Какие стали не обладают ферромагнитными свойствами

Какие стали не обладают ферромагнитными свойствами thumbnail

Ферромагнетик — упорядочивание магнитных моментов.

Ферромагне́тики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое (при температуре ниже точки Кюри) способно обладать намагниченностью в отсутствии внешнего магнитного поля.

Свойства ферромагнетиков[править | править код]

  • Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы.
  • При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий.
  • Для ферромагнетиков характерно явление гистерезиса.
  • Ферромагнетики притягиваются магнитом.

Представители ферромагнетиков[править | править код]

Среди химических элементов[править | править код]

Среди химических элементов ферромагнитными свойствами обладают переходные элементы Fe, Со и Ni (3d-металлы) и редкоземельные металлы Gd, Tb, Dy, Ho, Er (см. Таблицу 1).

Таблица 1. — Ферромагнитные металлы

МеталлыTc, КJs0, Гс
Fe10431735,2
Co14031445
Ni631508,8
Gd2891980
МеталлыTc, КJs0, Гс
Tb2232713
Dy871991,8
Ho203054,6
Er19,61872,6

Js0 — величина намагниченности единицы объёма при абсолютном нуле температуры, называемая спонтанной намагниченностью. Tc — точка Кюри (критическая температура, выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком).

Для 3d-металлов и для гадолиния (Gd) характерна коллинеарная ферромагнитная атомная структура, а для остальных редкоземельных ферромагнетиков — неколлинеарная (спиральная и др.; см. Магнитная структура).

Среди соединений[править | править код]

Ферромагнитами также являются многочисленные металлические бинарные и более сложные (многокомпонентные) сплавы и соединения упомянутых металлов между собой и с другими неферромагнитными элементами, сплавы и соединения хрома (Cr) и марганца (Mn) с неферромагнитными элементами (так называемые гейслеровы сплавы), например, сплав Cu2MnAl, соединения ZrZn2 и ZrxM1−xZn2 (где М — это Ti, Y, Nb или Hf), Au4V, Sc3In и др. (Таблица 2), а также некоторые соединения металлов группы актиноидов (например, UH3).

СоединениеTc, КСоединениеTc, К
Fe3AI743TbN43
Ni3Mn773DyN26
FePd3705EuO77
MnPt3350MnB578
CrPt3580ZrZn235
ZnCMn3353Au4V42—43
AlCMn3275Sc3ln5—6

Другие известные[править | править код]

Особую группу ферромагнетиков образуют сильно разбавленные растворы замещения парамагнитных атомов (например, Fe или Со) в диамагнитной матрице Pd. В этих веществах атомные магнитные моменты распределены неупорядоченно (при наличии ферромагнитного порядка отсутствует атомный порядок). Ферромагнитный порядок обнаружен также в аморфных (метастабильных) металлических сплавах и соединениях, аморфных полупроводниках, в обычных органических и неорганических стёклах, халькогенидах (сульфидах, селенидах, теллуридах) и т. п. Число известных неметаллических ферромагнетиков пока невелико. Это, например, оксид хрома(IV) и ионные соединения типа La1−xCaxMnO3(0,4 > x > 0,2), EuO, Eu2SiO4, EuS, EuSe, EuI2, CrB3 и т. п. У большинства из них точка Кюри лежит ниже 1 К. Только у соединений Eu, халькогенидов, CrB3 значение Q составляет порядка 100 К.

См. также[править | править код]

Примечания[править | править код]

Литература[править | править код]

  • Хёрд К. М. Многообразие видов магнитного упорядочения в твёрдых телах
  • Аннаев Р. Г. Магнето-электрические явления в ферромагнитных металлах. — Ашхабад, 1951.
  • Тябликов С. В. Методы квантовой теории магнетизма. — 2-е изд. — М., 1975.
  • Невзгодова Е. — Современная экспериментальная физика. — 3-е изд. — СПб., 2009.

Источник

Анонимный вопрос

12 сентября 2018  · 596

Ферромагнитными свойствами в основном обладают переходные металлы, такие как железо, кобальт, никель. Неметаллы не имеют данных свойств, соответственно вся органика, фосфорные, серные и другие соединения.

Почему люди боятся себя принять такими, какие они есть?

Открываю людям путь, как не бояться жизни. /И ты тоже сможешь/
Консультации: +7-915-303-08…  · pro-ponimanie.ru

Женя, добрый день!

