Какие органические соединения содержатся в клетке

Какие органические соединения содержатся в клетке thumbnail

Живая клетка любого организма состоит из органических компонентов на 25–30%.

К органическим составляющим относятся как полимеры, так и сравнительно некрупные молекулы – пигменты, гормоны, АТФ и пр.

Клетки живых организмов различаются между собой по структуре, функциям и по своему биохимическому составу. Однако каждая группа органических веществ имеет сходное определение в курсе биологии и выполняет одни и те же функции в любом типе клеток. Основные составляющие компоненты — это жиры, белки, углеводы и нуклеиновые кислоты.

Липиды

Липидами называются жиры и жироподобные вещества. Эта биохимическая группа отличается хорошей растворимостью в органических веществах, но при этом нерастворима в воде.

Жиры могут иметь твёрдую или жидкую консистенцию. Первая более характерна для животных жиров, вторая – для растительных.

Это интересно: атф это что за вещество — состав, функции и роль в организме.

Функции жиров заключаются в следующем:

  1. Структурная – фосфолипиды являются основной структурной составляющей клеточных мембран.
  2. Энергетическая – значительная часть энергии, которую использует клетка в процессе своей жизнедеятельности, получается в результате окисления жиров. Кроме того, в результате окисления липидов клетка получает воду.
  3. Защитная функция липидов заключается в том, что подкожный жировой слой защищает ткани от температурных воздействий и механических повреждений. Кроме того, у птиц и животных имеется жировая смазка на перьях, шерсти и коже. А листья большинства растений покрыты восковым налётом.
  4. Изоляционная функция жиров – миелин служит изоляционным слоем для нейронов, это служит ускорению передачи нервных импульсов.
  5. Из компонентов жировой ткани образуется ряд желчных кислот и витамин Д.
  6. Гормональная функция заключается в том, что многие гормоны имеют липидную природу.

Углеводы

Углеводы – это органические мономерные и полимерные вещества, которые в своём составе содержат углерод, водород и кислород. При их расщеплении клетка получает значительное количество энергии.

По химическому составу различают следующие классы углеводов:

  1. Простые углеводы или моносахариды. В зависимости от количества атомов углерода в молекуле такие вещества подразделяют на триозы, пентозы, гексозы и пр. К пентозам относятся вещества рибоза и дезоксирибоза — составляющие компоненты РНК и ДНК. Наиболее известная гексоза – это глюкоза, которая служит основным источником энергии для живых клеток.
  2. Олигосахариды – соединения, включающие в себя 2 или несколько мономеров гексозы. Наиболее известные дисахариды – лактоза и сахароза.
  3. Сложные углеводы или полисахариды — это полимеры, в состав которых входят несколько мономеров гексозы. К полисахаридам растительного происхождения относится целлюлоза. Углеводы, входящие в состав клеточной мембраны, представлены в основном сложными соединениями — гликолипидами и гликопротеидами. В животных клетках такую функцию выполняет гликоген. Крахмал – полисахарид, который содержится как в растительных, так и животных клетках.

По сравнению с животными клетками, растительные содержат в своём составе большее количество углеводов. Это объясняется способностью растительных клеток воспроизводить углеводы в процессе фотосинтеза.

Основными функциями углеводов в живой клетке являются энергетическая и структурная.

Энергетическая функция углеводов сводится к накоплению запасов энергии и высвобождению их по мере необходимости. Растительные клетки накапливают в вегетационный период крахмал, который откладывается в клубнях и луковицах. В организмах животных такую роль выполняет полисахарид гликоген, который синтезируется и накапливается в печени.

Структурную функцию углевод выполняют в растительных клетках. Практически вся клеточная стенка растений состоит из полисахарида целлюлозы.

Белки

Белки – органические полимерные вещества, которые занимают ведущее место как по количеству в живой клетке, так и по своему значению в биологии. Вся сухая масса животной клетки состоит из белка примерно наполовину. Этот класс органических соединений отличается поразительным многообразием. Только в организме человека насчитывается около 5 млн различных белков. Они не только отличаются между собой, но и имеют различия с белками других организмов. И все это колоссальное многообразие белковых молекул строится всего из 20 разновидностей аминокислот.

