Какие продукты могут быть получены при нагревании смеси этилового

Какие продукты могут быть получены при нагревании смеси этилового thumbnail

Гидроксисоединения – это органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Гидроксисоединения делят на спирты и фенолы.

Строение, изомерия и гомологический ряд спиртов

Химические свойства спиртов

Способы получения спиртов

Какие продукты могут быть получены при нагревании смеси этилового

Спиртыэто гидроксисоединения, в которых группа ОН соединена с алифатическим углеводородным радикалом R-OH.

Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам.

Общая формула предельных нециклических спиртов: CnH2n+2Om, где mn.

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Химические реакции гидроксисоединений идут с разрывом одной из связей: либо С–ОН с отщеплением группы ОН, либо связи О–Н с отщеплением водорода. Это реакции замещения, либо реакции отщепления (элиминирования).

Свойства спиртов определяются строением связей С–О–Н. Связи С–О и О–Н — ковалентные полярные. При этом на атоме водорода образуется частичный положительный заряд δ+, на атоме углерода также частичный положительный заряд δ+, а на атоме кислорода — частичный отрицательный заряд δ–.

Такие связи разрываются по ионному механизму. Разрыв связи О–Н с отрывом иона Н+ соответствует кислотным свойствам гидроксисоединения. Разрыв связи С–О соответствует основным свойствам и реакциям нуклеофильного замещения.

С разрывом связи О–Н идут реакции окисления, а с разрывом связи С–О — реакции восстановления.

Таким образом, для спиртов характерны следующие свойства:

  • слабые кислотные свойства, замещение водорода на металл;
  • замещение группы ОН
  • отрыв воды (элиминирование) – дегидратация
  • окисление
  • образование сложных эфиров — этерификация


1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии спиртов с  растворами щелочей реакция практически не идет, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.

Какие продукты могут быть получены при нагревании смеси этилового

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому спирты не взаимодействуют с растворами щелочей.

Многоатомные спирты также не реагируют с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Спирты взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.

Какие продукты могут быть получены при нагревании смеси этилового

Например, этанол взаимодействует с калием с образованием этилата калия и водорода.

Какие продукты могут быть получены при нагревании смеси этилового

Видеоопыт взаимодействия спиртов (метанола, этанола и бутанола) с натрием можно посмотреть здесь.

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, этилат калия разлагается водой:

Какие продукты могут быть получены при нагревании смеси этилового

Кислотные свойства одноатомных спиртов уменьшаются в ряду:

CH3OH > первичные спирты > вторичные спирты > третичные спирты

Многоатомные спирты также реагируют с активными металлами:

Какие продукты могут быть получены при нагревании смеси этилового

Видеоопыт взаимодействия глицерина с натрием можно посмотреть здесь.

1.3. Взаимодействие с гидроксидом меди (II)

Многоатомные спирты взаимодействуют с раствором гидроксида меди (II) в присутствии щелочи, образуя комплексные соли (качественная реакция на многоатомные спирты).

Например, при взаимодействии этиленгликоля со свежеосажденным гидроксидом меди (II) образуется  ярко-синий раствор гликолята меди:

Какие продукты могут быть получены при нагревании смеси этилового

Видеоопыт взаимодействия этиленгликоля с гидроксидом меди (II) можно посмотреть здесь.

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, этанол реагирует с бромоводородом.

Какие продукты могут быть получены при нагревании смеси этилового

Видеоопыт взаимодействия этилового спирта с бромоводородом можно посмотреть здесь.

Реакционная способность одноатомных спиртов в реакциях с галогеноводородами уменьшается в ряду:

третичные > вторичные > первичные > CH3OH.

Многоатомные спирты также, как и одноатомные спирты, реагируют с галогеноводородами.

Например, этиленгликоль реагирует с бромоводородом:

Какие продукты могут быть получены при нагревании смеси этилового

2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии этанола с аммиаком образуется этиламин.

Какие продукты могут быть получены при нагревании смеси этилового

2.3. Этерификация (образование сложных эфиров)

Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Какие продукты могут быть получены при нагревании смеси этилового

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

Какие продукты могут быть получены при нагревании смеси этилового

Многоатомные спирты вступают в реакции этерификации с органическими и неорганическими кислотами.

