Какие продукты связывают воду
Вода входит в состав всех пищевых продуктов. Наиболее высокое содержание воды характерно для плодов и овощей (72—95%), молока (87—90%), мяса (58—74), рыбы (62— 84%). Значительно меньше воды находится в зерне, муке, крупе, макаронных изделиях, сушеных овощах и плодах, орехах, маргарине, сливочном масле (12—25%). Минимальное количество воды содержится в сахаре (0,14—0,4%), растительном и топленом масле, кулинарных жирах (0,25—1,0%), поваренной соли, чае, карамели без начинки, сухом молоке (0,5—5-%).
Вода в натуральных продуктах
В натуральных продуктах вода является наиболее подвижным компонентом химического состава тканей. Так, содержание воды в свежей сельди колеблется в широком диапазоне— от 51,0 до 78,3%, в тресковых рыбах —от 70,6 до 86,2% в зависимости от возраста, пола, района и времени лова. Количество воды в картофеле может быть в пределах 67—83%, в дынях — 81—93% и зависит от хозяйственно-ботанического сорта овощей, района их выращивания и погоды вегетационного периода.
В продуктах, изготовленных из растительного и животного сырья, — сахаре, кондитерских, колбасных изделиях, сырах и других — содержание воды регламентируется стандартами.
Нормальные функции организма животных и растении осуществляются только при достаточном содержании в тканях воды. Плоды и овощи при потере воды в количестве 5-7% увядают и теряют свежесть.
Утрата воды животными в пределах 15—20% приводит к их гибели. Она участвует во многих биохимических реакциях при жизни организма и в биохимических посмертных изменениях. Вода необходима для химических и коллоидных процессов, протекающих в животных и растительных тканях во время их переработки.
В теле взрослого человека находится 58—67% воды. В среднем в сутки человек потребляет примерно 40 г воды на каждый килограмм массы тела, и такое же количество он теряет в виде различных выделении. Без пищи человек может существовать около месяца, тогда как без воды — не более 10 дней.
Часть необходимого количества воды (около 50%) человек получает с пищей, другую часть — при потреблении напитков и питьевой воды. 350—450 г воды образуется в теле человека в сутки при окислительных процессах (при окислении 1 г жира образуется 1,07 г воды, 1 г крахмала — 0,55 г и 1 г белка — 0,41 г воды).
Свойства продуктов зависят не только от количества содержащейся в них воды, но и от формы связи ее с другими веществами.
Вода, входящая в состав пищевых продуктов, находится в трех формах связи с сухими веществами: физико-механической (влага смачивания, влага в макро- и микрокапиллярах), физико-химической (влага набухания, адсорбционная) и химической (ионная и молекулярная связи). Преобладают первые две формы связи, химическая связь в продуктах встречается редко.
Влага смачивания
Влага смачивания — влага в виде мельчайших капель на поверхности продуктов или на поверхности разреза тканей продуктов. Она удерживается силами поверхностного натяжения.
Макро и микрокапиллярная влага
Макрокапиллярная влага — влага, которая находится в капиллярах радиусом более 10-5 см, микрокапиллярная в капиллярах радиусом менее 10-5 см. Макро- и микрокапиллярная влага представляет собой растворы, содержащие минеральные и органические вещества продукта. Она удерживается силой капиллярности в промежутках структурнокапиллярной системы продуктов.
При резке мяса, рыбы, плодов, овощей под механическим воздействием может происходить частичная потеря структурно-капиллярной влаги в виде мышечного, плодового и овощного сока, обладающего высокой пищевой ценностью.
Наиболее легко удаляется из продукта влага смачивания, она наименее прочно связана с субстратом. Капиллярная влага связана с сухими веществами продукта механически и в неопределенном количестве. Микрокапиллярная влага из продукта удаляется труднее, чем макрокапиллярная.
Влага набухания
Влага набухания, называемая также осмотически удерживаемой влагой, находится в микропространствах, образованных мембранами клеток, фибриллярными молекулами белков и другими волокнистыми структурами. Она удерживайся осмотическими силами.
