Какие продукты окисляют металл

Какие продукты окисляют металл thumbnail

В химических реакциях металлы выступают в роли восстановителей и повышают степень окисления, превращаясь из простых веществ в катионы. 

Химические свойства металлов различаются в зависимости от химической активности металла. По активности в водных растворах металлы расположены в ряд напряжений. 

Какие продукты окисляют металл

В этот ряд, составленный русским химиком Н.Н. Бекетовым, включен также неметалл водород. Активность металлов убывает слева направо:

Запомнить! Металлы, стоящие в ЭХ ряду после водорода, называют неактивными металлами.

Металлы, расположенные в ЭХ ряду до алюминия называют сильноактивными или активными металлами.       

Общие химические свойства металлов

1) Многие металлы вступают в реакцию с типичными неметаллами – галогенами, кислородом, серой. При этом образуются соответственно хлориды, оксиды, сульфиды и другие бинарные соединения:

  • с азотом некоторые металлы образуют нитриды, реакция практически всегда протекает при нагревании;

  • с серой металлы образуют сульфиды – соли сероводородной кислоты;

  • с водородом самые активные металлы образуют ионные гидриды (бинарные соединения, в которых водород имеет степень окисления -1);

  • с кислородом большинство металлов образует оксиды – амфотерные и основные. Основной продукт горения натрия – пероксид $Na_2O_2$; а калий и цезий горят с образованием надпероксидов $MeO_2$.

2) Следует обратить внимание на особенности взаимодействие металлов с водой: 

Какие продукты окисляют металл

  • Активные металлы, находящиеся в ряду активности металлов до Mg (включительно), реагируют с водой с образованием щелочей и водорода:$Ca + 2H_2O = Ca(OH)_2 + H_2uparrow$

  • Активные металлы (например, натрий и литий), взаимодействуют с водой со взрывом.

  • Металлы средней активности окисляются водой при нагревании до оксида:

    $6Cr + 6H_2O xrightarrow[]{t, ^circ C} 2Cr_2O_3 + 3H_2uparrow$

  • Неактивные металлы (Au, Ag, Pt) – не реагируют с водой.

 $hspace{1.5cm} xrightarrow []{[Li……Mg]} MOH +H_2uparrow$ активные металлы (до Al)

$H_2O + M xrightarrow []{[Al……Pb} M_xO_y +H_2uparrow$ среднеактивные металлы (от Al до H), только при нагревании

$hspace{1.5cm} xrightarrow []{[Bi……Au]} hspace{1cm} ne hspace{1cm}$ неактивные металлы (после Н)

Более подробно взаимодействие металлов с водой рассмотрено в темах, посвященных химии отдельных групп.

3) С разбавленными кислотами реагируют металлы, стоящие в ЭХР до водорода: происходит реакция замещения с образованием соли и газообразного водорода. При этом кислота проявляет окислительные свойства за счет наличия катиона водорода:

$mathrm{Mg} + 2mathrm{HCl} = mathrm{MgCl}_2 + mathrm{H}_2$

4) Взаимодействие азотной кислоты (любой концентрации) и концентрированной серной кислоты протекает с образованием других продуктов: кроме соли в этих реакциях образуется продукт восстановления серной (или азотной) кислоты. Подробнее см.тему “Взаимодействие азотной кислоты с металлами и неметаллами.

Запомнить! Все металлы, стоящие в ряду левее водорода, вытесняют его из разбавленных кислот, а металлы, расположенные справа от водорода, с растворами кислот не реагируют (азотная кислота – исключение).

5) Активность металлов также влияет на возможность протекания простого вещества металла с оксидом или солью другого металла. Металл вытесняет из солей менее активные металлы, стоящие правее его в ряду напряжений. 

Запомнить! Для протекания реакции между металлом и солью  другого требуется, чтобы соли, как вступающие в реакцию, так и образующиеся в ходе нее, были растворимы в воде. Металл вытесняет из соли только более слабый металл.

Например, для вытеснения меди из водного раствора сульфата меди подходит железо,

$mathrm{CuSO}_4 + mathrm{Fe} = mathrm{FeSO}_4 + mathrm{Cu}$

но не подходят свинец – так как он образует нерастворимый сульфат. Если опустить кусочек  свинца в раствор сульфата меди, то с поверхности металла покроется тонким слоем сульфата, и реакция прекратится

$mathrm{CuSO}_4 + mathrm{Pb} = mathrm{PbSO}_4downarrow + mathrm{Cu}$

Другой пример: цинк легко вытесняет серебро из раствора нитрата серебра, однако реакция цинка со взвесью сульфида серебра, нерастворимого в воде, практически не протекает. 

