Какие продукты реакции образуются при аэробном дыхании вода углекислый газ

Какие продукты реакции образуются при аэробном дыхании вода углекислый газ thumbnail

Клеточное или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (АТФ, которых в результате процесса образуется 30(32) и др.) и может быть использована по мере необходимости. Входит в группу процессов катаболизма. О физиологических процессах транспортировки к клеткам многоклеточных организмов кислорода и удалению от них углекислого газа см. статью Дыхание.

Использование различных начальных субстратов[править | править код]

В качестве исходных субстратов дыхания могут выступать различные вещества, преобразуемые в ходе специфических метаболических процессов в Ацетил-КоА с высвобождением ряда побочных продуктов. Восстановление НАД (НАДФ) и образование АТФ может происходить уже на этом этапе, однако большая их часть образуется в цикле трикарбоновых кислот при переработке Ацетил-КоА.

Гликолиз[править | править код]

Гликолиз — путь ферментативного расщепления глюкозы — является общим практически для всех живых организмов процессом. У аэробов он предшествует собственно клеточному дыханию, у анаэробов завершается брожением. Сам по себе гликолиз является полностью анаэробным процессом и для осуществления не требует присутствия кислорода.

Первый его этап протекает с высвобождением 2 молекул АТФ и включает в себя расщепление молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата. На втором этапе происходит НАД-зависимое окисление глицеральдегид-3-фосфата, сопровождающееся субстратным фосфорилированием, то есть присоединением к молекуле остатка фосфорной кислоты и формированием в ней макроэргической связи, после которого остаток переносится на АДФ с образованием АТФ.

Таким образом, уравнение гликолиза имеет следующий вид:

Глюкоза + 2НАД+ + 4АДФ + 2АТФ + 2Фн = 2ПВК + 2НАД∙Н + 2 АДФ + 4АТФ + 2H2O + 2Н+.

Сократив АТФ и АДФ из левой и правой частей уравнения реакции, получим:

Глюкоза + 2НАД+ + 2АДФ + 2Фн = 2НАД∙Н + 2ПВК + 2АТФ + 2H2O + 2Н+.

Окислительное декарбоксилирование пирувата[править | править код]

Образовавшаяся в ходе гликолиза пировиноградная кислота (пируват) под действием пируватдегидрогеназного комплекса (сложная структура из 3 различных ферментов и более 60 субъединиц) распадается на углекислый газ и ацетальдегид, который вместе с Коферментом А образует Ацетил-КоА. Реакция сопровождается восстановлением НАД до НАД∙Н.

У эукариот процесс протекает в матриксе митохондрий.

β-окисление жирных кислот[править | править код]

Деградация жирных кислот (у некоторых организмов также алканов) происходит у эукариот в матриксе митохондрий. Суть этого процесса заключается в следующем. На первой стадии к жирной кислоте присоединяется кофермент А с образованием ацил-KoA. Он дегидрируется с последовательным переносом восстановительных эквивалентов на убихинон дыхательной ЭТЦ. На второй стадии происходит гидратирование по двойной связи С=С, после чего на третьей стадии происходит окисление полученной гидроксильной группы. В ходе этой реакции восстанавливается НАД.

Наконец, на четвёртой стадии образовавшаяся β-кетокислота расщепляется β-кетотиолазой в присутствии кофермента А на ацетил-КоА и новый ацил-КоА, в которой углеродная цепь на 2 атома короче. Цикл β-окисления повторяется до тех пор, пока вся жирная кислота не будет переработана в ацетил-КоА.

Цикл трикарбоновых кислот[править | править код]

Ацетил-КоА под действием цитратсинтазы передаёт ацетильную группу оксалоацетату с образованием лимонной кислоты, которая поступает в цикл трикарбоновых кислот (цикл Кребса). В ходе одного оборота цикла лимонная кислота несколько раз дегидрируется и дважды декарбоксилируется с регенерацией оксалоацетата и образованием одной молекулы ГТФ (способом субстратного фосфорилирования), трёх НАДН и ФАДН2.

