атома уменьшается – снизу вверх “↑”. Это связано с уменьшением количества электронных орбиталей вокруг
атома. Для примера возьмем атомы бора и алюминия, элементов, расположенных в одной группе.
Период, группа и электронная конфигурация
Обратите внимание еще раз на важную деталь: элементы, находящиеся в одной группе (главной подгруппе!), имеют сходную конфигурацию внешнего уровня.
Так у бора на внешнем уровне расположены 3 электрона, у алюминия – тоже 3. Оба они в III группе.
Такая закономерность иногда может сильно облегчить жизнь, однако у элементов побочных подгрупп она отсутствует – там нужно считать электроны
“вручную”, располагая их на электронных орбиталях.
Раз уж мы повели речь об электронных конфигурациях, давайте запишем их для бора и алюминия, чтобы лучше представлять их внешний уровень и увидеть
то самое “сходство”:
- B5 – 1s22s22p1
- Al13 – 1s22s22p63s23p1
Общую электронную конфигурацию для элементов III группы главной подгруппы можно записать ns2np1. Это будет работать для
бора, внешний уровень которого 2s22p1, алюминия – 3s23p1, галия – 4s24p1,
индия – 5s25p1 и таллия – 6s26p1. За “n” мы принимаем номер периода.
Правило составления электронной конфигурации, которое вы только что увидели, универсально. Если вы имеете дело с элементом главной подгруппы,
то увидев номер группы вы знаете, сколько электронов у него на внешнем уровне. Посмотрев на период, знаете номер его внешнего уровня.
Вам остается только распределить известное число электронов по s и p ячейкам, а затем подставить номер периода – и вот быстро получена
конфигурация внешнего уровня. Предлагаю посмотреть на примере ниже 🙂
Очень надеюсь, что теперь вы знаете: только глядя на положение элемента в периодической таблице, на группу и период, в которых он расположен,
вы уже можете составить конфигурацию его внешнего уровня. Безусловно, это для элементов главных подгрупп. Повторюсь: у побочных – только “вручную”.
Длина связи
Длина связи – расстояние между атомами химически связанных элементов. Очевидно, что понятия длины связи и атомного радиуса взаимосвязаны напрямую.
Чем больше радиус атома, тем больше длина связи.
Убедимся в этом на наглядном примере, сравнив длину связей в четырех веществах: HF, HCl, HBr, HI.
Чем больше радиусы атомов, которые образуют химическую связь, тем больше между ними и длина связи. Радиус атома водорода неизменен во всех трех
веществах, а в ряду F → Cl → Br → I происходит увеличение радиуса атома. Наибольшим радиусом обладает йод, поэтому самая длинная связь в молекуле HI.
Металлические и неметаллические свойства
В периоде с увеличением заряда атома металлические свойства ослабевают, неметаллические – усиливаются (слева направо “→”). В группе с увеличением
заряда атома металлические свойства усиливаются, а неметаллические – ослабевают (сверху вниз “↓”).
Сравним металлические и неметаллические свойства Rb, Na, Al, S. Натрий, алюминий и сера находятся в одном периоде. Металлические свойства возрастают
S → Al → Na. Натрий и рубидий находятся в одной группе, металлические свойства возрастают Na → Rb.
Таким образом, самые сильные металлические свойства проявляет рубидий, но с другой стороны – у него самые слабые неметаллические свойства. Сера
обладает самыми слабыми металлическими свойствами, но, если посмотреть по-другому, сера – самый сильный неметалл.
Распределение металлов и неметаллов в периодической таблице также является наглядным отображением этого правила. Если провести условную
линию, проходящую от бора до астата, то справа окажутся неметаллы, а слева – металлы.
Основные и кислотные свойства
Основные свойства в периоде с увеличением заряда атома уменьшаются, кислотные – возрастают. В группе с увеличением заряда атома основные
свойства усиливаются, а кислотные – ослабевают.
Кислотные и основные свойства противопоставлены друг другу, как противопоставлены металлические и неметаллические. Где первые усиливаются,
вторые – убывают. Все аналогично, поэтому смело ассоциируйте одни с другими, так будет гораздо легче запомнить.
Замечу, что здесь есть одно важное исключение. Как и в общем случае: исключения только подтверждают правила. В ряду галогенводородных
кислот HF → HCl → HBr → HI происходит усиление кислотных свойств (а не ослабление, как должно быть по логике нашего правила).