Общие химические свойства металлов обобщены в таблице:

Уравнение реакцииПродукты реакцииПримечания
с простыми веществами – неметаллами
с кислородом

$4Li + O_2 = 2Li_2O$

оксиды $O^{-2}$ 

$2Na + O_2 = Na_2O_2$

пероксиды $(O_2)^{-2}$только натрий

$K + O_2 = KO_2$

надпероксиды $(O_2)^{-2}$надпероксиды при горении образуют K, Rb, Cs
с водородом 

$Ca + H_2 = CaH_2$

гидридыщелочные металлы 0 при комнатной температуре; остальные металлы – при нагревании
с галогенами

$2Fe + 3Cl_2  =2Fe^{+3}Cl_3$

хлориды и др.

при взаимодействии с хлором и бромом (сильные окислители) железо и хром образуют хлориды в степени окисления +3
с серой

$Fe + S = FeS$

сульфидыпри взаимодействии с  серой и иодом железо приобретает степень окисления +2 
с азотом и фосфором

$3Mg + N_2 = Mg_3N_2 $

нитриды* при комнатной температуре с азотом реагируют только литий и магний

$3Ca + 2P = Ca_3P_2$

фосфиды 
с углеродом

$4Al + 3C = Al_4C_3$

карбиды 
с водой

$2Na^0 + 2H_2O  = 2NaOH + H_2 $

Основание + $H_2$ щелочные металлы

$ Zn^0 + H_2O   =  ZnO + H_2$

 Оксид + $H_2$ среднеактивные металлы, при нагревании

$Au, Ag, Pt+ H_2O /ne $

не реагируютнеактивные металлы (после Н)
с окисдами менее активных металлов
$2Al + 3ZnO = Al_2O_3 + 2Zn$др оксид + др.металл 
с солями менее активных металлов

$Fe+ CuSO_4  = Cu + FeSO_4$

Др. соль + др. металл
  • Более сильный металл вытесняют более слабый из его соли.

  • Соли, как вступающие в реакцию, так и образующиеся в ходе нее, были растворимы в воде.

 

$Cu + AlCl_3 ne$

 
с кислотами

$Fe + 2HCl =  FeCl_2 + H_2 $

$6Na + 2H_3PO_4  = 2Na_3PO_4 + 3H_2 $

Др. соль +водородМеталлы, стоящие в электрохимическом ряду напряжений до H реагируют с разбавленными кислотами (кроме $HNO_3$)

$Cu + 2H_3PO_4 ne$

Источник

Елена Целуйкина (Кудрович)

30 ноября 2018  · 6,3 K

Engineer – programmer ⚡⚡ Разбираюсь в компьютерах, технике, электронике, интернете и…  · zen.yandex.ru/gruber

В природе существует всего три металла, которые не подвержены окислению — золото, платина, серебро. Окисление нержавеющей стали возможно, существует даже около 10 видов окисления: коррозия, щелевое окисление, гальваническое, точечное и т.п. Как правило, у нержавеющих сталей от коррозии защищает специальная пленка из оксида хрома. Данная пленка появляется сама при воздействии на сталь кислорода, при условии, что в состав стали входит не менее 12% хрома. Со временем пленка разрушается, и нержавеющая сталь начинает окисляться.

Нержавеющая сталь имеет высокий уровень антикоррозионной защиты. Легирующие элементы, входящие в состав, образуют поверхностную оксидную пленку, защищающую материал от воздействия агрессивных сред. Нержавейка делится на четыре вида – ферритная, мартенситная, комбинированная, аустенитная ( более подробно https://martensit.ru/stal/nerzhaveyushhaya-stal/… Читать далее

Какая сталь для ножей самая лучшая?