Осмотически удерживаемая влага находится в соке клеток, обусловливая их тургор, оказывая влияние на пластические свойства животных тканей. Влага набухания связана с сухими веществами продукта непрочно, удаляется во время сушки раньше, чем микрокапилярная влага.
Влагу смачивания, микро-, макрокапиллярную и осмотическую называют свободной водой пищевых продуктов. Свободная вода имеет обычные физико-химические свойства: плотность ее около единицы, температура замерзания около 0°, удаляется при высушивании и замораживании продуктов, является активным растворителем. За счет нее главным образом происходит естественная убыль массы — усушка продуктов при хранении и транспортировании.
Адсорбционно-связанная вода
Адсорбционно-связанная вода находится у поверхности раздела коллоидных частиц с окружающей средой. Она прочно удерживается молекулярным силовым полем и входит в состав мицелл различных гидрофильных коллоидов, из которых наибольшее значение имеют водорастворимые белки. Поэтому этот вид влаги называют водой связанной, или гидратационной.
Она не растворяет органические вещества и минеральные соли, замерзает при низкой температуре (—71°), обладает пониженной диэлектрической постоянной, не усваивается микроорганизмами.
Семена растений и споры микроорганизмов переносят низкие температуры, так как вода в них гидратационная, не образует кристаллов льда, способных повредить клетки тканей.
К связанной воде с химической формой связи относят кристаллизационною влагу, которая входит в состав молекул в строго определенном количестве, например в состав молочного сахара (С12Н22О11•НгО), глюкозы (С6Н12О6• Н2О). Ее удаляют прокаливанием химических соединений, в результате чего происходит разрушение материала.
Между связанной и свободной водой продуктов не наблюдается резкой границы. Молекулы воды полярны (в молекуле воды несимметрично расположены электрические заряды: кислородный конец ее несет отрицательный заряд, а водородный — положительный), поэтому наиболее прочно связаны те молекулы воды, которые ориентированы в зависимости от знака и величины заряда коллоидной частицы.
Молекулы, расположенные блике к мицелле, прочнее удерживаются электростатическими силами притяжения. Чем дальше удалены молекулы воды от коллоидной частицы, тем слабее связь. Молекулы воды крайнего слоя являются менее связанными с мицеллами и могут обмениваться с молекулами свободной воды.
В растительных и животных тканях преобладает свободная вода. Так в мышцах животных и рыб основная часть воды связана с гидрофильными белками за счет осмотических (45—55%), капиллярных (40—45%») сил, воды смачивания (0,8—2,5%), а на долю связанной воды приходится только 6,5—7,5%- В плодах и овощах находится до 95% свободной воды. Поэтому эти продукты сушат до содержания остаточной влажности 8—20%, так как свободная вода из них легко удаляется.
Вода в пищевых продуктах при переработке и хранении может переходить из свободной в связанную, и наоборот, что вызывает изменение свойств товаров. Например, при выпечке хлеба, варке картофеля, производстве мармелада, пастилы, студней и желе происходит превращение части свободной воды в адсорбционно связанную с коллоидными частицами белков, крахмала и других веществ, а также возрастает количество осмотически удерживаемой влаги.
В соках из плодов, ягод, овощей меняются формы связи воды по сравнению с исходным сырьем. При черствении хлеба и отмокании мармелада, в результате старения студней, при оттаивании замороженного мяса и картофеля наблюдается переход части связанной воды в свободную.
Пищевые продукты при хранении и перевозке
Пищевые продукты при хранении и перевозке в зависимости от условий поглощают извне или отдают водяные пары. При этом их масса увеличивается или уменьшается. Способность продуктов к поглощению и отдаче водяных паров называется гигроскопичностью. Количество воды, которое поглощает или отдает продукт, зависит от влажности, температуры и давления окружающего воздуха, химического состава и физических свойств самого продукта, а также от состояния его поверхности, вида и способа упаковки.