Например, этиленгликоль реагирует с уксусной кислотой с образованием ацетата этиленгликоля:

Какие продукты могут быть получены при нагревании смеси этилового

2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат:

Какие продукты могут быть получены при нагревании смеси этилового

Например, глицерин под действием азотной кислоты образует тринитрат глицерина (тринитроглицерин):

Какие продукты могут быть получены при нагревании смеси этилового

3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.1. Внутримолекулярная дегидратация

При высокой температуре (больше 140оС) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.

Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен:

Какие продукты могут быть получены при нагревании смеси этилового

В качестве катализатора этой реакции также используют оксид алюминия.

Читайте также:  Какой оквэд будет у магазина торгующего продуктами

Отщепление воды от несимметричных спиртов проходит в соответствии с правилом Зайцева: водород отщепляется от менее гидрогенизированного атома углерода.

Например, в присутствии концентрированной серной кислоты при нагревании выше 140оС из бутанола-2 в основном образуется бутен-2:

Какие продукты могут быть получены при нагревании смеси этилового

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140оС) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации этанола при температуре до 140оС образуется диэтиловый эфир:

Какие продукты могут быть получены при нагревании смеси этилового

4. Окисление спиртов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении первичных спиртов они последовательно превращаются сначала в альдегиды, а потом в карбоновые кислоты. Глубина окисления зависит от окислителя.

Первичный спирт → альдегид → карбоновая кислота

Метанол окисляется сначала в формальдегид, затем в углекислый газ:

Метанол → формальдегид → углекислый газ

Вторичные спирты окисляются в кетоны: вторичные спирты → кетоны

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

Легкость окисления спиртов уменьшается в ряду:

метанол < первичные спирты < вторичные спирты < третичные спирты

Продукты окисления многоатомных спиртов зависят от их строения. При окислении оксидом меди многоатомные спирты образуют карбонильные соединения.

4.1. Окисление оксидом меди (II)

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, этанол окисляется оксидом меди до уксусного альдегида

Какие продукты могут быть получены при нагревании смеси этилового

Видеоопыт окисления этанола оксидом меди (II) можно посмотреть здесь.

Например, пропанол-2 окисляется оксидом меди (II) при нагревании до ацетона

Какие продукты могут быть получены при нагревании смеси этилового

Третичные спирты окисляются только в жестких условиях.

4.2. Окисление кислородом в присутствии катализатора

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, при окислении пропанола-1 образуется пропаналь

Какие продукты могут быть получены при нагревании смеси этилового

Видеоопыт каталитического окисления этанола кислородом можно посмотреть здесь.

Например, пропанол-2 окисляется кислородом при нагревании в присутствии меди до ацетона

Третичные спирты окисляются только в жестких условиях.

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот, вторичные спирты окисляются до кетонов, метанол окисляется до углекислого газа.

При нагревании первичного спирта с перманганатом или дихроматом калия в кислой среде может образоваться также альдегид, если его сразу удаляют из реакционной смеси.

Третичные спирты окисляются только в жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов. При этом происходит разрыв углеродной цепи и могут образоваться углекислый газ, карбоновая кислота или кетон, в зависимости от строения спирта.

Спирт/ ОкислительKMnO4, кислая средаKMnO4, H2O, t
Метанол СН3-ОНCO2K2CO3
Первичный спирт  R-СН2-ОНR-COOH/ R-CHOR-COOK/ R-CHO
Вторичный спирт  R1-СНОН-R2R1-СО-R2R1-СО-R2

Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ

Какие продукты могут быть получены при нагревании смеси этилового

Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота

Какие продукты могут быть получены при нагревании смеси этилового

Например, при взаимодействии изопропанола с перманганатом калия в серной кислоте образуется ацетон

Какие продукты могут быть получены при нагревании смеси этилового

4.4. Горение спиртов

Образуются углекислый газ и вода и выделяется большое количество теплоты.

CnH2n+1ОН + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q

Например, уравнение сгорания метанола:

2CH3OH + 3O2 = 2CO2 + 4H2O

5. Дегидрирование спиртов 

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола и первичных спиртов образуются альдегиды, при дегидрировании вторичных спиртов образуются кетоны. 

Например, при дегидрировании этанола образуется этаналь

Какие продукты могут быть получены при нагревании смеси этилового

Например, при дегидрировании этиленгликоля образуется диальдегид (глиоксаль)

Какие продукты могут быть получены при нагревании смеси этилового

Источник

Спирты – кислородсодержащие органические соединения, функциональной группой которых является гидроксогруппа (OH) у
насыщенного атома углерода.