В ножевом деле с 2008 года. Поможем с выбором, научим метать ножи и владеть кухонными…  · klinok.zlatoff.ru

Хочется ответить вопросом на вопрос. Для чего лучшая? Для кухни? Для разделки на охоте? Для ежедневного использования? При выборе ножа, а точнее стали клинка, из которой он изготовлен нужно учитывать сферу применения режущего инструмента. Покупать нож для бытовых задач из супер-пупер-дорогой порошковой стали смыла не имеет — это зря потраченные деньги. Тестировали в свое время нашу 95Х18, так она «побила» даже хваленые дамаски. Дело тут еще и в том, насколько производитель грамотно подошел к обработке стали/изготовлению ножа. Поэтому можно купить нож из «суперпорошка» сделанный «умельцами» в гараже и просто зря выбросить деньги. Такой нож (такая сталь) не раскроет свой потенциал в неумелых руках.

Прочитать ещё 5 ответов

Какие реагенты растворяют ржавчину?

Финансовый эксперт✅ Разбираюсь в кредитах и инвестировании. Знаю все о…

День добрый. Любая кислота по идее, т.к. ржавчина это оксид железа.

Берете уксус, серная кислота и т.д.

По идее даже средство для снятия накипи, которое продается для чайников может растворить ржавчину.

Вообще лучше читать на чистящих средствах инструкцию – там написано, поможет оно против ржавчины или нет.

Прочитать ещё 1 ответ

Вредна ли алюминиевая посуда?

Интересуюсь многим, а особенно, на сегодняшний день, дизайном в разном его…

Для приготовления она не опасна. В ней разрешено готовить даже в детских учреждениях. Опасность возникает только тогда, когда вы данную посуду используете для хранения готовой еды. Лучше переложите готовое блюдо в более безопасную посуду.

Прочитать ещё 5 ответов

Какая сталь 95х18 или х12мф лучше для ножа?

В ножевом деле с 2008 года. Поможем с выбором, научим метать ножи и владеть кухонными…  · klinok.zlatoff.ru

Не нужно бояться того, что нож может подвергнуться коррозии. В случае с Х12МФ (D2) может возникнуть питтинговая коррозия, если нож на долго оставить во влажных средах (вода, кровь, грязь — ух, не делайте такого никогда ????).

Вот пример питтинговой коррозии:

За любым оружием нужен уход, в том числе и за ножами. А правило здесь простое: использовал по назначению — промыл — вытер на сухо — смазал.

А что касается того, какая сталь лучше? Здесь нужно исходить из предназначения ножа:

  • 95Х18 лучше для кухонных ножей и ножей для ежедневного использования.
  • Х12МФ для тех, кто любит агрессивный рез у ножей и использует их для разделки охотничьих и рыбацких трофеев (и т.п).

Твердость стали Х12МФ выше, чем у 95Х18, поэтому при грамотной термообработке править/затачивать последние придется реже, но и заточить их без оптыта в этом деле будет проблематичнее.

Полезно знать:

Сталь 95Х18 на клинках. Плюсы, минусы, характеристики

Сталь Х12МФ для ножей

Прочитать ещё 1 ответ

Почему металл краснеет при коррозии?

Компания “Инженерные решения» специализируется на металлообрабоке: от простых токарных…  · inresheniya.ru

Оранжевый или красно-коричневый цвет (цвет ржавчины) появляется в результате окисления металла. В разговорной речи слово “ржавчина” применяется именно к красным оксидам, образующимся в ходе реакции железа с кислородом и водой или влажным воздухом.

Однако есть и другие формы ржавчины – зелёная ржавчина, например, продукт, образуюется в ходе реакции железа с хлором при отсутствии кислорода (арматура в подводных бетонных столбах)

Прочитать ещё 5 ответов

Источник

Анонимный вопрос

30 августа 2018  · 3,2 K

Невское Оборудование поставщик металлообрабатывающего оборудования и станков  · spbstanki.ru

Лучше всего металлы реагируют с кислотами, при этом происходит химическая реакция с образованием соли и выделением водорода. Есть определенная смесь кислот (пропорции концентрированных соляной и азотной кислот) называемая “царской водкой” она разъедает даже царский металл золото.

Что вреднее, соль или глутамат натрия? И чем они вредны?

Сначала предположение. Вопрос задан явно искусственным интеллектом, так как риторические вопросы для него крайне сложны для восприятия.

По сути, отсылаю ИИ к Парацельсу, чья фраза про яды и лекарства является аксиомой, и доказательств не требует-все вопрос дозы.

Если говорить про ЛД(летальную дозу) то стоит вспомнить поговорку-“пуд соли съесть”…. ЛД у соли в гр на кг веса субъекта на порядок ниже(т.е. соль-“ядовитее”), чем у глютамата натрия.