Ты интересуешься, почему людям тяжело себя принимать. Этому есть несколько причин.

Дело в том, что в раннем детстве любой ребенок легко себя принимает, так как его личность состоит только из детской эмоциональной части, которая чувствует и ощущает мир так, как есть.

С возрастом наша личность развивается, и в ней появляется наблюдающая оценивающая часть, которая способна смотреть на нас как бы снаружи. С одной стороны, это приобретение помогает нам принимать более адекватные взвешенные решения.

Но с другой стороны, у нас появляется критичность к самим себе. Иногда это – полезная критичность, когда мы признаем свои ошибки и несовершенства. Но она может легко стать чрезмерной и неполезной. Грань очень тонка.

Получается, что наша взрослая часть личности как раз и приводит к непринятию частей себя, которые не очень приглядны, не нравятся обществу, являются слабыми и тд.

Кстати, вы наверняка замечали, что кроме детей, без проблем себя принимают еще алкоголики и бомжи. Они могут танцевать на улице, выглядеть плохо, валяться в грязи, но у них при этом не возникает переживаний и отвержений себя.

Читайте также:  Какими свойствами обладают материалы

Из этого можно сделать вывод, что принятие и непринятие должны быть в нас сбалансированы. Ведь как плохо быть закомплексованным, так же плохо быть и полностью раскомплексованным алкоголиком.

Для налаживания же такого баланса важно понимать как устроена самооценка человека и как ее можно сделать адекватной, благодаря использованию зрелых способов взгляда на себя. Об этом подробней смотрите мое видео тут: https://youtu.be/C212Bua1zIQ

Прочитать ещё 13 ответов

Магнитится ли алюминий к магниту?

Необходимо отметить, что все эти материалы металлы, но не все металлы относятся к магнитным материалам. Алюминий , медь, свинец, золото и серебро являются металлами, которые не притягиваются к магниту . Материалы, которые не притягиваются к магниту , называются немагнитными материалами.

Существует ли материал который НЕ пропускает магнитные волны? Например, чтобы через пластинку из материала невозможно было примагнитить железо?

Researcher, Institute of Physics, University of Tartu

Сверхпроводники I рода (например, свинец, олово) обладают полным эффектом Мейснера в сверхпроводящем состоянии, то есть полностью выталкивают магнитное поле. Для сверхпроводников II рода (например, сплавы ниобия, сплавы молибдена, ВТСП-материалы) наблюдается частичный эффект Мейстнера, но если концентрация вихрей Абрикосова в теле сверхпроводника низка (не очень сильное поле), то макроскопически можно считать, что они тоже выталкивают магнитное поле. Через пластинку из таких материалов нельзя ничего примагнитить (если они находятся в СП состоянии, то есть это работает только при очень низких температурах).

Другой вариант – магнитотвердый ферромагнетик (например, неодим-кобальтовый сплав, гексаферриты) в разупорядоченном состоянии.  У него, правда, скорее всего все равно будет какая-то спонтанная намагниченность, но вплоть до какого-то значения напряженности внешнего магнитного поля (определяется коэрцитивной силой ферромагнетика, у магнитотвердых материалов она высокая) сквозь него тоже нельзя будет ничего примагнитить внешним магнитным полем.

Прочитать ещё 3 ответа

Источник

В зависимости от магнитных свойств, вещества бывают диамагнетиками, парамагнетиками и ферромагнетиками. И именно ферромагнитный материал обладает особенными свойствами, отличающимися от остальных.

Что это за материал и какими свойствами обладает

ферромагнитный материал

Ферромагнитный материал (или ферромагнетик) – вещество, находящееся в твердом кристаллическом или же аморфном состоянии, которое обладает намагниченностью при отсутствии какого-либо магнитного поля лишь при низкой критической температуре, т. е. при температуре ниже точки Кюри. Магнитная восприимчивость этого материала положительна и превышает единицу. Некоторые ферромагнетики могут обладать самопроизвольной намагниченностью, сила которой будет зависеть от внешних факторов. Кроме всего прочего, такие материалы имеют отличную магнитную проницаемость и способны к усилению внешнего магнитного поля в несколько сотен тысяч раз.