Если на белок воздействуют термические или химические факторы, в молекулах происходит разрушение водородных и бисульфидных связей. Это приводит к денатурации белка и изменению структуры и функций клеточной мембраны.

Все белки можно условно разделить на два класса: глобулярные (к ним относятся ферменты, гормоны и антитела), и фибриллярные – коллаген, эластин, кератин.

Функции белка в живой клетке:

  1. Каталитическая функция. Большая часть биохимических реакций в клетке протекает довольно медленно. Это связано с низким уровнем химической активности многих органических веществ в клетке и их низкой концентрацией в живом организме. В этом случае белки исполняют роль катализаторов химических реакций, благодаря чему все процессы в значительной степени ускоряются и активизируются. Природные белковые биокатализаторы называются ферментами или энзимами. Каждый фермент отвечает за определённую химическую реакцию.
  2. Строительная функция. Многие белки участвуют в строительстве клеточной мембраны и оболочек всех органелл.
  3. Сигнальная функция. По данным проведённых исследований, все внешние факторы вызывают в молекуле белка обратимые изменения. Такие обратимые изменения лежат в основе важного свойства живых организмов – раздражимости. Под влиянием физических, химических или термических раздражителей происходит изменение пространственной упаковки молекулы белка с изменением её функциональных особенностей.
  4. Транспортная функция заключается в способности некоторых белков обратимо связываться с органическими и неорганическими веществами и переносить их к различным органам и тканям. Наиболее характерна такая функция для белков крови. Примером таких белков может считаться гемоглобин, который способен связываться с молекулами кислорода и углекислого газа. Сывороточные белки альбумины могут транспортировать гормоны и некоторые липиды.
  5. Защитная функция белков заключается в выработке в организме в ответ на внедрение чужеродного агента антител. Эти белковые компоненты способны связывать чужеродные компоненты и обезвреживать их.
  6. В меньшей степени белки могут также служить и источником энергии. При их распаде до аминокислот и дальше до воды, углекислого газа и азотистых соединений, выделяется некоторое количество энергии, необходимой для поддержания нормальной жизнедеятельности клетки.

Нуклеиновые кислоты

Нуклеиновые кислоты имеют важное значение в структуре и правильном функционировании клеток. Химическое строение этих веществ таково, что позволяет сохранять и передавать по наследству информацию о белковой структуре клеток. Эта информация передаётся дочерним клеткам и на каждом этапе их развития формируется определённый вид белков.

Поскольку подавляющее большинство структурных и функциональных особенностей клетки обусловлено их белковой составляющей, очень важна стабильность, которой отличаются нуклеиновые кислоты. В свою очередь, от стабильности структуры и функций отдельных клеток зависит развитие и состояние организма в целом.

Различают две разновидности нуклеиновых кислот – рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК).

ДНК представляет собой полимерную молекулу, которая состоит из пары спиралей нуклеотидов. Каждый мономер молекулы ДНК представлен в виде нуклеотида. В состав нуклеотидов входят азотистые основания (аденин, цитозин, тимин, гуанин), углевод (дезоксирибоза) и остаток фосфорной кислоты.

Все азотистые основания соединяются между собой строго определённым образом. Аденин всегда располагается всегда против тимина, а гуанин – против цитозина. Такое избирательное соединение называется комплементарностью и играет очень важное значение в формировании структуры белка.

Все соседние нуклеотиды между собой связываются остатком фосфорной кислоты и дезоксирибозой.

Рибонуклеиновая кислота имеет большое сходство с дезоксирибонуклеиновой. Различие заключается в том, что вместо тимина в структуре молекулы присутствует азотистое основание урацил. Вместо дезоксирибозы это соединение содержит углевод рибозу.

Все нуклеотиды в цепочке РНК соединяются через фосфорный остаток и рибозу.

По своей структуре РНК может быть одно— и двухцепочечным. У ряда вирусов двухцепочечные РНК выполняют функции хромосом – они являются носителями генетической информации. С помощью одноцепочечной РНК происходит перенос информации о составе белковой молекулы.

Источник

Белки (протеины, полипептиды) — самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. В состав молекул белков входят атомы углерода, кислорода, водорода, азота и иногда серы, фосфора и железа.

