Какие различия в свойства газов и жидкостей
Основная цель урока: выяснить особенности строения веществ в различных агрегатных состояниях и объяснить их. Сравнить физические свойства веществ в различных агрегатных состояниях.
Конспект урока
Рассмотрим следующие вещества: вода, камень, воздух, олово, спирт, сахар, природный газ, лед, кислород, растительное масло, алюминий, молоко, азот (данные вещества даны при комнатной температуре).
Многие из них мы привыкли видеть в каком-либо одном состоянии. Например, железо – в твердом, растительное масло – в жидком, водород – в газообразном. Однако есть и такие, которые в нашей жизни встречаются сразу в трех состояниях, например, вода: твердое состояние воды – лед, жидкое – вода, газообразное – водяной пар.
В природе вещества встречаются в трех состояниях: твердом, жидком и газообразном (лед, вода, водяной пар) Такое состояние вещества называется агрегатным.
Газы. Расстояние между молекулами во много раз больше самих молекул, они почти не притягиваются и свободно движутся во всех направлениях. Поэтому газы заполняют весь предоставленный объём, не имеют формы и легко сжимаются. Они принимают форму сосуда и полностью заполняют предоставленный им объём. Но если газы сильно сжать или охладить они переходят в жидкое состояние.
Жидкости. Молекулы расположены близко друг к другу, расстояние между ними сравнимо с размером молекул. Они скачками меняют свое место – «прыгают». Поэтому жидкости не сохраняют форму, они могут течь, их легко перелить. Молекулы жидкости не расходятся на большие расстояния и жидкость в обычных условиях сохраняет свой объём. Но сжать их трудно, так как при этом молекулы сближаются и между ними возникает отталкивание.
Твердые тела. Молекулы расположены в строгом порядке расстояние между молекулами сравнимо с размером молекул. В твёрдых телах притяжение между молекулами ещё больше чем у жидкостей. Молекулы колеблются около определенной точки, не могут перемещаться далеко от неё. Поэтому твердые тела сохраняют форму и объем.
Тест для самоконтроля
Вопрос №1. В скольких агрегатных состояниях могут вообще находиться вещества?
А. В двух: твёрдом и жидком
Б. В двух: твёрдом и газообразном
С. В трех: в виде твёрдого тела, жидкости и пара
Д. В трех: твёрдом, жидком и газообразном
Вопрос № 2. Может ли какое-либо вещество быть в разных состояниях?
А. Не может
Б. Нет: любое вещество или твердое, или жидкое, или газообразное
С. Может: оно изменит свое состояние, если изменятся условия
Вопрос № 3. Какими общими свойствами обладают твёрдые тела?
А. Собственным объёмом и изменчивостью формы
Б. Собственными объёмом и формой
Д. Собственной формой и легко изменяемым объёмом
Вопрос № 4. Каковы общие свойства жидкостей?
А. Наличие у них собственного объёма и текучести, следовательно, изменчивости формы
Б. Обладание собственным объёмом и формой
С. Отсутствие собственного объёма и формы
Д. Трудность изменения объёма и формы
Вопрос № 5. Какие общие свойства присущи газам?
А. Сохранение газом своего объёма и формы
Б. Неизменность объёма газа при приобретении им любой формы
С. Заполнение газом всего предоставленного ему пространства
Д. Трудность сжатия, изменения формы и объёма
Вопрос № 6. Как расположены, взаимодействуют и движутся молекулы в газах?
А. Молекулы расположены на расстояниях, сравнимых с размерами самих молекул, и перемещаются свободно друг относительно друга
Б. Молекулы находятся на больших расстояниях (по сравнению с размерами молекул) друг от друга, практически не взаимодействуют и движутся беспорядочно
С. Они расположены в строгом порядке, сильно взаимодействуют и колеблются около определённых положений
Д. Молекулы находятся на больших расстояниях друг от друга в определенном порядке, слабо взаимодействуют друг с другом и движутся в разные стороны
Источник
Основная цель урока: выяснить особенности строения веществ в различных агрегатных состояниях и объяснить их. Сравнить физические свойства веществ в различных агрегатных состояниях.