Группы ферромагнетиков

Всего существует две группы ферромагнитного материала:

  1. Магнитно-мягкая группа. Ферромагнетики этой группы имеют небольшие показатели напряженности магнитного поля, но обладают отличной магнитной проницаемостью (менее 8,0×10-4 Гн/м) и невысокими потерями гистерезисного характера. К магнитно-мягким материалам относятся: пермаллои (сплавы с добавлением никеля и железа), оксидные ферромагнетики (ферриты), магнитодиэлектрики.
  2. Магнитно-жесткая (или магнитно-твердая группа). Характеристики ферромагнитных материалов этой группы выше, чем у предыдущей. Магнитно-твердые вещества обладают как высокими показателями напряженности магнитного поля, так и хорошей магнитной проницаемостью. Они являются основными материалами для производства магнитов и устройств, где используется коэрцитивная сила и необходима отличная магнитная восприимчивость. К магнитно-жесткой группе относятся практически все углеродистые и некоторые легированные стали (кобальт, вольфрам и хром).

Материалы магнитно-мягкой группы

магнитное поле в ферромагнетиках

Как и говорилось ранее, к магнитно-мягкой группе относятся:

  • Пермаллои, которые состоят только из сплавов железа и никеля. Иногда к пермаллоям добавляют хром и молибден для повышения проницаемости. Правильно изготовленные пермаллои отличаются высокими показателями магнитной проницаемости и коэрцитивной силы.
  • Ферриты – ферромагнитный материал, состоящий из оксидов железа и цинка. Нередко к железу и цинку добавляют оксиды марганца или никеля для уменьшения сопротивления. Поэтому ферриты часто используют в качестве полупроводников при высокочастотных токах.
  • Магнитодиэлектрики являются измельченной смесью порошка железа, магнетита или пермаллоя, обернутого в пленку из диэлектрика. Так же как и ферриты, магнитодиэлектрики используются в качестве полупроводников в самых разных устройствах: усилителях, приемниках, передатчиках и т. д.

Материалы магнитно-твердой группы

свойства ферромагнитных материалов

К магнитно-твердой группе относятся следующие материалы:

  • Углеродистые стали, состоящие из сплава железа и углерода. В зависимости от количества углерода, бывают: низкоуглеродистые (менее 0,25% углерода), среднеуглеродистые (от 0,25 до 0,6% углерода) и высокоуглеродистые стали (до 2% углерода). Помимо железа и углерода, в состав сплава могут также входить кремний, магний и марганец. Но наиболее качественными и пригодными ферромагнитными материалами считаются те углеродистые стали, которые имеют наименьшее количество примесей.
  • Сплавы на основе редкоземельных элементов, например самарий-кобальтовые сплавы (соединения SmCo5 или Sm2Co17). Они имеют высокие показатели магнитной проницаемости при остаточной индукции в 0,9 Тл. При этом магнитное поле в ферромагнетиках такого типа тоже составляет 0,9 Тл.
  • Другие сплавы. К таковым относятся: вольфрамовые, магниевые, платиновые и кобальтовые сплавы.
Читайте также:  Какие свойства имеет липовый мед

Отличие ферромагнитного материала от других веществ, обладающих магнитными свойствами

магнитная восприимчивость

В начале статьи было сказано, что ферромагнетики обладают особенными свойствами, которые значительно отличаются от других материалов, и вот несколько доказательств:

  1. В отличие от диамагнетиков и парамагнетиков, которые получают свои свойства от отдельных атомов и молекул вещества, свойства ферромагнитных материалов зависят от кристаллической структуры.
  2. Ферромагнитные материалы, в отличие, например, от парамагнетиков, имеют большие значения магнитной проницаемости.
  3. Помимо проницаемости, ферромагнетики отличаются от парамагнитных материалов еще и тем, что имеют зависимую связь между намагничиванием и напряженностью намагничивающего поля, которая имеет научное название – магнитный гистерезис. Подобному явлению подвержены многие ферромагнитные материалы, например кобальт и никель, а также сплавы на их основе. Кстати, именно магнитный гистерезис позволяет магнитам сохранять состояние намагниченности в течение продолжительного времени.
  4. Некоторые ферромагнитные материалы также обладают особенностью изменять свою форму и размеры при намагничивании. Такое явление называется магнитострикцией и зависит не только от вида ферромагнетика, но и от других не менее важных факторов, например от напряженности полей и расположения кристаллографических осей по отношению к ним.
  5. Еще одной интересной особенностью ферромагнитного вещества является способность терять свои магнитные свойства или, говоря проще, превращаться в парамагнетик. Такого эффекта можно достичь при нагреве материала выше так называемой точки Кюри, при этом переход в парамагнитное состояние не сопровождается какими-либо сторонними явлениями и практически незаметен невооруженным глазом.

