Какие пищевые продукты получают с помощью бактерий
Благодаря большому разнообразию синтезируемых ферментов микроорганизмы могут выполнять многие химические процессы более эффективно и экономично, чем если бы эти процессы проводились химическими методами. Изучение биохимической деятельности микроорганизмов позволило подобрать условия для максимальной активности их как продуцентов различных полезных ферментов – возбудителей нужных химических реакций и процессов. Микроорганизмы все шире применяются в различных отраслях химической и пищевой промышленности, сельском хозяйстве, медицине.
В нашей стране создана и успешно развивается новая отрасль промышленности – микробиологическая, все производства которой базируются на деятельности микроорганизмов.
Микроорганизмы, с помощью которых производят пищевые продукты, называют культурными. Их получают из чистых культур, которые выделяют из отдельных клеток. Последние хранят в музейных коллекциях и снабжают ими различные производства.
В результате осуществляемых культурными микроорганизмами химических реакций растительное или животное сырье превращается в пищевые продукты. С помощью микроорганизмов получают многие жизненно важные продукты питания, и хотя изготовление их знакомо человеку с древних времен, роль в нем микроорганизмов открыта сравнительно недавно.
Хлебопекарное производство.
Хлебопечение основано на деятельности дрожжей и молочнокислых бактерий, развивающихся в тесте. Совместное действие этих микроорганизмов приводит к сбраживанию сахаров муки. Дрожжи вызывают спиртовое брожение, молочнокислые бактерии – молочнокислое. Образующиеся при этом молочная и другие кислоты подкисляют тесто, поддерживая оптимальный для жизнедеятельности дрожжей уровень рН. Углекислый газ разрыхляет тесто и ускоряет его созревание.
Применение культурных микроорганизмов в виде прессованных хлебопекарных дрожжей, сушеных или жидких заквасок улучшает вкус и аромат хлеба.
Производство сыра.
Сыроделие основано на деятельности многих видов микроорганизмов: молочнокислые (термофильный стрептококк), пропионовокислые бактерии и др. Под действием молочнокислых бактерий происходит накопление молочной кислоты и сквашивание молока, под действием других полезных микроорганизмов созревает сыр. Участвуют в этом процессе также некоторые плесневые грибы. Сычужный фермент и молочнокислые бактерии производят глубокое расщепление белков, сахара и жира. Различные бактерии вызывают накопление в острых сырах летучих кислот, придающих им специфический аромат.
Получение кисломолочных продуктов.
Творог, сметану, масло, ацидофилин, простоквашу приготовляют на чистых Культурах с применением различных заквасок. Молоко предварительно пастеризуют. Для производства творога и сметаны применяют мезофильные молочнокислые бактерии; ряженки, варенца и подобных продуктов – термофильные стрептококки и болгарскую палочку; ацидофилина – кислотовыносливые молочнокислые бактерии; кефира – многокомпонентные закваски, состоящие из дрожжей, молочнокислых и часто уксуснокислых бактерий. Для изготовления кислосливочного масла в пастеризованные сливки вносят закваску молочнокислых бактерий и выдерживают до требуемой кислотности.
Пивоваренное, спиртовое, ликеро-водочное и винодельческое производства.
Вино, пиво, квас, водку и другие напитки приготовляют с применением дрожжей, вызывающих спиртовое брожение сахарсодержащих жидкостей. В результате брожения жидкости (сусла, бражки, сока и т. п.) образуется алкоголь, СО2 и незначительные количества побочных продуктов. Подсобную роль выполняют молочнокислые бактерии: они подкисляют среду и облегчают деятельность дрожжей (например, при производстве кваса). В производстве спирта и пива для осахаривания заторов применяют также ферментные препараты грибного и бактериального происхождения.
Квашение и соление.
Сущность этого способа консервирования состоит в создании условий для преимущественного развития одних микроорганизмов – молочнокислых бактерий и подавления развития других – гнилостных бактерий. Заквашивают капусту, огурцы, помидоры, яблоки, арбузы. Применяют этот способ также при закладывании на длительное хранение корма для скота – заквашивается зеленая масса из трав, растительных остатков и др. Этот процесс носит название силосования кормов.
Получение органических кислот.