Мономерами белков являются аминокислоты, которые (имея в своём составе карбоксильную и аминогруппы) обладают свойствами кислоты и основания (амфотерны).

Благодаря этому аминокислоты могут соединяться друг с другом (их количество в одной молекуле может достигать нескольких сотен). В связи с этим молекулы белков имеют большие размеры, и их называют макромолекулами.

Структура белковой молекулы

Под структурой белковой молекулы понимают её аминокислотный состав, последовательность мономеров и степень скрученности молекулы белка.

В молекулах белков встречается всего (20) видов различных аминокислот, и огромное разнообразие белков создаётся за счёт различного их сочетания.

  • Последовательность аминокислот в составе полипептидной цепи — это первичная структура белка. Она уникальна для любого типа белка и определяет форму его молекулы, его свойства и функции.
  • Длинная молекула белка сворачивается и приобретает сначала вид спирали в результате образования водородных связей между —СО и —NН группами разных аминокислотных остатков полипептидной цепи (между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты). Эта спираль — вторичная структура белка.
  • Третичная структура белка — трёхмерная пространственная «упаковка» полипептидной цепи в виде глобулы (шарика). Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот (гидрофобными, водородными, ионными и дисульфидными S–S связями).
  • Некоторые белки (например, гемоглобин крови человека) имеют четвертичную структуру. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Четвертичная структура удерживается непрочными ионными, водородными и гидрофобными связями.

Структура белков может нарушаться (подвергаться денатурации) при нагревании, обработке некоторыми химическими веществами, облучении и др. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остаётся в виде полипептидной цепи. В результате денатурации белок теряет способность выполнять свою функцию.

Нарушение четвертичной, третичной и вторичной структур обратимо. Этот процесс называют ренатурацией.

Разрушение первичной структуры необратимо.

Кроме простых белков, состоящих только из аминокислот, есть ещё и сложные белки, в состав которых могут входить углеводы (гликопротеины), жиры (липопротеины), нуклеиновые кислоты (нуклеопротеины) и др.

  • Каталитическая (ферментативная) функция. Специальные белки — ферменты — способны ускорять биохимические реакции в клетке в десятки и сотни миллионов раз. Каждый фермент ускоряет одну и только одну реакцию. В состав ферментов входят витамины.
  • Структурная (строительная) функция — одна из основных функций белков (белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин — хрящи и сухожилия).
  • Транспортная функция — белки обеспечивают активный транспорт ионов через клеточные мембраны (транспортные белки в наружной мембране клеток), транспорт кислорода и углекислого газа (гемоглобин крови и миоглобин в мышцах), транспорт жирных кислот (белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ).
  • Сигнальная функция. Приём сигналов из внешней среды и передача информации в клетку происходит за счёт встроенных в мембрану белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды.
  • Сократительная (двигательная) функция — обеспечивается сократительными белками — актином и миозином (благодаря сократительным белкам двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов).
  • Защитная функция — антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь, образуя тромб.
  • Регуляторная функция присуща белкам — гормонам (не все гормоны являются белками!). Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах (например, инсулин регулирует содержание сахара в крови).
  • Энергетическая функция — при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры (при полном расщеплении (1) г белка до конечных продуктов выделяется (17,6) кДж энергии). Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

https://ours-nature.ru/lib/b/book/1063747118/348

Источник

Задумайтесь! Мы с вами состоит из миллиардов атомов. Все атомы находятся в круговороте, и
все атомы, которыми мы обладаем, в ком-то и где-то находились те 4,5 млрд. лет, которые существует Земля. Они были частями
животных, растений, грибов и бактерий – а сейчас принадлежат нам на короткое время.

Круговорот атомов

С химической точки зрения ответ на вопрос “Жив ли изучаемый объект?” – не представляется возможным. Понятию “жизнь” дано
колоссальное количество определений. Жизнь – это самовоспроизведение с изменением, способ существования белковых тел,
постоянный обмен веществ с внешней средой.

Мы приступаем к изучению неорганических и органических веществ клетки. Начнем с неотъемлемого компонента клетки,
благодаря которому жизнь на Земле в принципе стала возможна – вода.

