Какие основные свойства волн
Естествознание, 10 класс
Урок 39. Свойства волн
Перечень вопросов, рассматриваемых в теме:
- Что понимают под волнами;
- Какие бывают волны;
- Где в природе наблюдаются волны;
- Что такое электромагнитные волны;
- Как проявляются в жизни ЭМВ различных диапазонов;
Глоссарий по теме:
Волна – распространение колебаний в пространстве
Длина волны – расстояние, пройденное волной за время равное периоду
Частота – число колебаний за единицу времени
Период – время одного полного колебания
Амплитуда – максимальное смещение от положения равновесия
Монохроматические волны – «Одноцветные» – волна, изменяющаяся во времени и пространстве по синусоидальному закону
Интерференция – наложение волн, за счет которого происходит взаимоусиление или взаимогашение их.
Дифракция – огибание волнами препятствий
Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):
Список литературы
- Естествознание. 10 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд., испр. – М.: Просвещение, 2017. – §55, С. 166-168.
- Физика. 11 класс [Текст]: учебник для общеобразоват. учреждений: базовый уровень; профильный уровень/А.В. Грачев, В.А. Погожев, А.М. Салецкий и др.- Вентана-Граф, 2011
Открытые электронные ресурсы по теме урока (при наличии);
Теоретический материал для самостоятельного изучения
Каждый человек хоть раз в жизни кидал камешки в воду, не обращая внимания на круги, которые они оставляют. Так давайте с помощью этой «забавы» понаблюдаем за волнами и попытаемся разобраться в их природе и свойствах.
Наблюдая за волной от брошенного камня, можно сделать вывод, что форма волны изменяется по мере распространения волны, на большом расстоянии волна сглаживается и пропадает. Это свойство характерно для волн любой природы.
Рассматривая на прошлом уроке шкалу электромагнитных волн, мы говорили, что видимый свет это полихроматическая волна, которая включает в себя спектр цветов от красного к фиолетовому.
Сегодня мы рассмотрим монохроматические волны. И начнем с таких их характеристик, как период, частота, амплитуда и длина волны.
Период – это время одного полного колебания. Период колебаний вычисляется по формуле
;
[T] = секунда.
Частота – число колебаний за единицу времени. Частота вычисляется по формуле
;
[ν] = Герц.
Амплитуда – максимальное смещение от положения равновесия.
Длина волны – расстояние, пройденное волной за время, равное периоду.
[λ] = метр.
А теперь, рассмотрим свойства волн: интерференцию и дифракцию.
Интерференция – это явление взаимоусиления либо взаимогашения двух или более волн. Условием интерференции является когерентность и синфазность волн. То есть, у волн должна быть одинаковая длина волны и одинаковая во времени разность фаз.
Дифракция – это явление огибания волнами препятствий, которое происходит только тогда, когда препятствие меньше или равно длине волны. Длину световой волны можно определить с помощью дифракционной решетки.
Волны и частицы обладают некоторыми общими свойствами. Волна любой природы переносит энергию и импульс через пространство.
В заключении отметим, что энергией обладают любые волны. В последнее время, например, ведутся активные работы по использованию энергии морских волн для производства электроэнергии.
Текст задания 1:
Установите последовательность по возрастанию длины волны электромагнитных волн:
Варианты ответов:
- Рентгеновское излучение
- Видимый свет
- Гамма-излучение
- Радиоволны
Правильные варианты:
- Гамма-излучение
- Рентгеновское излучение
- Видимый свет
- Радиоволны
Текст задания 2:
Вставьте пропущенные слова, выбирая из списка правильные ответы:
Волна любой природы переносит __________ и ________ через пространство
Варианты ответов:
частицы, импульс, поля, энергию.
Правильный вариант: импульс, энергию или энергию, импульс
Источник
>>> Перейти на мобильный размер сайта >>>
Учебник для 10 класса
Естествознание
Бросая в воду камешки, смотри на
круги, ими образуемые, иначе такое
бросание будет пустою забавою
Козьма Прутков
Какие свойства обнаруживают волны? Какие свойства являются общими для волн и частиц?
