При сжигании горючих газов в продуктах сгорания могут содержаться компоненты как полного (диоксид углерода и водяной пар), так и неполного сгорания (оксид углерода, водород, ненасыщенные, насыщенные, ароматические углеводороды и сажистые частицы). Кроме того, в продуктах сгорания всегда обнаруживаются и оксиды азота. Наличие продуктов неполного сгорания в значительных концентрациях недопустимо, так как приводит к загрязнению атмосферы токсическими веществами и к снижению КПД установок, работающих на газовом топливе.

Основные причины их большого содержания:

  • сжигание газов с недостаточным количеством воздуха;
  • плохое смешение горючих газов и воздуха до и в процессе горения;
  • чрезмерное охлаждение пламени до завершения реакций горения.

Для метана реакции горения (в зависимости от концентрации кислорода в реагирующей смеси) могут быть описаны следующими уравнениями:

СН4 + 2О2 = СО2 + 2Н2О + 800,9 МДж/моль

при стехиометрическом соотношении или при избытке окислителя;

СН4 + О2 = СО + Н2 + Н2О + Q и СН4 + 0,5О2 = СО + 2Н2О + Q

при недостатке окислителя.

На рис. 8.12 показан приближенный усредненный состав некоторых промежуточных соединений — водорода, оксида углерода, этилена, ацетилена и сравнительно небольшое число насыщенных и простейших ароматических соединений — и диоксида углерода, возникающих в пламени при диффузионном горении природного газа (97%). Сжигание газа производилось в ламинарном факеле, газ вытекал из трубки диаметром 12 мм. Общая высота пламени 130-140 мм.

Какие продукты горения образуются при неполном горении

Максимальная концентрация водорода и ацетилена достигается примерно на одной высоте пламени, они исчезают почти одновременно в вершине светящейся зоны пламени. Из всех образующихся в пламени промежуточных соединений (исключая сажистые частицы) оксид углерода исчезает последним. Это дает основание судить по его индексу о полноте сгорания газа. В продуктах сгорания всегда присутствуют оксиды азота, максимальная концентрация

которых возникает в зонах интенсивного выгорания оксида углерода и водорода.

Какие продукты горения образуются при неполном горении

Горение углеводородных газов с недостатком окислителя приводит к образованию частиц сажи, придающих пламени желтую окраску. Процесс выгорания сажи протекает стадийно и сравнительно медленно. Иногда выгорание образовавшихся частиц сажи затягивается и может прекратиться полностью при входе в низкотемпературную область факела или при омывании пламенем теплообменных поверхностей. Таким образом, наличие светящегося пламени всегда свидетельствует о протекании пиролитических процессов и о возможности химической неполноты сгорания, в особенности в малогабаритных экранированных топках котлов.

Предотвращение образования сажистых частиц достигается предварительным смешением углеводородных газов с достаточным количеством окислителя. Содержание первичного воздуха в смеси, при котором возникает прозрачное пламя, зависит не только от вида углеводородов, но и от условий смешения с вторичным воздухом (диаметра огневых каналов горелок) (рис. 8.13). На границе и выше кривых пламя прозрачно, а ниже кривых имеет желтые язычки. Кривые показывают, что содержание первичного воздуха в смеси возрастает при увеличении числа углеродных атомов в молекуле и диаметра огневых каналов горелок. Коэффициент избытка первичного воздуха а, в смеси, при котором исчезают желтые язычки пламени, в зависимости от указанных факторов может быть определен для малых огневых каналов горелок:

α1 = 0,12 (m + n/4)0,5 (dk /d0)0,25   (8.35)

где m и n — число углеродных и водородных атомов в молекуле или среднее их число для сложного газа; dk — диаметр огневых каналов горелки, мм; d0 — эталонный диаметр канала горелки (1 мм).