Конспект урока
Рассмотрим следующие вещества: вода, камень, воздух, олово, спирт, сахар, природный газ, лед, кислород, растительное масло, алюминий, молоко, азот (данные вещества даны при комнатной температуре).
Многие из них мы привыкли видеть в каком-либо одном состоянии. Например, железо – в твердом, растительное масло – в жидком, водород – в газообразном. Однако есть и такие, которые в нашей жизни встречаются сразу в трех состояниях, например, вода: твердое состояние воды – лед, жидкое – вода, газообразное – водяной пар.
В природе вещества встречаются в трех состояниях: твердом, жидком и газообразном (лед, вода, водяной пар) Такое состояние вещества называется агрегатным.
Газы. Расстояние между молекулами во много раз больше самих молекул, они почти не притягиваются и свободно движутся во всех направлениях. Поэтому газы заполняют весь предоставленный объём, не имеют формы и легко сжимаются. Они принимают форму сосуда и полностью заполняют предоставленный им объём. Но если газы сильно сжать или охладить они переходят в жидкое состояние.
Жидкости. Молекулы расположены близко друг к другу, расстояние между ними сравнимо с размером молекул. Они скачками меняют свое место – «прыгают». Поэтому жидкости не сохраняют форму, они могут течь, их легко перелить. Молекулы жидкости не расходятся на большие расстояния и жидкость в обычных условиях сохраняет свой объём. Но сжать их трудно, так как при этом молекулы сближаются и между ними возникает отталкивание.
Твердые тела. Молекулы расположены в строгом порядке расстояние между молекулами сравнимо с размером молекул. В твёрдых телах притяжение между молекулами ещё больше чем у жидкостей. Молекулы колеблются около определенной точки, не могут перемещаться далеко от неё. Поэтому твердые тела сохраняют форму и объем.
Тест для самоконтроля
Вопрос №1. В скольких агрегатных состояниях могут вообще находиться вещества?
А. В двух: твёрдом и жидком
Б. В двух: твёрдом и газообразном
С. В трех: в виде твёрдого тела, жидкости и пара
Д. В трех: твёрдом, жидком и газообразном
Вопрос № 2. Может ли какое-либо вещество быть в разных состояниях?
А. Не может
Б. Нет: любое вещество или твердое, или жидкое, или газообразное
С. Может: оно изменит свое состояние, если изменятся условия
Вопрос № 3. Какими общими свойствами обладают твёрдые тела?
А. Собственным объёмом и изменчивостью формы
Б. Собственными объёмом и формой
Д. Собственной формой и легко изменяемым объёмом
Вопрос № 4. Каковы общие свойства жидкостей?
А. Наличие у них собственного объёма и текучести, следовательно, изменчивости формы
Б. Обладание собственным объёмом и формой
С. Отсутствие собственного объёма и формы
Д. Трудность изменения объёма и формы
Вопрос № 5. Какие общие свойства присущи газам?
А. Сохранение газом своего объёма и формы
Б. Неизменность объёма газа при приобретении им любой формы
С. Заполнение газом всего предоставленного ему пространства
Д. Трудность сжатия, изменения формы и объёма
Вопрос № 6. Как расположены, взаимодействуют и движутся молекулы в газах?
А. Молекулы расположены на расстояниях, сравнимых с размерами самих молекул, и перемещаются свободно друг относительно друга
Б. Молекулы находятся на больших расстояниях (по сравнению с размерами молекул) друг от друга, практически не взаимодействуют и движутся беспорядочно
С. Они расположены в строгом порядке, сильно взаимодействуют и колеблются около определённых положений
Д. Молекулы находятся на больших расстояниях друг от друга в определенном порядке, слабо взаимодействуют друг с другом и движутся в разные стороны
Источник
Содержание:
- Отличительные особенности жидкостей и газов.
Отличительные особенности жидкостей и газов.
Отличительные особенности жидкостей и газов. Если учесть, что характеристики течения являются основными свойствами, определяющими основные особенности исследуемого объекта в динамике жидкостей и газов, то мы часто понимаем термин»жидкость»как жидкость, а динамику жидкостей и газов просто называют механикой жидкости или механикой жидкости. Переходя к тому же в дальнейшем, отметим при изучении каких явлений следует различать жидкость и газ. Первое и главное отличие состоит в том, что газ-это объект, который легко сжимается, а скорость распространения звука(а следовательно, и скорость всех механических возмущений) значительно медленнее, чем жидкость.