Урок-лекция
Последуем совету Козьмы Пруткова и будем наблюдать за волнами, пытаясь разобраться в их природе и свойствах.
ФОРМА ВОЛН. Из двух примеров волн, приведенных в предыдущей параграфе, колебания которых можно увидеть, следует, что форма волн может сильно различаться. Волна от брошенного в воду камня имеет форму расширяющихся кругов. Волна в натянутой веревке — изгиб, движущийся вдоль веревки. О том, насколько разнообразна форма волн, можно судить по волнам на море или большом озере. Оказывается, что и форма невидимых волн может тоже быть самой разнообразной. Наблюдая за волной от брошенного камня, можно сделать вывод, что форма волны изменяется по мере распространения волны, на большом расстоянии волна сглаживается и пропадает. Это свойство характерно для волн любой природы.
Волны могут иметь самую разнообразную форму, которая может изменяться по мере распространения волны.
ПРИНЦИП СУПЕРПОЗИЦИИ ВОЛН. Бросим теперь в воду два камня. Мы увидим, что по мере распространения волны проходят одна через другую, складываясь. В тех местах, где каждая из волн имеет горб, поверхность воды поднимется на высоту, равную сумме высот каждого из горбов. То же самое можно заметить для точек, в которых обе волны имеют впадины. Если же в какой-то точке одна волна имела горб, а другая — впадину, то, складываясь, волны гасят друг друга. Явление взаимоусиления или взаимогашения двух или более волн называют интерференцией.
Наблюдая за распространением волн от двух камней, несложно заметить, что на большом расстоянии от камней уже нельзя увидеть две волны. Что же произошло — две волны превратились в одну? Но в какой момент это происходит? Правильнее и проще считать. что в момент падения камней образовалась одна волна, равная сумме двух волн, которая изменяла форму по мере распространения, т. е. при сложении двух или более волн образуется новая волна. Это правило называется принципом суперпозиции волн.
Сложение нескольких волн приводит к образованию новой волны. Любую волну можно представить как сумму нескольких волн, причем это можно сделать многими способами.
МОНОХРОМАТИЧЕСКИЕ ВОЛНЫ. Составление из нескольких волн одной новой напоминает детскую игрушку, в которой из деталей разнообразной формы нужно составить исходную картинку. А как подобрать универсальные элементы, чтобы из них можно было составить любую картинку? Наверное, вы знаете ответ. Любое изображение на экране телевизора или на листе бумаги формируется из множества цветных точек — «элементарных кирпичиков» изображения. Точно так же вещество состоит из таких «элементарных кирпичиков», как атомы, молекулы, ядра, электроны. Может быть, такие «элементарные кирпичики» существуют и в «мире волн»? Это действительно так: любую волну можно однозначно представить в виде суммы монохроматических волн.
На рисунке 67 приведены графики зависимости давления в звуковой волне от координаты X, вдоль которой распространяется волна, и от времени.
Рис. 67. График зависимости давления в звуковой монохроматической волне от расстояния в некоторый момент t0 (а) и в некоторый последующий момент времени t0 + Δt (б). График зависимости той же волны от времени в некоторой точке пространства (в)
Монохроматической волной называют волну, изменяющуюся во времени и в пространстве по синусоидальному закону.
«Монохроматическая» в дословном переводе означает «одноцветная». Какое отношение имеет цвет к звуковой волне? Как уже говорилось, свет представляет собой электромагнитную волну. При разложении света призмой (см. рис. 19) каждой узкой одноцветной полоске, например полоске в спектре натрия (см. рис. 20), соответствует волна, близкая к синусоидальной. В данном случае одноцветная волна имеет явный смысл. Эта терминология была перенесена на волны другой природы.