Вода

Составляет 60-80% массы клетки. Молекула воды обладает уникальным свойством – полярностью, которое возникает из-за
разницы в электроотрицательности (ЭО) между атомами кислорода и водорода (у кислорода ЭО больше).

Вода полярная молекула

Поскольку молекула воды полярна, ее называют диполь. Между молекулами воды возникают непрочные водородные связи:
водородная связь начинается от отрицательно заряженного атома кислорода (2δ-) одной молекулы воды и
тянется до положительно заряженного атома водорода другой молекулы воды (δ+)

По отношению к воде все вещества можно подразделить на два типа:

  • Гидрофильные (греч. hydro – вода и philéo – люблю) – вещества, которые хорошо растворяются в воде. Гидрофильными
    веществами являются сахара, соли, альдегиды, спирты, аминокислоты.
  • Гидрофобные (греч. hydro – вода и phobos — страх) – вещества, которые не растворяются в воде. Гидрофобными
    веществами являются жиры.

Роль воды в клетке трудно переоценить. Ее функции и свойства крайне важны:

  • Вода – универсальный растворитель
  • Большинство реакций, которые протекают в клетке, идут в растворе (водной среде). Полярность молекулы воды позволяет
    ей быть отличным растворителем для других гидрофильных (полярных) веществ.

  • Вода – терморегулятор
  • Вода может поглощать теплоту при минимальном изменении температуры. Это настоящее “спасение” для клеток: чуть только
    температура меняется, вода начинает поглощать избыток тепла, защищая клетку от перегревания. Выделяясь на поверхность
    кожи с потом, вода испаряется, поверхность кожи при этом охлаждается.

  • Вода – реагент
  • Она не только создает среду для реакций в клетке, но и сама активно участвует во многих из них. Расщепление питательных
    веществ, попавших в клетку, происходит за счет реакции гидролиза (греч. hydro – вода и lysis – расщепление).

  • Транспортная функция
  • Питательные вещества, газы перемещаются по организму с током крови. Вода составляет 90-92% плазмы крови, является ее основным
    компонентом. С помощью воды происходит не только доставка веществ к клеткам, но и удаление из организма побочных продуктов
    обмена веществ.

    Транспортная функция воды

  • Структурная функция
  • Вода придает тканям тургор (лат. turgor — наполнение) – внутреннее осмотическое давление в живой клетке, создающее
    напряжение оболочек клеток. Вода составляет от 60 до 95% цитоплазмы, придает клеткам форму. Изменение тургора клеток растений
    приводит к перемещениям их частей, раскрытию устьиц, цветков.

    Осмотическое давление – избыточное гидростатическое давление на раствор, отделенный от чистого растворителя с
    помощью полупроницаемой мембраны.

    Главное – понимать суть: если мы поместим живую клетку в гипертонический раствор, то
    вода (растворитель) устремится из клетки в раствор (в сторону большей концентрации соли) – это приведет к сморщиванию
    клеток.

    Если же клетка окажется
    в гипотоническом растворе, то вода извне устремится внутрь клетки (опять-таки в сторону большей концентрации солей),
    приводя при этом к разбуханию (и возможному разрыву) клетки.

    Эритроциты в гипер- и гипотоническом растворе

Элементы

Живая клетка – кладезь элементов таблицы Менделеева. Процент содержания различных элементов отличается, в связи с чем все они делятся на
3 группы:

  • Биогенные (основные) – C, H, O, N. Входят в состав органических соединений, составляют основную часть клетки
  • Макроэлементы (греч. makrós – большой) – составляют десятые и сотые доли в клетке: K, Na, Ca, Mg, Cl, P, S, Fe
  • Микроэлементы (греч. mikrós – маленький) – составляют тысячные доли в клетке: Zn, Cu, I, Co, Mn

Процентное содержание элемента не коррелирует с его важностью и биологической значимостью. Так, к примеру, микроэлемент
I играет важную роль в синтезе гормонов щитовидной железы: тироксина, трийодтиронина. За нормальные рост и развитие
организмов отвечают Zn, Mn, Cu.