Эту особенность газа следует учитывать в том случае, если скорость его движения(или скорость движения твердых тел в нем) сопоставима или превышает скорость.
Людмила Фирмаль
- В области гидродинамики и пневматики необходимо будет учитывать сжимаемость среды, но это подчеркивается в отдельном разделе под названием pneumatics. As в рамках этого раздела изучается движение сверхзвуковых летательных аппаратов, космических объектов, высокоскоростных паровых и газовых турбин. Второе различие между жидкостью и газом-это его способность иметь границу между жидкостью и окружающим ее газом. Двадцать четыре Его обычно называют свободным surface. In в гравитационном поле неподвижная жидкость имеет свободную поверхность в виде горизонтальной плоскости.
- В условиях невесомости свободная поверхность неподвижной жидкости в результате действия поверхностного натяжения имеет сферическую форму. Это свойство жидкости и ее низкая сжимаемость обусловлены постоянным взаимодействием соседних molecules. In молекулы газа взаимодействуют только в тот момент, когда они сталкиваются друг с другом, и в большинстве случаев они свободно перемещаются в пространстве. Таким образом, из-за неупорядоченного характера теплового движения молекул газа молекулы стремятся равномерно распределиться по всей замкнутой части расположенного пространства(эта часть пространства ограничена твердой поверхностью и жидким телом).
Если часть пространства не будет закрыта, то количество газа будет увеличиваться бесконечно. 3-я разница между жидкостью и газом заключается в том, что, в то время как свойства газа изменяются непрерывно, он может бесконечно понижать или повышать температуру газа.
Людмила Фирмаль
- В жидкости давление падает до определенной величины, и чем меньше, тем внутри нее начинается образование пузырька пара-происходит фазовый переход(см. раздел 1.6), качественно меняющий общую картину течения и течения среды(подобное явление называют температурой жидкости). При постановке гидродинамических задач все следствия могут быть отнесены как к жидкости, так и к газу, но при этом необходимо учитывать перечисленные выше 3 Особенности: сжимаемость газа, наличие свободной поверхности, фазовый переход в liquid. As как правило, ограничения, налагаемые этими различиями, относительно легко установить.
Смотрите также:
Методические указания по гидравлике
Возможно эти страницы вам будут полезны:
- Сжимаемость жидкостей и газов.
- Фазовые переходы в жидкости. Кипение и кавитация.
- Вязкость жидкостей и газов. Реологические свойства жидкостей.
- Гидростатическое давление в точке.
Источник
Основная цель урока: выяснить особенности строения веществ в различных агрегатных состояниях и объяснить их. Сравнить физические свойства веществ в различных агрегатных состояниях.
Конспект урока
Рассмотрим следующие вещества: вода, камень, воздух, олово, спирт, сахар, природный газ, лед, кислород, растительное масло, алюминий, молоко, азот (данные вещества даны при комнатной температуре).
Многие из них мы привыкли видеть в каком-либо одном состоянии. Например, железо – в твердом, растительное масло – в жидком, водород – в газообразном. Однако есть и такие, которые в нашей жизни встречаются сразу в трех состояниях, например, вода: твердое состояние воды – лед, жидкое – вода, газообразное – водяной пар.
В природе вещества встречаются в трех состояниях: твердом, жидком и газообразном (лед, вода, водяной пар) Такое состояние вещества называется агрегатным.
Газы. Расстояние между молекулами во много раз больше самих молекул, они почти не притягиваются и свободно движутся во всех направлениях. Поэтому газы заполняют весь предоставленный объём, не имеют формы и легко сжимаются. Они принимают форму сосуда и полностью заполняют предоставленный им объём. Но если газы сильно сжать или охладить они переходят в жидкое состояние.
Жидкости. Молекулы расположены близко друг к другу, расстояние между ними сравнимо с размером молекул. Они скачками меняют свое место – «прыгают». Поэтому жидкости не сохраняют форму, они могут течь, их легко перелить. Молекулы жидкости не расходятся на большие расстояния и жидкость в обычных условиях сохраняет свой объём. Но сжать их трудно, так как при этом молекулы сближаются и между ними возникает отталкивание.