Тип горелки

Средняя концентрация

оксида углерода, мг/л (в пересчете на а = 1,0)

бенз(а)пирена, мкг/100 м3

Природный газ

Горелка с периферийным подводом вторичного воздуха:

при а = 0,60 т 0,70

0,10

Не обнаружен

при а = 0,30 т 0,35

1,20

Следы

Горелка с центральным и периферийным подводом вторичного воздуха:

при а = 0,60 т 0,70

0,50

Не обнаружен

при а = 0,30 т 0,35

0,12

Не обнаружен

Сжиженный углеводородный газ

Горелка с периферийным подводом вторичного воздуха:

при а = 0,60 т 0,70

0,30

0,03

при а = 0,30 т 0,35

1,20

1,10

Горелка с центральным и периферийным подводом вторичного воздуха:

при а = 0,60 т 0,70

0,07

0,02

при а = 0,30 т 0,35

1,00

0,045

Полнота сгорания газа зависит от коэффициента избытка первичного воздуха в смеси, расстояния от огневых каналов горелки до дна посуды, вида горючего газа, способа подвода вторичного воздуха. При этом увеличение содержания первичного воздуха в смеси, а также увеличение расстояния от горелки до дна посуды приводят к снижению концентрации оксида углерода в продуктах сгорания. Минимальная концентрация оксида углерода соответствует коэффициенту избытка первичного воздуха а, = 0,6 и выше и расстоянию от горелки до дна посуды 25 мм, а максимальная — а, = 0,3 и ниже и расстоянию от горелки до дна посуды 10 мм. Кроме того, увеличение тепловой мощности горелок на 15-20% за счет повышения давления газа приводит к росту концентрации оксида углерода в продуктах сгорания в 1,2-1,3 раза, а за счет теплоты сгорания газа — в 1,5-2 раза.

На появление в процессе горения ароматических соединений — бензола, полициклических бензпирена, безантрацена и др. — следует обратить особое внимание, так как некоторые из них канцерогенны. Процесс их образования весьма сложен и протекает стадийно. На первом этапе появляется ацетилен и его производные. В пламенной зоне эти вещества претерпевают процессы удлинения цепи с перестройкой тройных углеродных связей на двойные. В результате циклизации и дегидратации приводят к появлению различных ароматических соединений, включая полициклические.

Какие продукты горения образуются при неполном горении

Данные табл. 8.16 показывают, что при сжигании природных газов с коэффициентом избытка первичного воздуха а, = 0,6 и выше на обоих типах горелок концентрация оксида углерода продуктах сгорания отвечает требованиям ГОСТ 5542-87.

Таблица 8.17. Расстояние между кромками огневых каналов инжекционных однорядных горелок в зависимости от их размеров и коэффициента избытка первичного воздуха

Диаметры огневых каналов, мм

Расстояния между кромками каналов, мм при разных значениях коэффициента избытка первичного воздуха а1

0,2

0,3

0,4

0,5

0,6

2,0

11

4

3,0

15

12

5

4,0

16

14

11

7

5,0

18

15

14

12

10

6,0

20

18

16

14

12

Исследования показали, что расстояния между кромками огневых каналов, обеспечивающие быстрое распространение пламени, предотвращающие их слияние, зависят от их размера и содержания первичного воздуха в смеси, уменьшаясь с его увеличением. Оптимальные расстояния между кромками каналов, обеспечивающие достаточную полноту сгорания газа и быстрое распространение пламени, приведены в табл. 8.17. При расположении огневых каналов в два ряда в шахматном порядке расстояния между кромками могут приниматься по этой же таблице. Расстояния между рядами при этом должны быть в 2–3 раза больше рас- стояний между каналами.

Обобщение многочисленных экспери- ментальных данных позволило получить усредненные кривые концентрации в про- дуктах сгорания различных компонентов, качественно и количественно характеризу- ющих процесс горения (рис. 8.15). Полное сгорание гомогенной газовоздушной смеси достигается только при коэффициенте избыт- ка первичного воздуха α = 1,05 и выше. При уменьшении содержания воздуха в смеси, в особенности при α < 1,0, возрастает концентрация оксида углерода СО, ацетилена С2Н2, этилена С2Н4, пропилена С3Н6 и пропана С3Н8, а также бенз(а)-пирена С20Н9. Также возраста- ет концентрация и других компонентов — во- дорода, бензола и др.