Уксусную, молочную и лимонную кислоты производят также с помощью микроорганизмов. Молочную кислоту получают способом брожения из сахарсодержащего сырья – патоки, крахмала, молочной сыворотки и др.
Молочнокислые бактерии выращивают на средах, содержащих до 15 % сахара. Выход молочной кислоты достигает 60-70 % массы содержащегося в заторе сахара.
Промышленное получение уксуса для пищевых целей основано на уксуснокислом брожении. Уксуснокислые бактерии в специальных чанах на буковых стружках окисляют поступающую питательную среду – уксусно-спиртовой раствор – до уксусной кислоты.
Лимонную кислоту раньше получали из плодов цитрусовых. В настоящее время ее также получают путем брожения. Возбудителем брожения является гриб Аспергиллус нигер, основное сырье – черная патока. Брожение происходит в растворе с содержанием 15 % сахара в аэробных условиях при температуре около 30 °С. Лимонная кислота используется в кондитерской промышленности, производстве безалкогольных напитков, сиропов, кулинарии и медицине.
Источник
Технологическое применение биологических агентов, а именно использование бактерий с целью получения конкретных продуктов или проведения контролируемых направленных изменений, является основой биотехнологии.
Тысячи лет назад человек, ничего не зная о биотехнологиях, использовал их в своем хозяйстве – он варил пиво, занимался виноделием, пек хлеб и делал молочнокислые продукты и сыры.
В современном мире практическое значение методов биотехнологии с использованием бактерий трудно переоценить – они применяются в пищевой промышленности и сельском хозяйстве, в медицине и фармакологии, при добыче полезных ископаемых и их переработке, в процессе очистки воды в природе и в септиках, во многих сферах жизни человека.
Пищевая индустрия
Наибольшее распространение в пищевой промышленности получили молочнокислые бактерии и дрожжи.
Механизм воздействия бактерий и дрожжей состоит в переработке молочного сахара в молочную кислоту, в результате чего нейтральный продукт превращается в молочнокислый.
К молочнокислым бактериям относят:
- лактобактерии – грамположительные микроаэрофилы отряда Lactobacillales, неспорообразующие кокки или палочковидные бактерии;
- бифидобактерии – спорообразующие термофильные аэробы рода Sporolactobacillus и Bacillus.
Молочнокислые бактерии и дрожжи используют при сквашивании молочных продуктов и овощей, переработке какао-бобов, изготовлении дрожжевого теста. Способность прокариотов оказывать влияние на продукты определяется их высокой ферментативной активностью и определяется выделяемыми ферментами.
В бродильной микрофлоре, помимо молочнокислых бактерий, присутствуют дрожжи, состоящие с бактериями в сложных симбиотических отношениях.
Подобная бродильная закваска с дрожжами используется в хлебопекарной промышленности, особенно при выпечке ржаных хлебов.
Одна из самых древних биотехнологий, используемых человеком, – производство сыров. Использование пропионовокислых бактерий при изготовлении твердых сычужных сыров позволяет получить продукт высокого качества с заданными свойствами.
Эти бактерии не обладают активностью к казеину, но имеют высокую липолитическую активность, в результате которой образуется ряд органических кислот:
- уксусная;
- изомасляная;
- масляная;
- изовалериановая;
- валериановая;
- и диацетил.
Состав продуктов метаболизма бактерий, который и определяет органолептические (вкусовые) свойства конечного продукта (сыра), зависит от штамма микроорганизмов.
Использование в технологической схеме пропионовокислых бактерий придает готовым сырам типичный для них цвет, вкус и аромат, обогащая продукт биологически активными веществами.
Кроме того, пропионовокислые бактерии обладают бактерицидными свойствами, являясь естественными консервантами казеина (молочный белок).
Если для крупных сыров пропионовокислые бактерии являются технологической необходимостью, то для мелких это нежелательная биофлора, наличие которой приводит к нарушению вкусовых характеристик.
Рост пропионовокислой микрофлоры в мелких сырах происходит только в случае нарушения технологических стандартов:
- понижении уровня соли;
- нарушении температурных условий при созревании.
Промышленность
Выщелачивание
Бактерии способны в процессе своей жизни избирательно извлекать вещества из сложных соединений, растворяя их в воде. Этот процесс носит название бактериального выщелачивания и имеет большое практическое значение:
- позволяет извлекать полезные химические вещества из руд, производственных отходов;
- удалять ненужные примеси – мышьяк из руд цветных и черных металлов.