Твердые тела. Молекулы расположены в строгом порядке расстояние между молекулами сравнимо с размером молекул. В твёрдых телах притяжение между молекулами ещё больше чем у жидкостей. Молекулы колеблются около определенной точки, не могут перемещаться далеко от неё. Поэтому твердые тела сохраняют форму и объем.
Тест для самоконтроля
Вопрос №1. В скольких агрегатных состояниях могут вообще находиться вещества?
А. В двух: твёрдом и жидком
Б. В двух: твёрдом и газообразном
С. В трех: в виде твёрдого тела, жидкости и пара
Д. В трех: твёрдом, жидком и газообразном
Вопрос № 2. Может ли какое-либо вещество быть в разных состояниях?
А. Не может
Б. Нет: любое вещество или твердое, или жидкое, или газообразное
С. Может: оно изменит свое состояние, если изменятся условия
Вопрос № 3. Какими общими свойствами обладают твёрдые тела?
А. Собственным объёмом и изменчивостью формы
Б. Собственными объёмом и формой
Д. Собственной формой и легко изменяемым объёмом
Вопрос № 4. Каковы общие свойства жидкостей?
А. Наличие у них собственного объёма и текучести, следовательно, изменчивости формы
Б. Обладание собственным объёмом и формой
С. Отсутствие собственного объёма и формы
Д. Трудность изменения объёма и формы
Вопрос № 5. Какие общие свойства присущи газам?
А. Сохранение газом своего объёма и формы
Б. Неизменность объёма газа при приобретении им любой формы
С. Заполнение газом всего предоставленного ему пространства
Д. Трудность сжатия, изменения формы и объёма
Вопрос № 6. Как расположены, взаимодействуют и движутся молекулы в газах?
А. Молекулы расположены на расстояниях, сравнимых с размерами самих молекул, и перемещаются свободно друг относительно друга
Б. Молекулы находятся на больших расстояниях (по сравнению с размерами молекул) друг от друга, практически не взаимодействуют и движутся беспорядочно
С. Они расположены в строгом порядке, сильно взаимодействуют и колеблются около определённых положений
Д. Молекулы находятся на больших расстояниях друг от друга в определенном порядке, слабо взаимодействуют друг с другом и движутся в разные стороны
Источник
Жидкости:
В отличие от твердого тела жидкость характеризуется малым сцеплением между частицами, вследствие чего она обладает текучестью и принимает форму сосуда, в который ее помещают.
Жидкости подразделяют на два вида: капельные и газообразные. Капельные жидкости обладают большим сопротивлением сжатию (практически несжимаемы) и малым сопротивлением касательным и растягивающим усилиям (из-за незначительного сцепления частиц и малых сил трения между частицами). Газообразные жидкости характеризуются почти полным отсутствием сопротивления сжатию. К капельным жидкостям относятся вода, бензин, керосин, нефть, ртуть и другие, а к газообразным — все газы.
Гидравлика изучает капельные жидкости. При решении практических задач гидравлики часто пользуются понятием идеальной жидкости — несжимаемой среды, не обладающей внутренним трением между отдельными частицами.
К основным физическим свойствам жидкости относятся плотность, давление, сжимаемость, температурное расширение, вязкость.
Плотность — это отношение массы к объему, занимаемому этой массой. Плотность измеряют в системе СИ в килограммах на кубический метр (кг/м3). Плотность воды составляет 1000 кг/м3.
Используются также укрупненные показатели: – килопаскаль — 1 кПа= 103 Па; – мегапаскаль — 1 МПа = 106 Па.
Сжимаемость жидкости — это ее свойство изменять объем при изменении давления. Это свойство характеризуется коэффициентом объемного сжатия или сжимаемости, выражающим относительное уменьшение объема жидкости при увеличении давления на единицу площади. Для расчетов в области строительной гидравлики воду считают несжимаемой. В связи с этим при решении практических задач сжимаемостью жидкости обычно пренебрегают.
Величина, обратная коэффициенту объемного сжатия, называется модулем упругости. Модуль упругости измеряется в паскалях.