На рисунке 67 приведены также некоторые параметры, характеризующие монохроматическую волну. Периодом волны T называют время, за которое происходит одно колебание (измеряется в секундах). Длиной волны λ, называют пространственный интервал, соответствующий одному периоду волны. Помимо этого, вводят понятие «частота волны» v = 1/T — число колебаний волны в одну секунду (измеряется в герцах). Эти параметры связаны со скоростью распространения волны и соотношением V = λv. Амплитудой волны (на рисунке она обозначена через А. однако для разных типов волн могут применяться различные обозначения) называется максимальное отклонение параметра, характеризующего волну, от положения равновесия.
Монохроматические (синусоидальные) волны представляют собой «элементарные кирпичики», при сложении которых можно получить любую волну. Для этих волн определяются такие параметры, как длина волны, период волны, частота волны, амплитуда волны.
Разложение произвольной волны на монохроматические составляющие называют спектральным представлением волны. Совокупность частот (или длин) монохроматических волн, составляющих некоторую волну, и определяет спектр волны. Призма является одним из простейших приборов, осуществляющим разложение электромагнитной волны видимого диапазона.
Монохроматические волны обладают рядом замечательных свойств. В частности, при распространении монохроматической волны ее форма не изменяется.
Следует заметить, что, строго говоря, синусоида монохроматической волны бесконечна во времени и в пространстве. Монохроматическая волна, таким образом, является идеализацией, такой же, как, например, материальная точка. В природе не бывает монохроматических волн, однако многие волны по свойствам очень близки к монохроматическим.
ДИФРАКЦИЯ ВОЛН. Если вы внимательно наблюдали за рябью на поверхности воды, то могли заметить, что мелкие предметы (торчащие из воды ветки, небольшие камни) не являются препятствиями для волн. Волны практически «не замечают» их. Однако за препятствием с большими размерами (например, плавающий в воде плот) волны исчезают. Вывод, который можно сделать, оказывается справедлив для волн любой природы: волны свободно огибают препятствия, размеры которых сравнимы или меньше длины волны. Такое явление называют дифракцией.
Дифракцией называют явление огибания препятствий волнами различной природы. Волны любой природы свободно огибают препятствия с размерами, сравнимыми или меньшими длины волны.
Именно дифракция не дает возможности увидеть атомы и молекулы в микроскоп со сколь угодно большим увеличением. Размеры атомов и молекул много меньше длины волны видимого света.
ОБЩИЕ СВОЙСТВА ВОЛН И ЧАСТИЦ. Такой объект природы, как волны, совсем не похож на частицы, а «элементарные кирпичики», из которых можно составить любую волну, бесконечны в пространстве и во времени. Тем не менее у волн и частиц есть общие свойства. Начнем с примера. Бросив камень в окно, можно разбить стекло. Но, как вы, наверное, знаете, оконные стекла разбиваются и при взрывах, в результате которых образуется ударная звуковая волна (см. рис. 66). Следовательно, такая волна действует с некоторой силой на стекло. Какими должны быть свойства брошенного камня, чтобы он разбил стекло? У него должна быть достаточно большая масса и достаточно большая скорость. Как вы знаете, произведение этих двух величин дает импульс тела, т. е. камень разобьет стекло при достаточно большом импульсе. Из аналогии между камнем и ударной волной можно сделать вывод, что волна обладает импульсом и переносит импульс через пространство. Это свойство характерно для волн любой природы.
Помимо импульса, волны обладают энергией и переносят энергию через пространство. То, что электромагнитная волна, приходящая к нам от Солнца, снабжает нас энергией, необходимой для жизни, вы, конечно, знаете. Однако энергией обладают любые волны. В последнее время, например, ведутся активные работы по использованию энергии морских волн для производства электроэнергии.
Волны и частицы обладают некоторыми общими свойствами. Волна любой природы переносит энергию и импульс через пространство
- Что общего у волн и частиц?
- Приведите примеры приборов, отличных от призмы, разлагающих волну в спектр.
- Проведите простейший эксперимент: направьте луч солнца, отраженный от компакт-диска, на белый экран. Что вы наблюдаете? Как объяснить результат наблюдения?