Наиболее высокой гигроскопичностью обладает сухое молоко, яичный порошок, сушеные овощи и плоды, крахмал и др. Поглощенная из воздуха влага, которая называется гигроскопической, в продукте может находиться как в свободном, так и в связанном состоянии.
Условия и сроки хранения ряда продуктов зависят от соотношения в них свободной и связанной воды. Например, зерно, мука, крупа при влажности до 14% хорошо сохраняются, так как почти вся влага в них находится в связанной состоянии. При повышении содержания в них воды накапливается и свободная влага, усиливаются биохимические процессы, поэтому возникают трудности в хранении.
Продукты с высоким содержанием свободной воды (мясо, рыба, молоко и др.) плохо сохраняются, являются скоропортящимися. Для длительного хранения их подвергают консервированию.
Влажность продукта
Влажность продукта — это выраженное в процентах отношение свободной и адсорбционно связанной воды к его первоначальной массе.
Для многих пищевых продуктов содержание воды (влажность) является важным показателем качества. Пониженное или повышенное содержание воды против установленной нормы для продукта вызывает ухудшение его качества. Например, мука, крупа, макаронные изделия с повышенной влажностью при хранении быстро плесневеют, а понижение влаги в мармеладе и джеме ухудшает их консистенцию и вкус.
Потеря влаги свежими плодами и овощами уменьшает тургор клеток, поэтому они становятся вялыми, дряблыми и быстро портятся.
Смотрите также:
Источник
Свободная и связанная влага в пищевых продуктах
Вода в пищевых продуктах играет важную роль, так как обусловливает консистенцию и структуру продукта, а ее взаимодействие с присутствующими компонентами определяет устойчивость продукта при хранении.
Общая влажность продукта указывает на количество влаги в нем, но не характеризует ее причастность к химическим, биохимическим и микробиологическим изменениям в продукте. В обеспечении его устойчивости при хранении важную роль играет соотношение свободной и связанной влаги.
Связанная влага – это ассоциированная вода, прочно связанная с различными компонентами – белками, липидами и углеводами за счет химических и физических связей.
Свободная влага – это влага, не связанная полимером и доступная для протекания биохимических, химических и микробиологических реакций.
Большая часть воды в продукте может быть превращена в лед при -5°С, а вся – при -50°С и ниже. Однако определенная доля прочно связанной влаги не замерзает даже при температуре -60°С.
Большинство исследователей склоняются к следующему определению связанной влаги: связанная влага – это вода, которая существует вблизи растворенного вещества и других неводных компонентов, имеет уменьшенную молекулярную подвижность и другие свойства, отличающиеся от свойств всей массы воды в той же системе, и не замерзает при –40°С. Такое определение объясняет физическую сущность связанной воды и обеспечивает возможность сравнительно точной ее количественной оценки, так как вода, незамерзающая при –40°С, может быть измерена с удовлетворительным результатом (например, методом ПМР или калориметрически).
Причины связывания влаги в сложных системах различны. Наиболее прочно связанной является так называемая органически связанная вода. Она представляет собой очень малую часть воды в высоковлажных пищевых продуктах и находится, например, в щелевых областях белка или в составе химических гидратов. Другой весьма прочно связанной водой является близлежащая влага, представляющая собой монослой при большинстве гидрофильных групп неводного компонента. Вода, ассоциированная таким образом с ионами и ионными группами, является наиболее прочно связанным типом близлежащей воды. К монослою примыкает мультислойная вода (вода полимолекулярной адсорбции), образующая несколько слоев за близлежащей водой. Хотя мультислой – это менее прочно связанная влага, чем близлежащая влага, она все же еще достаточно тесно связана с неводным компонентом, и потому ее свойства существенно отличаются от чистой воды. Таким образом, связанная влага состоит из «органической», близлежащей и почти всей воды мультислоя.
Кроме того, небольшие количества воды в некоторых клеточных системах могут иметь уменьшенные подвижность и давление пара из-за нахождения воды в капиллярах. Уменьшение давления пара и активности воды (аw) становится существенным, когда капилляры имеют диаметр меньше, чем 0,1 µм. Большинство же пищевых продуктов имеют капилляры диаметром от 10 до 100 µм, которые, по-видимому, не могут заметно влиять на уменьшение аw в пищевых продуктах.