Температурное расширение жидкости при ее нагревании характеризуется коэффициентом температурного расширения, который показывает относительное увеличение объема жидкости при изменении температуры на 1 С.
В отличие от других тел объем воды при ее нагревании от 0 до 4 °С уменьшается. При 4 °С вода имеет наибольшую плотность и наибольший удельный вес; при дальнейшем нагревании ее объем увеличивается. Однако в расчетах многих сооружений при незначительных изменениях температуры воды и давления изменением этого коэффициента можно пренебречь.
Вязкость жидкости — ее свойство оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Силы, возникающие в результате скольжения слоев жидкости, называют силами внутреннего трения, или силами вязкости.
Силы вязкости проявляются при движении реальной жидкости. Если жидкость находится в покое, то вязкость ее может быть принята равной нулю. С увеличением температуры вязкость жидкости быстро уменьшается; остается почти постоянной при изменении давления.
Газов:
Физические свойства газов, как и любого вещества начинаем с определений связанных с его массой и энергией. Так плотность газа, в определенном смысле равноправно, определяется следующим образом: • если известны конечные значения массы и размеры объема, то имеем • для бесконечно малых объемов вещества предельное значение плотности равно При расчетах коммерческого расхода газа пользуются относительной плотностью газа, т.е. отношением r – плотности газа к плотности сухого воздуха – ra при стандартных условиях. Относительная плотность газа по воздуху равна Плотность газа при 0°С и атмосферном давлении может быть определена по его молярной массе – Пересчет плотности при разных физических параметрах газа производим по формуле. Плотность газовой смеси определяется по правилу смешения (аддитивности) ai – объемные концентрации газовых компонент в смеси (0 ai 1), – плотности компонентов смеси. Удельный объем газа вычисляется следующим образом Средняя молярная масса смеси равна В термических расчетах, в зависимости от происходящего процесса, применяют понятие теплоемкости вещества – при постоянном давлении cp, и при постоянном объеме cv, для которых справедлива формула Майера Отношение теплоемкостей называется показателем адиабаты Другим важным физическим свойством реального газа является его сжимаемость. По сути сжимаемость газа является определяющим фактором отличающим отклонение газа от идеального. Характеристика сжимаемости определяется коэффициентом сжимаемости , или Z – фактором, в зарубежной терминологии, в модели реального газа. Коэффициент сжимаемости зависит от приведенных температуры и давления (Tm,pm), которые определяются следующим образом T,Tcr – текущая и критическая температура газа, p,pcr – текущее и критическое давление газа, например в трубопроводе Расчет коэффициента сжимаемости (по методике ОНТП 51-1-85) : По Губкинскому университетут: Рассмотрим физические свойства реальных газов связанных с его вязкостью. Как известно, вязкость сплошной среды определяет ее внутренее трение между слоями жидкости или газа при их относительном движении. Определяются из экспериментальных зависимостей между напряжением и градиентом скорости. Для расчета касательных напряжений, используется понятие коэффициента динамической вязкости, который используется при расчете касательных напряжений по формуле: v, n – скорость относительного течения и ее нормаль к линиям тока; – коэффициент динамической вязкости газа (Па с); – напряжения внутреннего трения (Па). Для кинематической вязкости введено обозначение: Практически все природные газы содержат водяные пары. Наличие водяных паров в газе способствуют образованию гидратов на поверхности трубы. Различают w – абсолютную массовую и – объемную влажности Эти формулы не учитывают отклонение законов реального газа от законов идеального газа. Поэтому вводится понятие относительной влажности газа. Относительная влажность газа это отношение фактического количества водяных паров к максимально возможному (при одних и тех же давлениях и температуре) в единице объема: mw,T – максимально возможное количество водяного пара, которое может находится при данной температуре T ; mw -плотность пара; w,T – плотность насыщенного пара; pw – парциальное давление водяного пара в газовой смеси; pw,T – давление насыщенного водяного пара в газовой смеси. Температура, при которой газ становится насыщенным при определенном далении, называется точкой росы. При технологических расчетах газопровода газ должен быть осушен так, чтобы температура его транспортировки была бы на на несколько градусов ниже его точки росы.
Источник