Читайте также:  Какие продукты можно после удаления паховой грыжи

Кроме рассмотренных продуктов незавер- шенного горения, при сжигании газа всегда возникает некоторое количество оксидов азо- та, образование которых происходит в зонах высоких температур как после завершения ос- новных реакций горения, так и в процессе горения. Максимальная концентрация NOх воз- никает на конечных стадиях, соответствующих выгоранию газа и интенсивному горению про- межуточных продуктов в виде водорода и оксида углерода.

Первичное соединение при горении га- зовоздушных смесей — оксид азота. Начало цепной реакции связано с атомарным кисло- родом, возникающим в зонах высоких температур за счет диссоциации молекулярного кислорода:

О2 –› 2О — 490 кДж/моль (8.36)

О + N2 –› NO + N — 300 кДж/моль (8.37)

N + О2 –› 2NO + 145 кДж/моль (8.38)

Балансовая реакция

N2 + О2 –› 2NO — 177 кДж/моль (8.39)

Образование атомарного кислорода происходит и при частичной диссоциации продуктов сгорания: при снижении температуры и наличии кислорода часть образовавшегося оксида азота (1-3 об. %) окисляется до диоксида азота NO2. Наиболее интенсивно реакция протекает после выхода оксида азота в атмосферу. Основные влияющие факторы:

  • температура в реакционных зонах;
  • коэффициент избытка воздуха и время контакта реагирующих компонентов.

Температура пламени зависит от химического состава газа, содержания воздуха в газовоздушной смеси, степени ее однородности и теплоотвода из реакционной зоны. Максимально возможная при данной температуре концентрация оксида азота, об. %, может быть подсчитана по формуле

NOp = 4,6е-2150/(RT)/√О2N2 (8.40)

где NOp — равновесная концентрация оксида азота, об. %; R — универсальная газовая постоянная; Т — абсолютная температура, К; O2 и N2 — концентрация, об. %, соответственно кислорода и азота.

Высокая концентрация оксида азота, соизмеримая с равновесной, возникает при сжигании газа в топках мощных парогенераторов и в высокотемпературных мартеновских, коксовых и аналогичных печах. В котлах малой и средней мощности, в небольших нагревательных и термических печах со значительным теплоотводом и малым временем пребывания компонентов в высокотемпературных зонах выход оксида азота на порядок меньше. Кроме того, чем короче время пребывания реагирующих компонентов в зоне высоких температур, тем меньше оксида азота в продуктах сгорания.

Эффективно также сжигание газа в излучающих горелках и в псевдоожиженном слое: в этих случаях происходит микрофакельное горение гомогенной газовоздушной смеси с коэффициентом избытка воздуха а = 1,05 при весьма интенсивном отводе теплоты из реакционной зоны. Концентрация оксидов азота при сжигании газа в излучающих горелках составляет около 40, а в псевдоожиженном слое — 80-100 мг/м3. Уменьшение размеров огневых каналов излучающих горелок и огнеупорных зерен в псевдоожиженном слое способствует снижению выхода оксидов азота.

Накопленные данные позволили внести ряд изменений в конструкцию котельно-отопительного оборудования, обеспечивающих не только высокий КПД и низкую концентрацию продуктов неполного сгорания, но и сниженный сброс в атмосферу оксидов азота. К этим изменениям относятся:

  • сокращение длины высокотемпературных туннелей и перемещение горения из них в топки;
  • применение взамен керамических туннелей стабилизаторов горения в виде тел плохообтекаемой формы или кольцевого пламени;
  • организация плоского факела пламени с увеличенной поверхностью теплоотдачи;
  • рассредоточение пламени за счет увеличения числа горелок или использования блочных горелок;
  • ступенчатый подвод воздуха в реакционную зону;
  • равномерное распределение тепловых потоков в топке, экранирование топок и их разделение на отсеки экранами;
  • применение диффузионного принципа сжигания газа (диффузионное горение допустимо только в тех случаях, когда может быть обеспечено свободное развитие пламени без омы- вания теплообменных поверхностей).

Наиболее эффективное снижение выхода оксидов азота достигается при одновременном использовании нескольких способов.