В пищевых продуктах имеется также вода, удерживаемая макромолекулярной матрицей. Например, гели пектина и крахмала, растительные и животные ткани при небольшом количестве органического материала могут физически удерживать большие количества воды.
Хотя структура этой воды в клетках и макромолекулярной матрице точно не установлена, ее поведение в пищевых системах и важность для качества пищи очевидна. Эта вода не выделяется из пищевого продукта даже при большом механическом усилии. С другой стороны, в технологических процессах обработки она ведет себя почти как чистая вода. Ее, например, можно удалить при высушивании или превратить в лед при замораживании. Таки образом, свойства этой воды, как свободной, несколько ограничены, но ее молекулы ведут себя подобно водным молекулам в разбавленных солевых растворах.
Именно эта вода составляет главную часть воды в клетках и гелях, и изменение ее количества существенно влияет на качество пищевых продуктов. Например, хранение гелей часто приводит к потере их качества из-за потери этой воды (так называемого синерезиса). Консервирование замораживанием тканей часто приводит к нежелательному уменьшению способности к удерживанию воды в процессе оттаивания.
Категории связанной влаги в пищевых продуктах
Свойства | Органически связанная вода | Монослой | Мультислой |
---|---|---|---|
Общее описание | Вода как общая часть неводного компонента | Вода, которая сильно взаимодействует с гидрофильными группами неводных компонентов путем вода-ион, или вода-диполь ассоциации; вода в микрокапиллярах (d | Вода, которая примыкает к монослою и которая образует несколько слоев вокруг гидрофильных групп неводного компонента. Превалируют вода-вода и вода-растворенное вещество-водородные связи |
Точка замерзания по сравнению с чистой водой | Не замерзает при –40°С | Не замерзает при –40°С | Большая часть не замерзает при –40°С. Остальная часть замерзает при значительно пониженной температуре |
Способность служить растворителем | нет | нет | Достаточно слабая |
Молекулярная подвижность по сравнению с чистой водой | Очень малая | Существенно меньше | Меньше |
Энтальпия парообразования по сравнению с чистой водой | Сильно увеличена | Значительно увеличена | Несколько увеличена |
Содержание в расчете на общее содержание влаги в продуктах с высокой влажностью (90% Н2О), % | 0,1–0,9 | 1–5 | |
Зона изотермы сорбции (рис.) | Органически связанная вода показывает практически нулевую активность и, таким образом, существует в экстремально левом конце зоны I | Вода в зоне I изотермы состоит из небольшого количества органической влаги с остатком монослоя влаги. Верхняя граница зоны I не является четкой и варьирует в зависимости от продукта и температуры. | Вода в зоне II состоит из воды, присутствующей в зоне I, + вода, добавленная или удаленная внутри зоны II (мультислойная влага). Граница зоны II не является четкой и варьирует в зависимости от продукта и температуры |
Стабильность пищевых продуктов | Самоокисление | Оптимальная стабильность при аw = 0,2–0,3 | Если содержание воды увеличивается выше нижней части зоны II, скорость почти всех реакций увеличивается |
Источник
Классификация и свойства. В пищевых продуктах вода обеспечивает консистенцию и структуру продукта, ее взаимодействие с присутствующими компонентами определяет устойчивость продукта при хранении. Общая влажность продукта указывает на количество влаги в продукте, но не характеризует ее причастность к химическим и биологическим изменениям. С точки зрения устойчивости продукта при хранении играет роль соотношение свободной и связанной влаги.
Связанная влага – этот термин для ассоциированной воды. Такая влага прочно связана с различными компонентами пищи – белками, липидами, углеводами.
Свободная влага – это влага, не связанная с полимером.
Определенная доля прочно связанной влаги не замерзает даже при -60°C. Например, общая влажность зерна – 15-20%. При этом 10-15% в нем – это связанная вода. Если влаги больше, то появляется свободная влага, и усиливаются биохимические процессы, например, начинается прорастание зерна.