Далее, “чем они вредны”-ответ -“да ни чем!” Эти вещества либо жизненно необходимы большинству высокоразвитых организмов, либо синтезируются им(организмом) самостоятельно. Теперь по каждому веществу отдельно:

  1. Соль-NaCL, основной компонент электролита крови. Изотонический раствор(т.е. тот, что содержит концентрацию, равную концентрации в крови) составляет 0,9%. Если представить, что организм полностью лишили соли, вы банально перестанете переваривать пищу в желудке! Но, конечно, до этого никто не доживет, потому, как первым откажет сердце при абсолютно здоровых и счастливых почках! Кроме источника соляной кислоты в желудке, соль поддерживает осмотическое давление все систем организма. Нет давления, нет поступления питания к клеткам всего тела! Эта система сбалансирована, и, если вы съели солененького лишнего, то что? Верно-тянет побольше попить, чтобы лишняя соль была выведена. Да, на почки, безусловно, нагрузка больше, но если у вас нет почечной недостаточности, то организм с этим справится. Аналогично, преувеличено влияние соли на гипертонию. Стакан воды после 50 гр квашенной капусты-спасет положение!
  2. Глютамат-натриевая соль глютаминовой(амино) кислоты. Соль заменимой аминокислоты, которая используется организмом как строительный материал для белков. Составляет неотъемлемую часть белкового обмена. Да, ее избыток, так же нагружает почки и злоупотреблять килограммами, не стоит. Крайне популярна на востоке, где, скорее, вы найдете в магазинах быстрее глютамат(умами), чем соль. Соль товарищи потребляют из соевого соуса(это, по сути, наша квашенная капуста, только там-соя). Если проанализировать историю и культуру восточных стран, а так же посмотреть языки, из-за своей численности и недостатка питания, восток ВЫНУЖДЕН был искать замену мяса! Отсюда и глютамат, и соевой соус, и мисо, и доширак, и малый вес))). Глютамат вполне способен заменить частично мясной белок. Те, кто хочет похудеть-возьмите себе на заметку. Любой постный суп с глютаматом становится вкусным. Именно это и означает “умами”-6-й вкус приправ, мясной вкус. ЗЫ. Буквально вчера ходил в ТЯК к китайцам и купил полкило глютамата! Поскольку просто люблю вкусно поесть, а не просто воткнуть в себя овощной суп без мяса)

Прочитать ещё 4 ответа

Почему нержавейка ржавеет?

Нержавеющие стали подвержены коррозии или по простому сказать ржавеют по нескольким очевидным причинам:

  1. Химический состав стали: противодействует ржавчине наличие хрома в стали и чем его больше, тем более сталь противостоит коррозии. Существуют сплавы с различным содержанием хрома, в зависимоти от того, где будет использоваться материал

  2. Условия в которых, так сказать, “работает” материал: есть типы нержавеющей стали, которые могут использоваться только в теплых помещениях и долго прослужить. Есть тыпы сталей, которые быстро ржавеют из-за постоянного контакта воды и воздуха(например баки, в которых постоянно меняется уровень воды)

Прочитать ещё 2 ответа

Какое химическое вещество переходит в пищу из консервных банок? Олово свинец медь или железо?

Лингвист-полиглот. Изучаю планету Земля 🙂 во всех её проявлениях, видимых и…

Исследования ученых доказали, что консервированные продукты имеют содержание цинка, превышающее рекомендуемую суточную норму потребления в сто (!) раз. Этот цинк переходит в пищу, в продукты, хранящиеся в консервных банках.

Еще одно опасное вещество, содержащееся в консервах, — бисфенол А (в жестяных банках).
Вещество попадает в еду и при частом употреблении консервов вредит эндокринной системе.

А вот из самих консервных банок можно добыть олово 🙂 но это уже другой вопрос совсем.

Прочитать ещё 1 ответ

Что вступает в реакцию с раствором серной кислоты?

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂  · vk.com/mendo_him

С H2SO4 разбавленной реагируют
????Металлы, стоящие в ряду активности до водорода????
То есть это все щелочные, щелочно-земельные и амфотерные металлы????