Область применения ферромагнетиков

характеристики ферромагнитных материалов

Как видно, ферромагнитный материал занимает особо важное место в современном мире технологий. Его используют при изготовлении:

  • постоянных магнитов;
  • магнитных компасов;
  • трансформаторов и генераторов;
  • электронных моторов;
  • электроизмерительных приборов;
  • приемников;
  • передатчиков;
  • усилителей и ресиверов;
  • винчестеров для ноутбуков и ПК;
  • громкоговорителей и некоторых видов телефонов;
  • звукозаписывающих устройств.

В прошлом некоторые магнитно-мягкие материалы использовались также в радиотехнике при создании магнитных лент и пленок.

Источник

Содержание:

  • Магнитные и немагнитные стали и сплавы

Магнитные и немагнитные стали и сплавы

  • Магнитные и немагнитные сталь и сплав Магнитные стали и сплавы Основными параметрами магнитных материалов являются остаточная магнитная индукция Br, коэрцитивность Hc, проницаемость P. Vg (gpl) характеризует намагниченность магнитного поля и магнитную индукцию, которая остается в образце после его прекращения. Hs (a / m) — сила магнитного поля, необходимая для его размагничивания, приложенная к образцу. Зависимость магнитной индукции B от магнитного поля H показана на рисунке. 15.13.

Проницаемость зависит от соотношения Р =〜(ГН / м). В зависимости от магнитных свойств магнитные материалы подразделяются на диамагнитные, парамагнитные и ферромагнитные. В диамагнитных материалах, включая Cu, Ag, Zn, Hg, etc., Р <1.Парамагнитные материалы, такие как Al, Pt, Co, Ni, p> 1.Ферромагнитные материалы: Fe, Ni, Co и их сплавы, Cr и Mn и другие сплавы характеризуются высокой магнитной проницаемостью. Намагничивание десятков и сотен ферромагнитных материалов Тысячи времен первоначально магнитная прочность Поле нити накала.

Магнитные сталь и сплав согласно значению ХК и И. Они делятся на магнитно-твердые (используются для постоянных магнитов) и мягкие (используются для переменной намагниченности).
Людмила Фирмаль

Для сердечников, трансформаторов, электродвигателей, генераторов, слаботочных деталей). Легирование может увеличить магнитную твердость (увеличение Hs). Если в ферромагнетике образуется только твердый раствор, то магнитная твердость (и он) несколько повышается. Однако, когда образуется 2-я фаза (превышающая предел растворимости), магнитная твердость (и Hc) увеличивается significantly. In в этом случае магнитная твердость сплава(и 15.13 зависимость магнитной индукции от магнитного поля: 1-гистерезисная кривая. Первичная кривая ns.)

Изменение структуры (напряжения кристаллической решетки вследствие упрочнения или фазового превращения, измельчения зерна и др.), увеличение твердости сплава, увеличение магнитной твердости(и Hc) в то же время. Магнитные твердые стали и сплавы характеризуются широкими петлями гистерезиса, большими Br и He, а также небольшим p. Оптимальной структурой магнитотвердой стали является мартенсит (содержащий мелкие частицы цементита или карбида), который получают после закалки или старения. Жесткие магнитные материалы применяются при изготовлении постоянных магнитов для электротехнической и радиотехнической аппаратуры (магниты, различные измерительные приборы, реле, магнитные запоминающие устройства, запоминающие устройства, вычислительные устройства, электронные вычислительные машины).

  • Чем выше значение B, тем выше магнитная энергия образца, и тем выше Hc. Постоянные магниты изготовлены из высокоуглеродистой, легированной стали, специального сплава. Как показано, углеродистая сталь после закалки приобретает достаточные магнитные свойства (сталь U10-U12).Это связано с тем, что значение Hc значительно возрастает после закалки мартенситом в результате напряжений в кристаллической решетке. Однако, из-за своей низкой прокаливаемости, тенденции вызревания, и потери магнитных свойств, легированная сталь более эффективна как магнитно трудный материал чем сталь углерода.