Спирты также называют алкоголи. Первый член гомологического ряда – метанол – CH3OH.
Общая формула их гомологического ряда – CnH2n+1OH.

Классификация спиртов

По числу OH групп спирты бывают одноатомными (1 группа OH), двухатомными (2 группы OH – гликоли), трехатомными (3 группы
OH – глицерины) и т.д.

Одноатомные, двухатомные, трехатомные спирты

Одноатомные спирты также подразделяются в зависимости от положения OH-группы: первичные (OH-группа у первичного атома углерода),
вторичные (OH-группа у вторичного атома углерода) и третичные (OH-группа у третичного атома углерода).

Первичные, вторичные, третичные спирты

Номенклатура и изомерия спиртов

Названия спиртов формируются путем добавления суффикса “ол” к названию алкана с соответствующим числом атомов углерода: метанол,
этанол, пропанол, бутанол, пентанол и т.д.

Читайте также:  Какие продукты повышают газообразование у грудничка

Номенклатура спиртов

Для спиртов характерна изомерия углеродного скелета (начиная с бутанола), положения функциональной группы и межклассовая изомерия с
простыми эфирами, которых мы также коснемся в данной статье.

Изомерия  спиртов

Получение спиртов
  • Гидролиз галогеналканов водным раствором щелочи
  • Помните, что в реакциях галогеналканов со сПиртовым раствором щелочи получаются Пи-связи (π-связи) – алкены, а в реакциях с водным раствором
    щелочи образуются спирты.

    Гидролиз галогеналканов в водном растворе щелочи

  • Гидратация алкенов
  • Присоединения молекулы воды (HOH) протекает по правилу Марковникова. Атом водорода направляется к наиболее гидрированному атому углерода,
    а гидроксогруппа идет к соседнему, наименее гидрированному, атому углерода.

    Гидратация алкенов

  • Восстановление карбонильных соединений
  • В результате восстановления альдегидов и кетонов получаются соответственно первичные и вторичные спирты.

    Получение спиртов восстановлением альдегидов и кетонов

  • Получение метанола из синтез-газа
  • Синтез газом в промышленности называют смесь угарного газа и водорода, которая используется для синтеза различных
    химических соединений, в том числе и метанола.

    CO + 2H2 → (t,p,кат.) CH3-OH

  • Получение этанола брожением глюкозы
  • В ходе брожения глюкозы выделяется углекислый газ и образуется этанол.

    Брожение глюкозы

  • Окисление алкенов KMnO4 в нейтральной (водной) среде
  • В результате такой реакции у атомов углерода, прилежащих к двойной связи, формируются гидроксогруппы – образуется двухатомный спирт (гликоль).

    Окисление алкенов

Химические свойства спиртов

Предельные спирты (не содержащие двойных и тройных связей) не вступают в реакции присоединения, это насыщенные кислородсодержащие соединения.
У спиртов проявляются новые свойства, которых мы раньше не касались в органической химии – кислотные.

  • Кислотные свойства
  • Щелочные металлы (Li, Na, K) способны вытеснять водород из спиртов с образованием солей: метилатов, этилатов, пропилатов и т.д.

    Кислотные свойства спиртов

    Необходимо особо заметить, что реакция с щелочами (NaOH, KOH, LiOH) для предельных одноатомных спиртов невозможна, так как образующиеся
    алкоголяты (соли спиртов) сразу же подвергаются гидролизу.

  • Реакция с галогеноводородами
  • Реакция с галогеноводородами протекают как реакции обмена: атом галогена замещает гидроксогруппу, образуется молекула воды.

    Реакция с галогеноводородами

  • Реакции с кислотами
  • В результате реакций спиртов с кислотами образуются различные эфиры.

    Реакции спиртов с неорганическими кислотами

  • Дегидратация спиртов
  • Дегидратация спиртов (отщепление воды) идет при повышенной температуре в присутствии серной кислоты (водоотнимающего) компонента.

    Возможен межмолекулярный механизм дегидратации (при t 140°С) механизм дегидратации становится внутримолекулярный – образуются алкены.

    Названия простых эфиров формируются проще простого – по названию радикалов, входящих в состав эфира. Например:

    • Диметиловый эфир – CH3-O-CH3
    • Метилэтиловый эфир – CH3-O-C2H5
    • Диэтиловый эфир – C2H5-O-C2H5

    Дегидратация спиртов

  • Окисление спиртов
  • Качественной реакцией на спирты является взаимодействие с оксидом меди II. В ходе такой реакции раствор приобретает характерное фиолетовое
    окрашивание.