Суммарное уравнение реакций:

Ацетил-КоА + 3НАД+ + ФАД + ГДФ + Фн + 2H2O + КоА-SH = 2КоА-SH + 3НАДH + 3H+ + ФАДН2 + ГТФ + 2CO2

У эукариот ферменты цикла находятся в свободном состоянии в матриксе митохондрий, только сукцинатдегидрогеназа встроена во внутреннюю митохондриальную мембрану.

Окислительное фосфорилирование[править | править код]

Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН2, восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т.д. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот — в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2.5 молекулы АТФ, ФАДН2 — 1.5 молекулы.

Конечным акцептором электрона в дыхательной цепи аэробов является кислород.

Анаэробное дыхание[править | править код]

Если в электронтранспортной цепи вместо кислорода используется другой конечный акцептор (трёхвалентное железо, нитрат- или сульфат-анион), дыхание называется анаэробным. Анаэробное дыхание свойственно в основном бактериям, которые благодаря этому играют важную роль в биогеохимическом цикле серы, азота и железа. Денитрификация — один из типов анаэробного дыхания — является одним из источников парниковых газов, железобактерии принимают участие в образовании железомарганцевых конкреций. Среди эукариот анаэробное дыхание встречается у некоторых грибов, морских донных беспозвоночных, паразитических червей [1] и протистов – например, фораминифер [2].

Общее уравнение дыхания, баланс АТФ[править | править код]

СтадияВыход коферментаВыход АТФ (ГТФ)Способ получения АТФ
Первая фаза гликолиза−2Фосфорилирование глюкозы и фруктозо-6-фосфата с использованием 2 АТФ из цитоплазмы.
Вторая фаза гликолиза4Субстратное фосфорилирование
2 НАДН3 (5)Окислительное фосфорилирование. Только 2 АТФ образуется из НАДН в электронтранспортной цепи, поскольку кофермент образуется в цитоплазме и должен быть транспортирован в митохондрии. При использовании малат-аспартатного челнока для транспорта в митохондрии из НАДН образуется 3 моль АТФ. При использовании же глицерофосфатного челнока образуется 2 моль АТФ.
Декарбоксилирование пирувата2 НАДН5Окислительное фосфорилирование
Цикл Кребса2Субстратное фосфорилирование
6 НАДН15Окислительное фосфорилирование
2 ФАДН23Окислительное фосфорилирование
Общий выход 30 (32) АТФ[3]При полном окислении глюкозы до углекислого газа и окислении всех образующихся коферментов.

См. также[править | править код]

  • Брожение

Примечания[править | править код]

  1. ↑ Tielens A.G.M., Rotte C., van Hellemond J.J., Martin W. Mitochondria as we don’t know them (Trends in Biochem.Sci.,2002,27,11,564-572
  2. ↑ Если нет кислорода, можно дышать нитратами
  3. David L. Nelson, Michael M. Cox. Lehninger Principles of Biochemistry. — 4. — W. H. Freeman, 2004. — 1100 с.

Источник

Клеточное дыхание — это окисление органических веществ в клетке, в результате которого синтезируются молекулы АТФ. Исходным сырьем (субстратом) обычно служат углеводы, реже жиры и еще реже белки. Наибольшее количество молекул АТФ дает окисление кислородом, меньшее – окисление другими веществами и переносом электронов.

Углеводы, или полисахариды, перед использованием в качестве субстрата клеточного дыхания распадаются до моносахаридов. Так у растений крахмал, а у животных гликоген гидролизуются до глюкозы.

Глюкоза является основным источником энергии почти для всех клеток живых организмов.

Первый этап окисления глюкозы — гликолиз. Он не требует кислорода и характерен как при анаэробном, так и аэробном дыхании.