Плоды и овощи содержат 75-95% влаги. В основном это свободная влага, только приблизительно 5% удерживается клеточными коллоидами в связанном состоянии. Она очень прочно связана. Поэтому овощи и плоды легко высушить до остаточной влаги 10-12%, для получения более низкой влажности нужны специальные методы. Причем большая часть воды в плодах может быть превращена в лед при -5°C, а вся – при -50°C и ниже.
Способность воды связываться с другими веществами, в том числе компонентами пищи, зависит от многих факторов, включая природу компонента, с которыми осуществляется связывание, состав соли, pH, температуру. Причины связывания влаги в сложных системах различны.
По степени прочности связывания прочно связанную воду можно классифицировать следующим образом:
1. наиболее прочно связанная вода – это та, которая существует как «органически» связанная вода. В основном это химические гидраты;
2. близлежащая влага – это монослой при большинстве гидрофильных групп неводного компонента;
3. мультислойная вода. Она примыкает к монослою и образует несколько следующих слоев.
Хотя мультислой – это менее прочно связанная влага, чем близлежащая влага, она еще достаточно прочно связана с неводным компонентом, и поэтому ее свойства существенно отличаются от чистой воды. Таким образом, связанная влага состоит из «органической», близлежащей и почти всей воды мультислоя. Кроме того, небольшие количества воды в некоторых клеточных системах могут иметь уменьшенную подвижность и давление пара из-за физического заключения воды в макрокапиллярах. Уменьшение давления пара становится существенным, когда капилляры имеют диаметр меньше, чем 0,1мм. Поскольку большинство пищевых продуктов имеют капилляры размером от 10 до 100мк, это исключает значимость этого механизма для уменьшения активности воды в пищевых продуктах за счет изменения давления пара.
В пищевых продуктах, кроме того, есть вода, удерживаемая макромолекулярной матрицей. Например, гели пектина и крахмала, растительные и животные ткани могут удерживать большое количество воды, при этом небольшое количество органического материала физически удерживает большое количество воды.
Таблица. Органически связанная вода в пищевых продуктах
Общее описание | Характеристика |
Точка замерзания по сравнению с чистой водой | Не замерзает при -40°C |
Способность служить растворителем | Не может |
Энтальпия парообразования по сравнению с чистой водой | Сильно увеличена |
% от общего содержания воды в продуктах с высокой влажностью (90%) | 0,03% |
Важность этой воды в пищевых системах очевидна. С одной стороны, эта вода не удаляется из пищевого продукта даже при очень большом механическом усилии. С другой стороны, эта вода ведет себя почти как чистая вода во время технологических процессов обработки. Например, ее можно удалить при высушивании или превратить в лед при замораживании. Эта вода составляет главную часть воды в клетках и гелях, и количественное изменение имеет большое значение для качества пищевых продуктов. Например, хранение гелей часто приводит к потере качества из-за потери этой воды. Это явление известно под названием «синерезис». Консервирование замораживанием тканей часто приводит к нежелательному уменьшению способности к удерживанию воды, когда идет оттаивание.
Активность воды
Давно известно, что существует взаимосвязь между влагосодержанием пищевых продуктов и их сохранностью (или порчей). Поэтому основным методом удлинения сроков хранения пищевых продуктов всегда было уменьшение содержания влаги путем концентрирования или дегидратации.
Однако часто различные пищевые продуты с одним и тем же содержанием влаги портятся по-разному. В частности, было установлено, что при этом имеет значение, насколько вода ассоциирована с неводными компонентами: вода, сильнее связанная, меньше способна поддержать процессы, разрушающие (портящие) пищевые продукты, такие как рост микроорганизмов и гидролитические химические реакции.