Чаще всего в промышленности для бактериального выщелачивания применяют тионовые бактерии:
- Thiobacillius ferrooxidans – железобактерии, окисляющие закисное железо и сульфидные минералы.
- Thiobacillius thiooxidans – серобактерии, окисляющие серу.
Железо- и серобактерии являются хемоавтотрофами – процессы окисления сульфидов, оксида железа (ll) и серы для них являются единственным источником энергии.
В промышленности большое практическое значение имеет бактериальное выщелачивание полезных ископаемых (уран, медь) непосредственно на месторождениях.
Процесс не требует сложного оборудования и с учетом возврата в технологический процесс отработанного раствора, содержащего бактерии, имеет ряд значительных преимуществ:
- позволяет значительно понизить себестоимость добычи;
- значительно расширяет сырьевую базу за счет обедненных, забалансовых или потерянных руд, отходов обогащения, шлаков и др.
Железобактерии в реке
Использование биотехнологий при добыче полезных ископаемых является чрезвычайно перспективным, с целью расширения области применения ученые проводят исследовательские работы по следующим направлениям:
- выщелачивание тионовыми бактериями различных металлов – Zn (цинк), Co (кобальт), Mn (марганец) и др.;
- поиск бактерий других видов для извлечения полезных ископаемых.
Так, для извлечения золота, например, предлагается применять бактерии Aeromonas, которые выделены на золотоносных приисках в рудничных водах.
В будущем бактериальное выщелачивание позволит создать автоматизированное производство по извлечению металлов непосредственно из недр, минуя сложный и дорогостоящий процесс обогащения породы.
Медицинские препараты
Препараты, созданные при участии бактерий, широко применяются в современной медицине и спасли тысячи жизней. Революцией стало появление пенициллина – первого полученного антибиотика.
Антибиотики – вещества, способные подавить рост бактериальных клеток, при этом механизм воздействия может быть различным:
- пенициллин разрушает саму оболочку бактерии;
- стрептомицин подавляет рибосомы клеток патогенных микроорганизмов.
Поэтому в современной медицине антибиотики являются эффективным средством в борьбе с инфекционными заболеваниями человека, но практически неэффективны против вирусных инфекций.
Современная медицина успешно использует препараты, для производства которых применяются бактерии:
- инсулин и интерферон получают с использованием генно-инженерных технологий на основе кишечной палочки Escherichia coli;
- ферменты сенной палочки Bacillus subtilis разрушают продукты гнилостного разложения.
Современные биотехнологии позволяют осуществлять производство ферментов, гормонов, антибактериальных препаратов и витаминов.
Значение энзимов
Ферменты (энзимы) – биокатализаторы процессов, увеличивающие скорость протекания реакции в порядки раз в сравнении с химическими катализаторами. Под действием ферментов выход продукции составляет почти 100%, при этом сами ферменты в процессе реакции не расходуются.
Естественным источником ферментов в природе являются бактерии и дрожжи, известно более 3000 ферментов.
Все энзимы по способу получения делят на 2 группы:
- внеклеточные;
- внутриклеточные.
Ферменты часто применяются человеком на производствах:
- пищевом;
- фармацевтическом;
- кожевенном;
- текстильном;
- химическом;
- в сельском хозяйстве.
Ферментативный спектр
Для каждого вида бактерий характерны свои наборы ферментов, что позволяет использовать ферментный спектр как важный метод идентификации бактерий.
Существует множество методик идентификации бактерий, которые решают одну задачу – определить таксономическое положение микроорганизма.
Бактериологическая практика идентифицирует бактерии по морфологическим, генотипическим, культурным, тинкториальным, патогенным и другим признакам, используя определители.
Одним из самых популярных является определитель Берджи – бактерии в определителе разделены на группы по различным признакам, внутри группы тоже происходит разделение по признакам.
Определитель микроорганизмов Берджи позволяет достаточно быстро провести идентификацию бактерии и установить ее таксономическое положение.
Другим методом идентификации бактерий является изучение ферментативной активности, чаще всего это исследования на сахаролитическую и протеолитическую активность.
Как экспресс-метод используют тест-системы для идентификации определенной группы микроорганизмов – анаэробов, энтеробактерий и других. Существуют специализированные тест-системы, разработанные для санитарно-микробиологических исследований.