Биологическое окисление

Клеточное дыхание включает в себя множество окислительно-восстановительных реакций, в которых происходит перемещение водорода и электронов от одних соединений (или атомов) к другим. При потери электрона каким-либо атомом происходит его окисление; при присоединении электрона — восстановление. Окисляемое вещество — это донор, а восстанавливаемое — акцептор водорода и электронов. Окислительно-восстановительные реакции, протекающие в живых организмах носят название биологического окисления, или клеточного дыхания.

Обычно при окислительных реакциях происходит выделение энергии. Причина этого кроется в физических законах. Электроны в окисляемых органических молекулах находятся на более высоком энергетическом уровне, чем в продуктах реакции. Электроны, переходя с более высокого на более низкий энергетический уровень, высвобождают энергию. Клетка умеет фиксировать ее в связях молекул АТФ — универсальном «топливе» живого.

Наиболее распространенным в природе конечным акцептором электронов является кислород, который восстанавливается. При аэробном дыхании в результате полного окисления органических веществ образуются углекислый газ и вода.

Биологическое окисление протекает по-этапно, в нем участвуют множество ферментов и соединения, переносящие электроны. При ступенчатом окислении электроны перемещаются по цепи переносчиков. На определенных этапах цепи происходит выделение порции энергии, достаточной для синтеза АТФ из АДФ и фосфорной кислоты.

Биологическое окисление весьма эффективно по-сравнению с различными двигателями. Около половины выделяющейся энергии в конечном итоге фиксируется в макроэргических связях АТФ. Другая часть энергии рассеивается в виде тепла. Поскольку процесс окисления ступенчатый, то тепловая энергия выделяется понемногу и не повреждает клетки. В то же время она служит для поддержания постоянной температуры тела.

Аэробное дыхание

Различные этапы клеточного дыхания у аэробных эукариот происходят

  • в цитоплазме – гликолиз,

  • в матриксе митохондрий – цикл Кребса, или цикл трикарбоновых кислот,

  • на внутренней мембране митохондрий – окислительное фосфорилирование, или дыхательная цепь.

На каждом из этих этапов из АДФ синтезируется АТФ, больше всего на последнем. Кислород в качестве окислителя используется только на этапе окислительного фосфорилирования.

Суммарные реакции аэробного дыхания выглядит следующим образом.

Гликолиз и цикл Кребса: C6H12O6 + 6H2O → 6CO2 + 12H2 + 4АТФ

Дыхательная цепь: 12H2 + 6O2 → 12H2O + 34АТФ

Таким образом биологическое окисление одной молекулы глюкозы дает 38 молекул АТФ. На самом деле нередко бывает меньше.

Анаэробное дыхание

Большинство анаэробов — это микроорганизмы. Однако к организмам, использующим анаэробное дыхание, относятся также дрожжи, ряд червей-паразитов. Способностью к анаэробному дыханию также обладают определенные ткани. Например, мышечные клетки, которые периодически могут испытывать недостаток кислорода.

При анаэробном дыхании в окислительных реакциях акцептор водорода НАД не передает водород в конечном итоге на кислород, которого в данном случае нет.

В качестве акцептора водорода может быть использована пировиноградная кислота, образующаяся при гликолизе.

У дрожжей пируват сбраживается до этанола (спиртовое брожение). При этом в процессе реакций образуется также углекислый газ и используется НАД:

CH3COCOOH (пируват) → CH3CHO (ацетальдегид) + CO2

CH3CHO + НАД · H2 → CH3CH2OH (этанол) + НАД

Молочнокислое брожение происходит в животных клетках, испытывающих временный недостаток кислорода, и у ряда бактерий:

CH3COCOOH + НАД · H2 → CH3CHOHCOOH (молочная кислота) + НАД

Оба брожения не дают выхода АТФ. Энергию в данном случае дает только гликолиз, и составляет она всего две молекулы АТФ. Значительная часть энергии глюкозы так и не извлекается. Поэтому анаэробное дыхание считается малоэффективным.

Источник

Поток энергии в клетке

В основе потока энергии в клетке лежат процессы питания организмов и клеточного дыхания.

1. Питание – процесс приобретения вещества и энергии живыми организмами.