Стали, содержащие Cr, W и Co, хорошо прокаливаются. Магнитные свойства хрома и углеродистой стали практически идентичны. Сталь вольфрама и сталь кобальта имеют превосходную стабильность и значительно улучшенные магнитные свойства.  15.12, главным образом характеристика после термической обработки Щипец. 15.13. Таблица 15 12 Химический состав магнитной стали (ГОСТ 802-58) Химический состав стали Марча、% Около. В. МО. ЭКС. 0.95-1.10 1.3-1.6 00. 90-1. 10 2.8-3.6 Е7В6. 0.68-0.78 0.3-0.5 5.2-6.2 Вт EX5K5. 0.90-1.05 5.5-6.5 5.6-6.5 ко., Лимитед. EX9K15M 0.90-1.05 8.0-10.0 /13.5-16.5 со | 1.2-1.7 МО Таблица 15.13

Химический состав электромагнитной стали приведен в таблице.

Людмила Фирмаль

Основные свойства магнитной стали после термической обработки (ГОСТ 802-58) Режим обработки Маркл стали,°С в гги » ф / ф Отверждение воздухом (нормализация)|.«вакалкья 2-й отпуск по лечению простуды EX 1000 830-850 0.90 4 640 ЕХЗ1050840-860 0.95 4800 E7B6 1200-1250 820-860 Я АЛЬ-1.00 4 960 EX5Ke 1150-1200 930-950 — / и IM) 0.85 8 000 EX9KI5M 1200-1230 1030-1050 0.80 13 600 Специальные магнитные сплавы — низкоуглеродистые сплавы Fe-Ni-Al и добавки Cu (или Cu и Co) обладают очень высокими магнитными свойствами, поэтому из них можно изготавливать магниты большой мощности(рис.15.14).Магнитные свойства этих сплавов усиливаются старением после закалки.

Читайте также:  Свойства банана и какой в нем витамин

Магнитные сплавы очень твердые, хрупкие и не поддаются механической обработке. Эти магниты сплава сделаны путем бросать или спекать от порошка. Рисунок 15.14 гистерезисная кривая твердого сплава Co образует непрерывный твердый раствор с Ni, который усиливает магнитные свойства сплавов, содержащих высокое содержание He (см. Рисунок 15.14). Химический состав, основные свойства и назначение магнитотвердого сплава приведены в таблице. 15.14.

Таблица 15.14 Химический состав, основные свойства и назначение твердомагнитных сплавов на основе Fe-Ni-Al и Fe-N1-Co-Al (ГОСТ 10160-62) Ранг химический состав splaia.% (Si-0.15) „g-t“ G A / M назначение Ни Аль-Ко(Си) AN1 22 11 0.70 за 20 000 постоянных An2 24.5 13 3.5 Cu 0.60 34 400 nits нормальный магнитный Изменение 23.5 15.5 4.0 КР 0.50 40,000 гнида энергии(0.875-1.25 Дж / Л — » — 10 — ’) АНК. 33 13.5-0.40 36 000 AHKol * 18 10 12.0 C 6.0 C 0.68 40 000 то же самое, увеличение магнитной энергии ANKO2 20 9 15.0 Co 4.0 C 0.75 48 000 J (1.75-1.875 j / l’ — KN) ANKOZ 19 10 18.0 Co 3.0 Cu 0.90 52 000 1 то же самое для высокой магнитной энергии ANKO4 13.5 9 24.0 3.0 совместно с 1.23 40 000(> 1.875 Дж / х — с- «) Таблица 15.15.

Химический состав, основные свойства и назначение прецизионных магнитотвердых сплавов (ГОСТ 10994-64) Сорт Силана химический состав,% Б, — т. » С / казна Чея Использование si Мп ст НИ КО в 52KF111 52KF13/ <0.15 <0.50 <0.50 <0.5 <0.70 51.0— 54.0 10.0—)11.5 11.5- 13.0 1.3- 0.65 2800- 3200 роторы двигателей для устройств и установок В машиностроении также используются точные, магнитотвердые сплавы на основе Fe-Co(таблица 15.15). Мягкая магнитная сталь и сплав, небольшой HC1, но с большим y. (рис. 15.15).При намагничивании в переменном электромагнитном поле потери из-за гистерезиса и вихревых токов незначительны. На основе кремния электротехнической стали с содержанием си до 2,5% динамический. А сталь, содержащая 3,5-4,5% Si, является трансформатором.