Земледелие
Применение человеком методов биотехнологии в сельском хозяйстве успешно решает целый ряд вопросов:
- создание болезнестойких и высокоурожайных сортов растений;
- производство удобрений на основе бактерий (нитрагин, агрофил, азотобактерин и др.), в том числе компосты и сброженные (метановое брожение) отходы животноводства;
- разработка безотходных технологий для сельского хозяйства.
Растениям в природе необходим азот, но усваивать азот из воздуха они не способны, а вот некоторые бактерии, клубеньковые и цианобактерии, в природе производят около 90% от общего числа связанного азота, обогащая им почву.
В сельском хозяйстве используют растения, содержащие на свои корнях клубеньковые бактерии:
- люцерна;
- люпин;
- горох;
- бобовые культуры.
Эти культуры используют в севообороте для обогащения почвы азотом.
Для борьбы с болезнетворными микроорганизмами в растениеводстве вместо фунгицидов используют пробиотики.
Биотехнология при участии генно-инженерных разработок предлагает для борьбы с патогенными микроорганизмами использовать бактерии с нужными свойствами, способные подавить рост патогенных микробов и не имеющие побочных негативных действий.
К ним относятся элитные штаммы бактерий Bacillus subtilis и Licheniformis, полученные в результате направленной селекции. Попадая в организм растения или животного, элитные штаммы микроорганизмов начинают быстро размножаться и подавляют патогенную микрофлору.
Элитные штаммы, как и антибиотики, нейтрализуют вредные микроорганизмы, но не имеют их негативных сторон:
- не возникает зависимость или привыкание;
- не происходит накопление в организме ядов или токсинов;
- не вырабатывается иммунитет.
Применение в сельском хозяйстве пробиотиков успешно в отношении более 70 патогенных микроорганизмов, вызывающих заболевания растений, включая ранее не подлежащие лечению совсем. Помимо этого, элитные штаммы благотворно воздействуют на вегетацию растений в целом:
- созревание плодов требует меньшего времени;
- значительно уменьшается содержание в плодах нитратов и других токсинов;
- сокращается необходимость в минеральных подкормках растений.
Животноводство
Молочнокислые бактерии используют в производстве силоса – силосовании.
В сельском хозяйстве силосование является одним из основных методов консервации растительной массы и осуществляется путем регулируемого сбраживания под воздействием молочнокислых, кокковидных и палочковидных форм бактерий.
Процесс молочнокислого сбраживания растительной массы требует соблюдения оптимальных для жизнедеятельности бактерий условий:
- химический состав растительной массы;
- определенный уровень влажности сырья;
- оптимальная температура ферментации – 25°С;
- молочнокислые бактерии анаэробны – силосование проходит без доступа воздуха.
Полученный в результате молочнокислого сбраживания силос является высококачественным сочным кормом для животных, сохраняющим полезные вещества растительного сырья и имеющим высокую кормовую ценность.
Бактерии разлагают навоз животных, в результате получая метан – углеводородное соединение, которое используется в органическом синтезе.
Экологические проблемы
Одной из основных экологических проблем, стоящих перед человеком сегодня, является проблема очистки воды в природе.
Совместное использование гетеротрофных и автотрофных бактерий позволило добиться значительного успеха – бактерии в природе успешно справляются с очисткой воды, нормализуют ее кислотность, разлагают придонные отложения, в результате чего нормализуется жизнедеятельность всех обитателей водоемов.
Также бактерии в природе способны разлагать компоненты синтетических моющих средств и ряд лекарственных препаратов.
Ксенобактерии успешно используются для очистки в природе почвы и воды при разливе нефти и нефтепродуктов.
Очистные сооружения
Человек использует большое количество воды для своих личных нужд, решая вопрос очистки сточных вод использованием септиков.
Эффективность работы очистных сооружений обеспечивают специальные бактерии, используемые в септиках.
Микроорганизмы, используемые в септиках, разлагают органические соединения любого происхождения, при очистке сточных вод они успешно уничтожают специфический запах.
По составу бактериальная флора септика представляет собой сочетание аэробной и анаэробной культур.
Анаэробные (бескислородные) микроорганизмы осуществляют первичную очистку воды, а аэробные бактерии доочищают и осветляют воду.