Источник
Волна – это процесс распространения колебания в среде с течением времени
Для существования волны необходим источник колебания и материальная среда или поле, в которых эта волна распространяется. Волны бывают самой разнообразной природы, но они подчиняются аналогичным закономерностям.
По физической природе различают:
Механические волны упругие, звуковые, волны на поверхности жидкости
| Электромагнитные волны свет, радиоволны, излучения |
По ориентации возмущений различают:
Продольные волны – Смещение частиц происходит вдоль направления распространения; могут распростаняться только в упругих средах; необходимо наличие в среде силы упругости при сжатии; могут распространяться в любых средах. Примеры:звуковые волны
| Поперечные волны – Смещение частиц происходит поперек направления распространения; могут распростаняться только в упругих средах; необходимо наличие в среде силы упругости при сдвиге; могут распространяться только в твердых средах (и на границе двух сред). Примеры: упругие волны в струне, волны на воде |
По характеру зависимости от времени различают:
Упругие волны – механические возмещения (деформации), распространяющиеся в упругой среде. Упругая волна называется гармонической (синусоидальной), если соответствующие ей колебания среды являются гармоническими.
Бегущие волны – волны, переносящие энергию в пространстве.
По форме волновой поверхности: плоская, сферическая, цилиндрическая волна.
Волновой фронт – геометрическое место точек, до которых дошли колебания к данному моменту времени.
Волновая поверхность – геометрическое место точек, колеблющихся в одной фазе.
Характеристики волны
Длина волны λ – расстояние, на которое волна распространяется за время, равное периоду колебаний
Амплитуда волны А – амплитуда колебаний частиц в волне
Скорость волны v – скорость распространения возмущений в среде
Период волны Т – период колебаний
Частота волны ν – величина, обратная периоду
Уравнение бегущей волны
В процессе распространения бегущей волны возмущения среды доходят до следующих точек пространства, при этом волна переносит энергию и импульс, но не переносит вещество (частицы среды продолжают колебаться в том же месте пространства).
где v – скорость, φ0 – начальная фаза, ω – циклическая частота, A – амплитуда
Свойства механических волн
1. Отражение волн – механические волны любого происхождения обладают способностью отражаться от границы раздела двух сред. Если механическая волна, распространяющаяся в среде, встречает на своем пути какое-либо препятствие, то она может резко изменить характер своего поведения. Например, на границе раздела двух сред с разными механическими свойствами волна частично отражается, а частично проникает во вторую среду.
2. Преломление волн – при распространении механических волн можно наблюдать и явление преломления: изменение направления распространения механических волн при переходе из одной среды в другую.
3. Дифракция волн – отклонение волн от прямолинейного распространения, то есть огибание ими препятствий.
4. Интерференция волн – сложение двух волн. В пространстве, где распространяются несколько волн, их интерференция приводит к возникновению областей с минимальным и максимальным значениями амплитуды колебаний
Интерференция и дифракция механических волн.
Волна, бегущая по резиновому жгуту или струне отражается от неподвижно закрепленного конца; при этом появляется волна, бегущая во встречном направлении.
При наложении волн может наблюдаться явление интерференции. Явление интерференции возникает при наложении когерентных волн.
Когерентными называют волны, имеющие одинаковые частоты, постоянную разность фаз, а колебания происходят в одной плоскости.
Интерференцией называется постоянное во времени явление взаимного усиления и ослабления колебаний в разных точках среды в результате наложения когерентных волн.
Результат суперпозиции волн зависит от того, в каких фазах накладываются друг на друга колебания.
Если волны от источников А и Б придут в точку С в одинаковых фазах, то произойдет усиление колебаний; если же – в противоположных фазах, то наблюдается ослабление колебаний. В результате в пространстве образуется устойчивая картина чередования областей усиленных и ослабленных колебаний.