    Замечу, что в обычных условиях третичные спирты окислению не подвергаются. Для них необходимы очень жесткие условия, при
    которых углеродный скелет подвергается деструкции.

    Качественная реакция на спирты

    Вторичные и третичные спирты определяются другой качественной реакцией с хлоридом цинка II и соляной кислотой. В результате такой
    реакции выпадает маслянистый осадок.

    Качественная реакция на спирты

    Первичные спирты окисляются до альдегидов, а вторичные – до кетонов. Альдегиды могут быть окислены далее – до карбоновых кислот, в отличие
    от кетонов, которые являются “тупиковой ветвью развития” и могут только снова стать вторичными спиртами.

    Окисление спиртов

  • Качественная реакция на многоатомные спирты
  • Такой реакцией является взаимодействие многоатомного спирта со свежеприготовленным гидроксидом меди II. В результате реакции раствор
    окрашивается в характерный синий цвет.

    Качественная реакция на многоатомные спирты

  • Кислотные свойства многоатомных спиртов
  • Важным отличием многоатомных спиртов от одноатомных является их способность реагировать со щелочами (что невозможно для одноатомных спиртов).
    Это говорит об их более выраженных кислотных свойствах.

    Многоатомные спирты реагируют с щелочами

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Определение

Сложные эфиры  – производные кислот (карбоновых или минеральных, одноосновных или многоосновных), в которых  атомы водорода гидроксильных групп -ОН замещены на углеводородные радикалы R.

Сложные эфиры карбоновых кислот обычно рассматривают как продукты реакции между кислотой и спиртом (реакция этерификации)

Общая формула сложных эфиров карбоновых кислот R-C(O)-O-R’

Данное определение является формальным, так как механизм образования сложных эфиров карбоновых кислот намного сложнее, реакция протекает по механизму нуклеофильного замещения и подробно рассмотрена в теме “Химические свойства карбоновых кислот”. 

Прилагательное «сложные» в названии эфиров помогает отличить их от соединений, именуемых простыми эфирами, являющимися производными спиртов.

Если исходная кислота многоосновная, то возможно образование либо полных эфиров – замещены все НО-группы, либо кислых эфиров – частичное замещение. Для одноосновных кислот возможны только полные эфиры

Номенклатура сложных эфиров

Существует несколько вариантов названий сложных эфиров, при этом могут использоваться как систематические, так и тривиальные названия радикалов и кислот.

1. Сокращенный вариант (по аналогии с названием солей). В соответствии с систематической номенклатурой, название сложного эфира образуется следующим образом: первым указывается название радикала R, присоединенного к кислоте, затем – название кислоты (корень слова) с суффиксом «оат» (по аналогии с суффиксом “ат”  в названиях неорганических солей: карбонат натрия, нитрат хрома). Например, этилпропаноат, метилэтаноат.

Читайте также:  Какой из названных продуктов имеет антиканцерогенное действие тест

По сокращенному варианту может быть образовано и тривиальное название: к названию радикала R добавляется тривиальное название остатка кислоты (используется суффикс “ат”):

  • формиат – эфир мураьвиной кислоты ($HCOOR$),

  • ацетат – эфир уксусной кислоты ($CH_3COOR$)

  • бутират – эфир масляной (бутановой) кислоты ($CH_3CH_2CH_2COOR$).

2. Полный вариант.  К названию радикала R (по систематической номенклатуре) добавляется суффикс  «овый», затем вставляется слово “эфир” и указывается название кислоты, например, этиловый эфир этановой кислоты или этиловый эфир уксусной кислоты. Название сложного эфира бутилпропионат в полном варианте будет выглядеть следующим образом: бутиловый эфир пропановой (пропионовой) кислоты.

Таким образом, возможно четыре варианта названия одного и того же эфира:

Какие продукты могут быть получены при нагревании смеси этилового

Изомерия сложных эфиров одноосновных карбоновых кислот

Для сложных эфиров карбоновых кислот характерны следующие виды изомерии:

1. Изомерия углеродной цепи (углеродного скелета) начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку — с пропилового спирта, например, этилбутирату изомерны этилизобутират, пропилацетат и изопропилацетат.