При использовании микроорганизмов для септика существуют определенные правила для очистки сточных вод:
- необходимо поддерживать определенный уровень микроорганизмов в септике;
- обязательным является наличие воды – без нее микроорганизмы погибнут;
- нельзя использовать для очистки агрессивные химические средства – они убьют микроорганизмы.
Инструменты биотехнологических процессов
Основными инструментами биотехнологии для получения наиболее эффективных микроорганизмов являются селекция и генная инженерия.
Селекция – направленный отбор высокоэффективных особей в популяции вследствие естественной мутации микроорганизмов.
В природе процесс достаточно длительный, но под действием мутагенных факторов (жесткое излучение, азотистая кислота и др.) может быть значительно ускорен.
Плюсами селекции являются экологичность, натуральность продукта.
Минусами метода следует считать:
- длительность процесса;
- невозможность контролировать направление мутации – определяется по конечному результату.
Генно-инженерные методы в биотехнологии
Методы генно-инженерного вмешательства изменяют клетки микроорганизмов и дрожжей, превращая их в эффективных производителей любого белка. Что открывает широкие возможности использования генно-модифицированных клеток микробов и дрожжей для получения конечного организма с заданными характеристиками.
Использование генно-мутированных клеток микробов и дрожжей человеком в повседневной жизни вызывает обоснованные опасения – много как сторонников генно-измененных веществ, так и их противников.
Однако фактом остается отсутствие информации о воздействии генно-модифицированных клеток бактерий и дрожжей на организм человека и природу в целом.
Генно-модифицированные бактерии и энергия
Генетики работают над вопросом альтернативного источника энергии. Основной задачей является создание химического сырья, а далее топлива как продукта бактериального метаболизма.
Одним из направлений получения человеком энергии от бактерий является работа с генно-модифицированными цианобактериями.
Биологи Тюбингенского университета обнаружили микроорганизмы, обладающие свойствами батарейки и способные как аккумулировать энергию, так и передавать ее другим бактериям.
Энергию, вырабатываемую этими бактериями, человек может использовать для наноприборов.
В Китае построен прибор, в котором бактерии получают водород из ацетатов, при этом внешнего источника энергии у аппарата нет, а сырьем служат дешевые отходы производства. В свою очередь водород является источником энергии для эко-автомобилей.
Микробиологи в университете Южной Каролины обнаружили бактерию, способную вырабатывать энергию, питаясь токсичными отходами, такими проблемными как полихлорированные бифенилы и агрессивные растворители.
Калифорнийские исследователи предложили методику переработки бурых водорослей модифицированной кишечной палочкой, получая на выходе этиловый спирт – прекрасный источник энергии.
Водород, как источник энергии, получили американские ученые при разложении анаэробными бактериями глюкозы.
Плюсы и минусы ГМО (генетически модифицированный организм)
Использование человеком в повседневной жизни генно-модифицированных бактерий и дрожжей для получения измененных организмов имеет как положительные, так и отрицательные стороны.
К плюсам генно-модифицированных организмов относят:
- производство любых органов для трансплантации, которые не будут отторгаться;
- производство исходного материала для биотоплива;
- производство лекарственных препаратов;
- создание растений для технических целей (производство тканей и т.д.).
Известные минусы генно-модифицированных продуктов:
- себестоимость генно-модифицированных овощей и фруктов почти на 30% выше натуральных;
- семена и плоды ГМ-растений нежизнеспособны;
- поля с ГМ-посадками требуют повышенного количества пестицидов и гербицидов;
- культурные ГМ-растения способны производить гибриды с дикими растениями.
Использование человеком микроорганизмов в повседневной жизни и на производствах может быть ограничено только свойствами самих бактерий. А чем больше ученые уделяют внимания бациллам, тем больше интересных и полезных свойств микроорганизмов обнаруживают.
Бактерии вырабатывают энергию, добывают полезные ископаемые, очищают воду и почву – недавно обнаружены бактерии, поедающие даже пластиковые пакеты (!) – катализируют производственные процессы, используются в синтезе фармацевтических препаратов и во многих других сферах жизни человека.
Образование высшее филологическое. В копирайтинге с 2012 г., также занимаюсь редактированием/размещением статей. Увлечения — психология и кулинария.
Источник