2. Клеточное дыхание – процесс, с помощью которого живые организмы высвобождают энергию из богатых ею органических веществ при их ферментативном расщеплении (диссимиляции) до более простых. Клеточное дыхание может быть аэробным и анаэробным.

3. Аэробное дыхание – получение энергии происходит при участии кислорода в процессе расщепления органических веществ. Его еще называют кислородным (аэробным) этапом энергетического обмена.

Анаэробное дыхание – получение энергии из пищи без использования свободного атмосферного кислорода. В общем виде поток энергии в клетке можно представить следующим образом (рис 5.3.)

САХАР, ЖИРНЫЕ КИСЛОТЫ, АМИНО-КИСЛОТЫ
 
 

ХИМИЧЕСКАЯ, МЕХАНИЧЕСКАЯ, ЭЛЕКТРИЧЕСКАЯ, ОСМОТИЧЕСКАЯ РАБОТА

Рис.5.3. Поток энергии в клетке

Химическая работа: биосинтез в клетке белков, нуклеиновых кислот, жиров, полисахаридов.

Механическая работа: сокращение мышечных волокон, биение ресничек, расхождение хромосом при митозе.

Электрическая работа – поддержание разности потенциалов на мембране клетки.

Осмотическая работа – поддержание градиентов вещества в клетке и окружающей ее среде.

Процесс аэробного дыхания проходит в три этапа: 1) подготовительный; 2) бескислородный; 3) кислородный.

Первый этапподготовительный или этап пищеварения, включающий в себя ферментативное расщепление полимеров до мономеров: белков до аминокислот, жиров до глицерина и жирных кислот, гликогена и крахмала до глюкозы, нуклеиновых кислот до нуклеотидов. Протекает в желудочно-кишечном тракте при участии пищеварительных ферментов и цитоплазме клеток при участии ферментов лизосом.

На этом этапе выделяется небольшое количество энергии, рассеивающейся в виде тепла, а образовавшиеся мономеры подвергаются в клетках дальнейшему расщеплению или используются как строительный материал.

Второй этапанаэробный (бескислородный). Он протекает в цитоплазме клеток без участия кислорода. Мономеры, образовавшиеся на первом этапе, подвергаются дальнейшему расщеплению. Примером такого процесса является гликолизбескислородное неполное расщепление глюкозы.

В реакциях гликолиза из одной молекулы глюкозы (С6Н12О6) образуются две молекулы пировиноградной кислоты (С3Н4О3 – ПВК). При этом от каждой молекулы глюкозы отщепляется 4 атома Н+ и образуются 2 молекулы АТФ. Атомы Водорода присоединяются к НАД+ (никотинамидадениндинуклеотид, функция НАД и подобных к нему переносчиков состоит в том, чтобы в первой реакции принимать Водород (восстанавливаться), а в другой – его отдавать (окисляться).

Сумарное уравнение гликолиза выглядит так:

С6Н12О6 + 2АДФ + 2Н3РО4 + 2НАД+→ 2С3Н4О3 + 2АТФ + 2Н2О +2НАД·Н2

В процессе гликолиза выделяется 200 кДж/моль энергии, из которой 80 кДж или 40% идет на синтез АТФ, а 120 кДж (60%) рассеивается в виде тепла.

В анаэробных организмах (многие бактерии, микроскопические грибы, внутрикишечные паразиты) этот этап является конечным. ПВК (в зависимости от типа брожения) может превращаться в молочную кислоту (С3Н6О3), этиловый спирт (С2Н5ОН). Некоторые клетки (например, мышечные, клетки растений) при недостатке кислорода могут переходить на анаэробное дыхание. В этих случаях:

а) в животных клетках образуется 2 молекулы молочной кислоты, которая в дальнейшем превращается в гликоген и депонируется в печени;

б) в растительных клетках происходит спиртовое брожжение с выделением СО2. Конечным продуктом является этанол.

Анаэробное дыхание по сравнению с кислородным дыханием эволюционно более ранняя, но менее эффективная форма получения энергии из питательных веществ.