2. Изомерия положения сложноэфирной группировки —С(О)—О—. Этот вид изомерии начинается со сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, например этилацетат и метилпропионат.

3. Межклассовая изомерия с карбоновыми кислотами, например, изомером метилацетата является пропановая кислота:

$CH_3COOCH_3$ метилацетат  и $CH_3-CH_2COOH$ пропановая кислота. Общая формула $C_3H_6O_2$.

Для сложных эфиров, содержащих непредельную кислоту или непредельный спирт, возможны еще два вида изомерии: изомерия положения кратной связи и геометрическая (цис-, транс-) изомерия.

Физические свойства сложных эфиров карбоновых кислот

Сложные эфиры  низших карбоновых кислот и простейших спиртов – бесцветные летучие жидкости, часто с приятным фруктовым запахом; сложные эфиры  высших карбоновых кислот – твердые бесцветные воскообразные вещества, практически лишенные запаха, их температура плавления зависит как от длин углеродных цепей ацильного и спиртового остатков, так и от их структуры. 

Сложные эфиры труднее растворимы в воде, чем образующие их спирты и кислоты. Так, этиловый спирт и уксусная кислота смешиваются с водой во всех отношениях, тогда как этилацетат трудно растворим в воде. При растворении в воде образуют два несмешивающихся слоя (две фазы), при этом эфир имеет меньшую плотность и находится сверху. Это позволяет использовать сложные эфиры в аналитической химии как экстрагенты при экстракции различных веществ (например, изотопов) из водных растворов. Сложные эфиры  плохо растворимы в воде, но хорошо – в органических  растворителях (спирте, ацетоне и др.). 

Химические свойства сложных эфиров карбоновых кислот

1. Гидролиз (омыление) сложных эфиров – основное химическое свойство. Гидролиз протекает с расщеплением сложных эфиров под действием воды. Эта обратная реакция  для реакции этерификации. Реакция протекает как в кислой (катализаторы реакции – протоны Н+), так и в щелочной среде (катализаторы реакции –  гидроксид-ионы ОН –).

Какие продукты могут быть получены при нагревании смеси этилового

В присутствии щелочи реакция необратима, т.к. происходит омыление – образование солей карбоновых кислот. 

Определение

Щелочной гидролиз сложных эфиров, при котором происходит образование солей карбоновых кислот, называют омылением

При гидролизе сложных эфиров глицерина и высших карбоновых кислот образуются мыла (подродно см. тему “Мыла”). В растворах разбавленных минеральных кислот соли карбоновых кислот превращаются в исходную карбоновую кислоту. Скорость гидролиза эфиров возрастает также при нагревании и в случае применения избытка воды.

2. Реакция восстановления. При восстановлении водородом сложных эфиров образуется смесь двух спиртов:

Какие продукты могут быть получены при нагревании смеси этилового

3. Взаимодействие с аммиаком. При взаимодействии сложных эфиров с аммиаком образуется амид соответствующей кислоты и спирт:

Какие продукты могут быть получены при нагревании смеси этилового

Сложные эфиры карбоновых кислот в природе

Сложные эфиры входят в состав эфирных масел многих растений и фруктов, придавая им специфический приятный запах:

Какие продукты могут быть получены при нагревании смеси этилового

В значительных количествах сложные эфиры   представлены в природе восками. Основа природных восков – эфиры высших одноосновных кислот и высших одноатомных спиртов. Например, пчелиный воск содержит сложный эфир пальмитиновой кислоты и мирицилового спирта (мирицилпальмитат):

$CH_3(CH_2)_{14}-C(O)-O-C_{31}H_{63}$

Сложные эфиры на основе низших спиртов и кислот используют в пищевой промышленности при создании фруктовых эссенций, а сложные эфиры на основе ароматических спиртов – в парфюмерной промышленности. 

Какие продукты могут быть получены при нагревании смеси этилового

Многие сложные эфиры используются в качестве растворителей, например этилацетат, который используется в качестве растворителя лаков и красок,  в органическом синтезе, а также при изготовлении лекарственных средств.

Сложные эфиры непредельных спиртов используются для изготовления лаков и красок, так как вступают в реакции присоединения по двойной связи и образуют полимеры. Например, винилацетат – сложный эфир уксусной кислоты и винилового спирта $CH_3-C(O)-O-CH=CH_2$ при полимеризации образует поливинилацетат, который используется для изготовления кожезаменителя, его еще называют винилкожей или дермантином.

Методы получения сло