Благоприятно влияют на сперматозоиды Zn, Ca, Mg, защищая их от оксидативного стресса (окисления). Невозможным становится
нормальное образование эритроцитов без должного уровня Fe и Cu.

Микроэлементы

Соли

В водной среде клетки соли диссоциируют (распадаются) на положительно заряженные ионы – катионы (Na+, K+,
Ca2+, Mg2+) и отрицательно заряженные – анионы (Cl-, SO42-,
HPO42-, H2PO4-).

Для процессов возбуждения клетки (нейрона, миоцита – мышечной клетки) внутри клетки должна поддерживаться низкая концентрация ионов Na+ и высокая концентрация ионов K+. В окружающей клетку среде все наоборот: много Na и мало K. В мембране существует
специальный натрий-калиевый насос, который поддерживает необходимое равновесие. Если это
соотношение нарушится, то нейрон не сможет сгенерировать нервный импульс, а клетка мышцы – сократиться.

Натрий-калиевый насос

Соли в клетке и организме выполняют ряд важных функций:

  • Участвуют в активации ферментов
  • Создают буферные системы (бикарбонтаную, фосфатную, белковую)
  • Поддерживают кислотно-щелочное состояние (КЩС)
  • Создают осмотическое давление клетки
  • Создают мембранный потенциал клеток (натрий-калиевый насос)
  • Являются основным минеральным составляющим скелета внутреннего и наружного (у моллюсков)

Функции солей в клетке

Мы переходим к органическим компонентам клетки, к которым относятся: жиры, углеводы, белки и нуклеиновые кислоты.

Белки, или пептиды (греч. πεπτος – питательный)

Белки – полимеры, мономерами которых являются аминокислоты. Белки представляют линейную структуру, образованную из
длинной цепи аминокислот, между которыми возникают пептидные связи. Пептидная связь образуется между карбоксильной
группой (COOH) одной аминокислоты и аминогруппой другой аминокислоты (NH2).

Образование пептидной связи

Между понятиями пептиды и белки существует определенная разница. Белки состоят из сотен тысяч аминокислот. Пептидами
называют небольшие белки, содержащие до 10 аминокислот. Ими являются некоторые гормоны: окситоцин,
вазопрессин, тиреолиберин – эти пептиды выполняют регуляторную функцию.

Выделяется несколько уровней пространственной организации белка:

  • Первичная – полипептидная цепь, в которой аминокислоты расположены линейно
  • Вторичная – полипептидная цепь закручивается в спираль, формируется α или β структура
  • Третичная – спирали скручиваются в глобулу (лат. globulus – шарик)
  • Четвертичная – образуется у сложных белков путем соединения нескольких глобул

Структуры белка

При резком изменении оптимальных для белка условий он подвергается денатурации: при этом происходит переход от
высших структур организации к низшим, или “раскручивание белка”. Важно заметить, что аминокислотная последовательность (первичная структура белка) при этом не меняется, однако свойства белка меняются кардинально (теряется его гидрофильность).

Осмелюсь сделать заявление: вы часто начинаете свой день с денатурации белка. Простейший способ провести такой
эксперимент – пожарить яичницу. Заметьте, что изначально яичный белок прозрачный и текучий, но по итогу жарки эти свойства
утрачиваются: он становится непрозрачным и вязким.

Денатурация белка

Завершаем тему о белках изучением их функций:

  • Каталитическая (греч. katalysis – разрушение)
  • Белки – природные катализаторы, ускоряющие реакции в организме в десятки и сотни тысяч раз. Эту роль главным образом
    выполняют белки-ферменты (энзимы).

    Иногда в состав белков входят так называемые ко-факторы – небелковые соединения,
    которые необходимы ферменту для его биологической активности (в роли ко-факторов могут выступать Zn2+,
    Mg2+).

  • Строительная
  • Белки входят в состав клеточных мембран. Сложные белки: коллаген, эластин – входят в состав соединительных тканей организма,
    придавая им некоторую прочность и эластичность.

  • Регуляторная
  • Некоторые гормоны, регулирующие обменные процессы в организме, имеют белковое происхождение: инсулин, глюкагон,
    адренокортикотропный гормон (АКТГ).