Условия максимума и минимума
Если колебания точек А и Б совпадают по фазе и имеют равные амплитуды, то очевидно, что результирующее смещение в точке С зависит от разности хода двух волн.
Условия максимума
Если разность хода этих волн равна целому числу волн (т. е. четному числу полуволн) Δd = kλ, где k = 0, 1, 2, …, то в точке наложения этих волн образуется интерференционный максимум.
Условие максимума:
Амплитуда результирующего колебания А = 2×0.
Условие минимума
Если разность хода этих волн равна нечетному числу полуволн, то это означает, что волны от точек А и Б придут в точку С в противофазе и погасят друг друга.
Условие минимума:
Амплитуда результирующего колебания А = 0.
Если Δd не равно целому числу полуволн, то 0 < А < 2х0.
Дифракция волн.
Явление отклонения от прямолинейного распространения и огибание волнами препятствий называется дифракцией.
Соотношение между длиной волны (λ) и размерами препятствия (L) определяет поведение волны. Дифракция наиболее отчетливо проявляется, если длина набегающей волны больше размеров препятствия. Опыты показывают, что дифракция существует всегда, но становится заметной при условии d<<λ, где d – размер препятствия.
Дифракция – общее свойство волн любой природы, которая происходит всегда, но условия её наблюдения разные.
Волна на поверхности воды распространяется в сторону достаточно большого препятствия, за которым образуется тень, т.е. волнового процесса не наблюдается. Такое свойство используется при устройстве волноломов в портах. Если же размеры препятствия сравнимы с длиной волны, то за препятствием будет наблюдаться волнение. Позади него волна распространяется так, как будто препятствия не было вовсе, т.е. наблюдается дифракция волны.
Примеры проявления дифракции. Слышимость громкого разговора за углом дома, звуки в лесу, волны на поверхности воды.
Стоячие волны
Стоячие волны образуются при сложении прямой и отраженной волны, если у них одинаковая частота и амплитуда.
В струне, закрепленной на обоих концах, возникают сложные колебания, которые можно рассматривать как результат наложения (суперпозиции) двух волн, распространяющихся в противоположных направлениях и испытывающих отражения и переотражения на концах. Колебания струн, закрепленных на обоих концах, создают звуки всех струнных музыкальных инструментов. Очень похожее явление возникает при звучании духовых инструментов, в том числе органных труб.
Колебания струны. В закрепленной с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны, причем в местах закрепления струны должны располагаться узлы. Поэтому в струне возбуждаются с заметной интенсивностью только такие колебания, половина длины волны которых укладывается на длине струны целое число раз.
Отсюда вытекает условие
Длинам волн соответствуют частоты
n = 1, 2, 3…Частоты vn называются собственными частотами струны.
Гармонические колебания с частотами vn называются собственными или нормальными колебаниями. Их называют также гармониками. В общем случае колебание струны представляет собой наложение различных гармоник.
Уравнение стоячей волны:
В точках, где координаты удовлетворяют условию (n = 1, 2, 3, …), суммарная амплитуда равна максимальному значению – это пучности стоячей волны. Координаты пучностей:
В точках, координаты которых удовлетворяют условию (n = 0, 1, 2,…), суммарная амплитуда колебаний равна нулю – это узлы стоячей волны. Координаты узлов:
Образование стоячих волн наблюдают при интерференции бегущей и отраженных волн. На границе, где происходит отражение волны, получается пучность, если среда, от которой происходит отражение, менее плотная (a), и узел – если более плотная (б).
Если рассматривать бегущую волну, то в направлении ее распространения переносится энергия колебательного движения. В случае же стоячей волны переноса энергии нет, т.к. падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях.
Стоячие волны возникают, например, в закреплённой с обоих концов натянутой струне при возбуждении в ней поперечных колебаний. Причём в местах закреплений располагаются узлы стоячей волны.
Если стоячая волна устанавливается в воздушном столбе, открытом с одного конца (звуковая волна), то на открытом конце образуется пучность, а на противоположном – узел.
Источник