Это можно объяснить в темах диссоциации и химических связей. Когда мы дойдем до соответствующей темы, я напомню про HF и водородные связи между
молекулами, которые делают эту кислоту самой слабой. Сейчас воспринимайте это как исключение: HF – самая слабая из этих кислот, а
HI – самая сильная.
Восстановительные и окислительные свойства
Восстановительные свойства в периоде с увеличением заряда атома ослабевают, окислительные – усиливаются. В группе с увеличением заряда
атома восстановительные свойства усиливаются, а окислительные – ослабевают.
Ассоциируйте восстановительные свойства с металлическими и основными, а окислительные – с неметаллическими и кислотными. Так гораздо проще
запомнить 😉
Электроотрицательность (ЭО), энергия связи, ионизации и сродства к электрону
Электроотрицательность – способность атома, связанного с другими, приобретать отрицательный заряд (притягивать к себе электроны).
Мы уже касались ее в статье, посвященной степени окисления. Это важное свойство, ведь более ЭО-ый атом притягивает
к себе электроны и уходит в отрицательную степень окисления со знаком минус “-“.
Все перечисленные в подзаголовке свойства вместе с ЭО усиливаются в периоде с увеличением заряда атома, в группе с увеличением заряда атома
они ослабевают. Таким образом, самый электроотрицательный элемент расположен справа вверху таблицы Д.И. Менделеева – это фтор.
Для примера сравним ЭО-ость атомов Te, In, Al, P. Индий расположен в одной группе с алюминием, ЭО-ость In → Al возрастает (снизу вверх). Алюминий
расположен в одном периоде с серой, ЭО-ость возрастает Al → S (слева направо). Сравнивая серу и теллур, мы видим, что сера расположена в группе
выше теллура, значит и ее электроотрицательность тоже выше.
Энергия связи (а также ее прочность) возрастают с увеличением электроотрицательности атомов, образующих данную связь. Чем сильнее атом тянет на
себя электроны (чем больше он ЭО-ый), тем прочнее получается связь, которую он образует.
Понятию ЭО-ости “синонимичны” также понятия сродства к электрону – энергии, выделяющейся при присоединении электрона к атому, и энергии ионизации –
количеству энергии, которое необходимо для отщепления электрона от атома. И то, и другое возрастают с увеличением электроотрицательности.
Продемонстрирую на примере. Сравним энергию связи в трех молекулах: H2O, H2S, H2Se.
Высшие оксиды и летучие водородные соединения (ЛВС)
В периодической таблице Д.И. Менделеева ниже 7 периода находится строка, в которой для каждой группы указаны соответствующие высшие оксиды,
ниже строка с летучими водородными соединениями.
Для элементов главных подгрупп начиная с IV группы (в большинстве случае) максимальная степень окисления (СО) определяется по номеру группы. К примеру,
для серы (в VI группе) максимальная СО = +6, которую она проявляет в соединениях: H2SO4, SO3.
В таблице видно, что для VIa группы формула высшего оксида RO3, а, к примеру, для IIIa группы – R2O3. Напишем
высшие оксиды для веществ из VIa : SO3, SeO3, TeO3 и IIIa группы: B2O3, Al2O3,
Ga2O3.
На экзамене строка с готовыми “высшими” оксидами, как в таблице наверху, может отсутствовать. Считаю важным подготовить вас к этому. Предположим,
что эта строчка внезапно исчезла из таблицы, и вам нужно записать высшие оксиды для фосфора и углерода.
С летучими водородными соединениями (ЛВС) ситуация аналогичная: их может не быть в периодической таблице Д.И. Менделеева, которая попадется на экзамене.
Я расскажу вам, как легко их запомнить.
ЛВС характерны для IV, V, VI и VII группы. Элементы этих групп более электроотрицательны, чем водород, поэтому ходят в “-” отрицательную СО.
Минимальная степень окисления для элементов главных подгрупп, начиная с IV группы, может быть рассчитана так: номер группы – 8.
Например, для углерода минимальная СО = 4-8 = -4; для азота 5-8 = -3; для кислорода 6-8 = -2; для фтора 7-8 = -1. Для того, чтобы запомнить
ЛВС, вы должны ассоциировать IV, V, VI и VII группы с хорошо известными вам веществами: метаном, аммиаком, водой и фтороводородом.
Так как общее строение ЛВС в пределах одной группы сходно, то, вспомнив например H2O для кислорода в VI группе, вы легко
найдете формулы других ЛВС VI группы: серы – H2S, H2Se, H2Te, H2Po.
© Беллевич Юрий Сергеевич 2018-2020
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Источник