Третий этапаэробный(кислородный, тканевое дыхание) протекает в митохондриях и требует присутствие кислорода.

Органические соединения, образовавшиеся на предыдущем бескислородном этапе, окисляются путем отщепления водорода до СО2 и Н2О. Отсоеденившееся атомы Водорода с помощью переносчиков передаются до Кислорода, взаимодействуют с ним и образуют воду. Этот процесс сопровождается выделением значительного количества энергии, часть которой (55%) идет на образование воды. В кислородном этапе можно выделить реакции цикла Кребса и реакции окислительного фосфорилирования.

Цикл Кребса (цикл трикарбоновых кислот) происходит в матриксе митохондрий. Его открыл английский биохимик Х. Кребс в 1937 году.

Цикл Кребса начинается реакцией пировиноградной кислоты с уксуснокислой. При этом образуется лимонная кислота, которая после ряда последовательных преобразований снова становится уксуснокислой и цикл повторяется.

В ходе реакций цикла Кребса из одной молекулы ПВК образуется 4 пары атомов Водорода, две молекулы СО2, одна молекула АТФ. Углекислый газ выводится из клетки, а атомы Водорода присоединяются к молекулам переносчиков – НАД и ФАД (флавинадениндинуклеотид), в результате чего образуются НАД·Н2 и ФАД·Н2.

Передача энергии от НАД· Н2 и ФАД·Н2, которые оброзовались в цыкле Кребса и на предыидущем анаэробном этапе, к АТФ просходит на внутренней мембране митохондрий в дыхательной цепи.

Дыхательная цепь или цепь переноса электронов (электронно-транспрортная цепь) содержится во внутренней мембране митохондрий. Её основу составляют переносчики электронов, которые входят в состав ферментных комплексов, катализирующих окислительно-востановительные реакции.

Пары Водорода отщепляются от НАД·Н2 и ФАД·Н2, в виде протонов и электронов (2Н++2е), поступают в электронно-транспортную цепь. В дыхательной цепи они вступают в ряд биохимических реакций, конечный результат которых – синтез АТФ (рис.5.4.)

Рис. 5.4 Электронно-транспортная цепь

Электроны и протоны захватываются молекулами переносчиков дыхательной цепи и переправляются: электроны на внутреннюю сторону мембраны, а протоны на внешнюю. Электроны соединяются с Кислородом. Атомы Кислорода при этом становятся отрицательно заряженными:

О2 + е- = О2-

На внешней стороне мембраны накапливаются протоны (Н+), а изнутри анионы (О2-). В результате этого возрастает разность потенциалов.

В некоторых местах мембраны встроены молекулы фермента для синтеза АТФ (АТФ-синтетаза), который имеет ионный (протонный) канал. Когда разница потенциалов на мембране достигает 200мВ, протоны (Н+) силой электрического поля проталкиваются через канал и проходят на внутреннюю сторону мембраны где взаимодействуют с О2-, образуя Н2О

½ О2 + 2Н+ = Н2О

Кислород, поступающий в митохондрии необходим для присоединения электронов (е-), а затем протонов (Н+). При отсутствии О2 процессы, связанные с транспортом протонов и электронов, прекращаются. В этих случаях многие клетки синтезируют АТФ, расщепляя питательные вещества в процессе брожения.

Суммарное уравнение кислородного этапа

2С3Н4О3 + 36Н3РО4 + 6О2 + 36 АДФ = 6СО2 + 42 Н2О + 36АТФ + 2600кДж

1440 (40·36) аккумулируется в АТФ

1160 кДж выделяются в виде тепла

Суммарное уравнение кислородного дыхания, включающее бескислородный и кислородный этапы:

С6Н12О6 + 38АДФ + 38Н3РО4 + 6О2 = 38АТФ +6СО2 + 44Н2О

Конечные продукты энергетического обмена (СО2, Н2О, NH3), а также избыток энергии выделяются из клетки через клеточную мембрану, строение и функции которой заслуживают особого внимания.

Источник