По сравнению с динамической сталью, трансформаторная сталь более хрупкая, характеризуется более высокими мягкими магнитными свойствами. Сердечник и анкер трансформатора, как сердечник электромагнита, сделаны из стали трансформатора. Динамометрическая сталь (более высокая по пластичности, чем трансформаторы) используется при изготовлении роторов Динамо-и электродвигателей и деталей статора. Развитие низкоточной технологии требует высококачественных материалов с высоким начальным rn в малых электромагнитных полях. Мягкие магнитные сплавы Fe-Ni соотвествуют этому.

Сплав этой группы имеет высокую r. it применяется при изготовлении деталей приборов и устройств, имеющих номинальные значения n и Vg и работающих в слабых Н электромагнитных полях(реле, электросчетчики, магнитные экраны, сердечники катушек, трансформаторы и др.). Химический состав, основные свойства и назначение магнитомягких сплавов Fe-Ni приведены в таблице. 15.17. Сплав 79NM с 78,5% Ni имеет самый лучший ПЭ-аш и самый высокий ПЭ-аш. однако, небольшая разница в химическом составе и условиях термической обработки значительно уменьшает свойства сплава.

Пластическая деформация также значительно влияет на мягкое магнитное properties. In кроме того, р сплавов этой группы невелик. Мягкий магнитный сплав также включает сплав A1-Si-Fe (alsifer). Alsiphar, его химический состав: Fe-85%, Si-9,6%, A! −5,4%, имеет следующие характеристики: рН = 0,044 ГН! М Fмакс = 0.146 ГН! М сплав очень хрупкий и твердый, не подвержен давлению и резки. Поэтому детали должны быть отлиты, а затем измельчают. Альцифер применяется при изготовлении магнитных экранов, корпусов аппаратуры и др. Магнитным диэлектриком называют высокочастотный магнитный материал-уплотненную смесь порошка ферромагнетика и диэлектрика materials.

As используется ферромагнитный материал (основа), карбинольное железо, альцифер или сплав 79NM. Диэлектрик представляет собой полистирол, Бакелитовую смолу или нитролак (связующее). Магнитные диэлектрики необходимы для производства сердечника высокочастотных магнитных систем. Индукторы, фильтры. Генераторы; листы из высокочастотных (выше 100 кГц) и магнитомягких материалов из ленты не могут быть применены из-за резкого снижения магнитных свойств, контуров радиоаппаратуры.

В электротехнике немагнитные материалы используются при изготовлении немагнитных деталей магнитных устройств и электрооборудования machines. To при этом немагнитные стали и чугуны аустенитной структуры, приводящие к высокому содержанию Mn и Ni, используются в качестве альтернативы цветным сплавам, а интервалы между гамма->α — метаморфозами сокращаются до нормальной температуры. Немагнитная сталь применяется при изготовлении установок, предназначенных для высоких механических нагрузок. Немагнитная сталь содержит 18,5-21,5% Ni в EI269, а сталь 55G9N9KhZ содержит 7,5-9,5% Ni и 7,5-9,5% Mp.

Стали EI269 обладают лучшими техническими свойствами и более высокой устойчивостью к коррозии, чем сталь 55G9N9HZ. Эти стали применяются при изготовлении электромеханических и приборных деталей, а также корпусов компасов. Химический состав немагнитной стали приведен в таблице. 15.18. Таблица 15. Восемнадцать Химический состав немагнитной стали Марка стали химический состав、% Ку У. МН н Аль EI269. 0.50-0.60 4.0-5.5 <0.25 18.5-21.5 55Х9Х9Х0. 58-0. 68 7.5-9.5 3.0-4.0 7.5-9.5 0.5-1.0 Вт 45P7YUZ 0.40-0.50 16.0-18.0 <0.50 <0.50 2.5-3.2 Ал.

Немагнитный чугун применяется в устройствах с низкой механической нагрузкой. Наиболее широко применяются никель-марганцевый и марганцевый чугун, которые применяются для изготовления отливок деталей типа электромагнитов, магнитных устройств и др.

Смотрите также:

Предмет материаловедение

Источник