Чтобы учесть эти факторы, был введен термин «активность воды». Этот термин, безусловно, лучше характеризует влияние влаги на порчу продукта, чем просто содержание влаги. Естественно существуют и другие факторы (такие как pH, подвижность воды, тип растворенного вещества), которые в ряде случаев могут сильнее влиять на разрушение продукта. Тем не менее, водная активность хорошо коррелирует со скоростью многих разрушительных реакций, она может быть измерена и использована для оценки состояния воды в пищевых продуктах и ее причастности к химическим и биологическим изменениям.
Активность воды(аw) – это отношение давления паров воды над данным продуктом к давлению паров над чистой водой при той же температуре.
aw =
где – давление водяного пара в системе пищевого продукта; – давление пара чистой воды; РОВ – относительная влажность в состоянии равновесия, при которой продукт не впитывает влагу и не теряет ее в атмосферу, %.
Таблица. Активность воды (aw ) в пищевых продуктах.
Продукт | Влажность, % | aw |
Фрукты | 90-95 | 0,97 |
Яйца | 70-80 | 0,97 |
Мясо | 60-70 | 0,97 |
Сыр | 0,96 | |
Джем | 30-35 | 0,82-0,94 |
Хлеб | 40-50 | 0,95 |
Кекс | 20-28 | 0,83 |
Мука | 16-19 | 0,80 |
Мед | 10-15 | 0,75 |
Карамель | 7-8 | 0,65 |
Печенье | 6-9 | 0,60 |
Шоколад | 5-7 | 0,40 |
Сахар | 0-0,15 | 0,10 |
Активность воды характеризует способность ее участия в химических и биохимических процессах продуктов питания. По величине активности воды выделяют: продукты с высокой влажностью (aw = 1,0-0,9); продукты с промежуточной влажностью (aw = 0,9-0,6); продукты с низкой влажностью (aw = 0,6-0,0).
В продуктах с низкой влажностью могут происходить окисление жиров, неферментативное потемнение, потеря водорастворимых веществ (витаминов), порча, вызванная ферментами. Активность микроорганизмов здесь подавлена. В продуктах с промежуточной влажностью могут протекать процессы, в том числе с участием микроорганизмов. В процессах, протекающих при высокой влажности, микроорганизмам принадлежит решающая роль.
В основном порчу продуктов с промежуточной влажностью вызывают дрожжи и плесени, меньше – бактерии. Дрожжи вызывают порчу сиропов, кондитерских изделий, джемов, сушеных фруктов; плесени – мяса, джемов, пирожных, печенья, сушеных фруктов.
Эффективным средством для предупреждения микробиологической порчи и целого ряда химических реакций, снижающих качество пищевых продуктов при хранении, является снижение активности воды в пищевых продуктах. Для этого используют такие технологические приемы, как сушка, вяление, добавление различных веществ (сахар, соль и др.), замораживание. С целью достижения той или иной активности воды в продукте можно применять такие технологические приемы, как:
– адсорбция – продукт высушивают, а затем увлажняют до определенного уровня влажности;
– сушка посредством осмоса – пищевые пролукты погружают в растворы, активность воды в которых меньше активности воды пищевых продуктов.
Часто для этого используют растворы сахаров или соли. В этом случае имеет место два противотока: из раствора в продукт диффундирует растворенное вещество, а из продукта в раствор – вода. К сожалению, природа этих процессов сложна, и в литературе нет достаточных данных по этому вопросу.
Для достижения требуемой активности воды добавляют различные ингредиенты в продукт, обработанный одним из указанных выше способов, и дают ему возможность прийти в равновесное состояние, так как один лишь процесс сушки часто не позволяет получить нужную консистенцию. Применяя увлажнители, можно увеличить влажность продукта, но снизить aw. Потенциальными увлажнителями для пищевых продуктов являются крахмал, молочная кислота, сахар, глицерин и др.
Помимо влияния на химические реакции и рост микроорганизмов, активность воды, допустимая в сухих продуктах без потери желаемых свойств, может изменяться в пределах 0,35 – 0,5 в зависимости от вида продукта (сухое молоко, крекеры, инстант-продукты и т.п.). большая aw необходима для продуктов мягкой текстуры, которые не должны обладать хрупкими свойствами.
Источник