????2Na+H2SO4 =Na2SO4+H2⬆️
????Zn+H2SO4=ZnSO4+H2⬆️
????Сu+H2SO4≠(реакции не будет ❌ медь стоит после H)
В результате выделяется бесцветный газ водород????
????Оксиды всех металлов
????BaO+H2SO4=BaSO4+H2O
????CuO+H2SO4=CuSO4 +H2O
????Основания ( и растворимые, и нерастворимые????)
????Fe(OH)2+H2SO4=2H2O+FeSO4
Серная кислота растворила осадок гидроксид железа (2)
????NaOH+H2SO4=NaHSO4+H2O
Получилась кислая соль NaHSO4, потому что кислоты добавили слишком много????
????2NaOH+H2SO4=Na2SO4+2H2O
Щелочь и кислота полностью нейтрализовали друг друга

Прочитать ещё 1 ответ

Какие есть простые вещества в металлах?

Невское Оборудование поставщик металлообрабатывающего оборудования и станков  · spbstanki.ru

Не верно поставлен вопрос. Металл – это и есть конкретное вещество (например Fe (железо); Cu (медь); Al (алюминий) и т.д.. Возможно Вы имели в виду стали? Если да, то сталь состоит из железа, углерода и легирующих элементов (никеля, марганца, меди и т.д.), также в сталях есть в небольшом количестве различные примеси, ухудшающие их качество: сера и фосфор. А металлы не состоят из веществ, металлы, как и другие вещества состоят из атомов.

Источник

Ржа́вчина — итог окисления металла, также общий термин для определения оксидов железа. В разговорной речи это слово применяется к красным оксидам, образующимся в ходе реакции железа с кислородом в присутствии воды или влажного воздуха. Есть и другие формы ржавчины, например, продукт, образующийся в ходе реакции железа с хлором при отсутствии кислорода. Такое вещество образуется, в частности, на арматуре, используемой в подводных бетонных столбах, и называется зелёной ржавчиной. Несколько видов коррозии различимы зрительно или с помощью спектроскопии, они образуются при разных внешних условиях.[1] Ржавчина состоит из гидратированного оксида железа(III) Fe2O3·nH2O и метагидроксида железа (FeO(OH), Fe(OH)3). При наличии кислорода, воды и достаточного времени любая масса железа в конечном итоге полностью преобразуется в ржавчину и разрушается. Ржавая поверхность не создаёт защиты для нижележащего железа, в отличие от патины, образующейся на медной поверхности.

Ржавчиной, как правило, называют продукт коррозии только железа и его сплавов, таких как сталь, хотя многие другие металлы тоже подвергаются коррозии.

Химические реакции[править | править код]

Толстый слой ржавчины на звеньях цепи возле моста Золотые Ворота в Сан-Франциско. Цепь постоянно подвергается воздействию сырости и солёных брызг, вызывающих разрушение поверхности, растрескивание и шелушение металла.

Причины ржавления[править | править код]

Если железо, содержащее какие-либо добавки и примеси (например, углерод), находится в контакте с водой, кислородом или другим сильным окислителем и/или кислотой, то оно начинает ржаветь. Если при этом присутствует соль, например, имеется контакт с солёной водой, коррозия происходит быстрее в результате электрохимических реакций. Чистое железо относительно устойчиво к воздействию чистой воды и сухого кислорода. Как и у других металлов, например, у алюминия, плотно приставшее оксидное покрытие на железе (слой пассивации) защищает основную массу железа от дальнейшего окисления. Превращение же пассивирующего слоя оксида железа в ржавчину является результатом комбинированного действия двух реагентов, как правило, кислорода и воды. Другими разрушающими факторами являются диоксид серы и углекислый газ в воде. В этих агрессивных условиях образуются различные виды гидроксида железа. В отличие от оксидов железа, гидроксиды не защищают основную массу металла. Поскольку гидроксид формируется и отслаивается от поверхности, воздействию подвергается следующий слой железа, и процесс коррозии продолжается до тех пор, пока всё железо не будет уничтожено, или в системе закончится весь кислород, вода, диоксид углерода или диоксид серы.[2]

Происходящие реакции[править | править код]

Покрытый ржавчиной и грязью болт. Заметна точечная коррозия и постепенная деформация поверхности, вызванная сильным окислением.

Ржавление железа — это электрохимический процесс, который начинается с переноса электронов от железа к кислороду.[3] Скорость коррозии зависит от количества имеющейся воды, и ускоряется электролитами, о чём свидетельствуют последствия применения дорожной соли на коррозию автомобилей. Ключевой реакцией является восстановление кислорода:

O2 + 4 e− + 2 H2O → 4 OH−

Поскольку при этом образуются гидроксид-анионы, этот процесс сильно зависит от присутствия кислоты. Действительно, коррозия большинства металлов кислородом ускоряется при понижении pH. Обеспечение электронов для вышеприведённой реакции происходит при окисления железа, которое может быть описано следующим образом:

Fe → Fe2+ + 2 e−

Следующая окислительно-восстановительная реакция происходит в присутствии воды и имеет решающее значение для формирования ржавчины:

4 Fe2+ + O2 → 4 Fe3+ + 2 O2−

Кроме того, следующие многоступенчатые кислотно-щелочные реакции влияют на ход формирования ржавчины:

Fe2+ + 2 H2O ⇌ Fe(OH)2 + 2 H+
Fe3+ + 3 H2O ⇌ Fe(OH)3 + 3 H+

что приводит к следующим реакциям поддержания баланса дегидратации:

Fe(OH)2 ⇌ FeO + H2O
Fe(OH)3 ⇌ FeO(OH) + H2O
2 FeO(OH) ⇌ Fe2O3 + H2O

Из приведённых выше уравнений видно, что формирование продуктов коррозии обусловлено наличием воды и кислорода. С ограничением растворённого кислорода на передний план выдвигаются железо(II)-содержащие материалы, в том числе FeO и чёрный магнит (Fe3O4). Высокая концентрация кислорода благоприятна для материалов с трёхвалентным железом, с номинальной формулой Fe(OH)3-xOx/2. Характер коррозии меняется со временем, отражая медленные скорости реакций твёрдых тел.

Кроме того, эти сложные процессы зависят от присутствия других ионов, таких как Ca2+, которые служат в качестве электролита, и таким образом, ускоряют образование ржавчины, или в сочетании с гидроксидами и оксидами железа образуют различные осадки вида Ca-Fe-O-OH.

Более того, цвет ржавчины можно использовать для проверки наличия ионов Fe2+, которые меняют цвет ржавчины с жёлтого на синий.

Предотвращение ржавления[править | править код]

Отслаивающаяся краска обнажает участки ржавой поверхности листового металла.

Ржавчина является проницаемой для воздуха и воды, поэтому внутрилежащее железо продолжает разъедаться. Предотвращение ржавчины, следовательно, требует покрытия, которое исключает образование ржавчины. На поверхности нержавеющей стали образуется пассивирующий слой оксида хрома(III). Подобное проявление пассивации происходит с магнием, титаном, цинком, оксидом цинка, алюминием, полианилином и другими электропроводящими полимерами.

Гальванизация[править | править код]

Хорошим подходом к предотвращению ржавчины является метод гальванизации, который обычно заключается в нанесении на защищаемый объект слоя цинка либо методом горячего цинкования, либо методом гальванотехники. Цинк традиционно используется, потому что он достаточно дёшев, обладает хорошей адгезией к стали и обеспечивает катодную защиту на стальную поверхность в случае повреждения цинкового слоя. В более агрессивных средах (таких, как солёная вода), предпочтительнее кадмий. Гальванизация часто не попадает на швы, отверстия и стыки, через которые наносилось покрытие. В этих случаях покрытие обеспечивает катодную защиту металла, где оно выступает в роли гальванического анода, на который прежде всего и воздействует коррозия. В более современные покрытия добавляют алюминий, новый материал называется цинк-алюм. Алюминий в покрытии мигрирует, покрывая царапины и, таким образом, обеспечивая более длительную защиту. Этот метод основан на применении оксидов алюминия и цинка, защищающих царапины на поверхности, в отличие от процесса оксидизации, как в случае применения гальванического анода. В некоторых случаях при очень агрессивных средах или длительных сроках эксплуатации применяются одновременно и гальванизация цинком, и другие защитные покрытия, чтобы обеспечить надёжную защиту от коррозии.

Катодная защита[править | править код]

Катодная защита является методом, используемым для предотвращения коррозии в скрытых под землёй или под водой структурах путём подачи электрического заряда, который подавляет электрохимические реакции. Если её правильно применять, коррозия может быть остановлена полностью. В своей простейшей форме это достигается путём соединения защищаемого объекта с протекторным анодом, в результате чего на поверхности железа или стали происходит только катодный процесс. Протекторный анод должен быть сделан из металла с более отрицательным электродным потенциалом, чем железо или сталь, обычно это цинк, алюминий или магний.

Лакокрасочные и другие защитные покрытия[править | править код]

От ржавчины можно предохранять с помощью лакокрасочных и других защитных покрытий, которые изолируют железо из окружающей среды. Большие поверхности, поделённые на секции, как например, корпуса судов и современных автомобилей, часто покрывают продуктами на основе воска. Такие средства обработки содержат также ингибиторы коррозии. Покрытие стальной арматуры бетоном (железобетон) обеспечивает некоторую защиту стали в среде с высоким рН. Однако коррозия стали в бетоне всё ещё является проблемой.

Покрытие слоем металла[править | править код]

Ржавчина может полностью разрушить железо. Обратите внимание на гальванизацию незаржавевших участков.

  • Оцинковка (оцинкованное железо/сталь): железо или сталь покрываются слоем цинка. Может использоваться метод горячего цинкования или метод цинкового дутья.
  • Лужение: мягкая листовая сталь покрывается слоем олова. В настоящее время практически не используется из-за высокой стоимости олова.
  • Хромирование: тонкий слой хрома наносится электролитическим способом на сталь, обеспечивая как защиту от коррозии, так и яркий, полированный внешний вид. Часто используется в блестящих компонентах велосипедов, мотоциклов и автомобилей.

Воронение[править | править код]

Воронение — это способ, который может обеспечить ограниченную устойчивость к коррозии для мелких предметов из стали, таких как огнестрельное оружие и др. Способ состоит в получении на поверхности углеродистой или низколегированной стали или чугуна слоя окислов железа толщиной 1-10 мкм. Для придания блеска, а также для улучшения защитных свойств окисной плёнки, её пропитывают минеральным или растительным маслом.

Снижение влажности[править | править код]

Ржавчины можно избежать, снижая влажность окружающего железо воздуха. Этого можно добиться, например, с помощью силикагеля.

Ингибиторы[править | править код]

Ингибиторы коррозии, как, например, газообразные или летучие ингибиторы, можно использовать для предотвращения коррозии в закрытых системах. Некоторые ингибиторы коррозии чрезвычайно ядовиты. Одним из лучших ингибиторов выступают соли технециевой кислоты.

Экономический эффект[править | править код]

Ржавчина вызывает деградацию изделий и конструкций, изготовленных из материалов на основе железа. Поскольку ржавчина имеет гораздо больший объём, чем исходное железо, её нарост ведёт к быстрому разрушению конструкции, усиливая коррозию на прилегающих к нему участках — явление, называемое поеданием ржавчиной. Это явление стало причиной разрушения моста через реку Мианус (штат Коннектикут, США) в 1983 году, когда подшипники подъёмного механизма полностью проржавели изнутри. В результате этот механизм зацепил за угол одной из дорожных плит и сдвинул её с опор. Ржавчина была также главной причиной разрушения Серебряного моста в Западной Вирджинии в 1967 году, когда стальной висячий мост рухнул меньше, чем за минуту. Погибли 46 водителей и пассажиров, находившихся в то время на мосту.

Мост Кинзу после разрушения.

Мост Кинзу в штате Пенсильвания был снесён смерчем в 2003 году в значительной степени потому, что центральные опорные болты, соединяющие сооружение с землёй, проржавели, из-за чего мост держался лишь под действием силы тяжести.

Кроме того, коррозия покрытых бетоном стали и железа может вызвать раскалывание бетона, что создает серьёзные конструкторские трудности. Это один из наиболее распространённых отказов железобетонных мостов.

См. также[править | править код]

  • Коррозия
  • Нержавеющая сталь
  • Сталь кортеновская

Примечания[править | править код]

  1. ↑ Interview, David Des Marais (недоступная ссылка). Архивировано 13 ноября 2007 года.
  2. ↑ Holleman, A. F.; Wiberg, E. “Inorganic Chemistry” Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
  3. ↑ Hubert Gräfen, Elmar-Manfred Horn, Hartmut Schlecker, Helmut Schindler «Corrosion» Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim, 2002. DOI: 10.1002/14356007.b01_08

Ссылки[править | править код]

  • Corrosion Cost Сайт, посвященный изучению экономических последствий коррозии
  • corrosion case studies Анализ коррозии
  • Corrosion Doctors Статьи по коррозии
  • Metal Corrosion Rust Что такое ржавчина

Источник