  • Защитная
  • Говоря об этой функции, прежде всего, стоит вспомнить об антителах – иммуноглобулинах, которые синтезируют B-лимфоциты.
    Антитела нейтрализуют чужеродные организму антигены (разрушают бактерии).

    Антитела иммуноглобулины

    Помимо антител, защитную функцию выполняют
    также белки свертывающей системы крови (тромбин и фибриноген): они предохраняют организм от кровопотери.

    Фибриноген и фибрин

  • Энергетическая
  • При недостаточном питании в организме начинают окисляться молекулы белков. При расщеплении 1 г белков выделяется 17,6 кДж энергии.

  • Транспортная
  • Некоторые белки крови способны присоединять к себе и переносить различные молекулы. Альбумины участвуют в транспорте
    жирных кислот, глобулины – гормонов и некоторых ионов (Fe, Cu). Основной белок эритроцитов – гемоглобин – способен
    переносить кислород, углекислый и угарный газы (угарный конечно нежелательно ему переносить, будет отравление)

  • Сократительная
  • Двигательные белки, актин и миозин, на уровне саркомера обеспечивают сокращение мышц. При возбуждении мышечной
    ткани тонкие нити актина начинают тереться о толстые нити миозина, приводя к сокращению.

    Двигательные белки

  • Рецепторная
  • На поверхности мембраны белки образуют многочисленные рецепторы, которые, соединяясь с гормонами, приводят к
    изменению обмена веществ в клетке. Таким образом, гормоны реализуют воздействие на клетки органов-мишеней.

Жиры, или липиды (греч. lipos – жир)

С химической точки зрения жиры являются сложными эфирами, образованными трехатомным спиртом глицерином и высшими
карбоновыми кислотами (жирными кислотами). Среди их свойств надо выделить то, что они практически нерастворимы
в воде. Вспомните, как тяжело смыть жир с рук водой.

Почему именно мыло смывает жир с рук? Дело в том, что молекула мыла повторяет свойства жира: одна часть ее гидрофобна,
а другая гидрофильна. Мыло соединяется с молекулой жира гидрофобной частью, и вместе они легко смываются водой.

Моющее действие мыла

Приступим к изучению функций жиров:

  • Энергетическая
  • При окислении жиров выделяется много энергии: 1 г – 38,9 кДж. Это вдвое больше выделяющейся энергии при расщеплении
    1г углеводов.

  • Запасающая
  • Жиры имеют способность накапливаться в клетках, расположенных в подкожно-жировой клетчатке, внутренних органах.
    Эти запасы являются резервом организма на случай голодания или при недостаточном питании.

    В жирах также запасается вода: в 100 г жира содержится 107 мл воды. Многим пустынным животным (верблюдам)
    жировые запасы помогают длительное время обходиться без воды.

  • Структурная
  • Жиры входят в состав биологических мембран клеток человека вместе с белками. Из фосфолипидов построены мембраны всех
    клеток органов и тканей!

    Так, к примеру, холестерин – обязательный компонент мембраны, придает ей определенную жесткость и совершенно необходим
    для нормальной жизнедеятельности (заболевания возникают только при нарушении липидного обмена).

    Строение мембраны

  • Терморегуляция
  • Жиры обладают плохой теплопроводностью. Располагаясь в подкожно-жировой клетчатке, они образуют термоизолирующий слой.
    Особенно хорошо он развит у ластоногих (моржи и тюлени), китов, защищает их от переохлаждения.

  • Гормональная
  • Некоторые гормоны по строению относятся к жирам: половые (андрогены – мужские и эстрогены – женские), гормон
    беременности (прогестерон), кортикостероиды.

  • Участие в обмене веществ (метаболизме)
  • Производное жира – витамин D – принимает важное участие в обмене кальция и фосфора в организме. Он образуется
    в коже под действием ультрафиолетового излучения (солнечного света). При недостатке витамина D возникает заболевание –
    рахит.

    Рахит

Углеводы

Представляют собой органические соединения, состоящие из одной или нескольких молекул простых сахаров. Выделяется три основных
класса углеводов:

  • Моносахариды (греч. monos — единственный)
  • Простые сахара, легко растворяющиеся в воде и имеющие сладкий вкус. Моносахариды подразделяются на гексозы (имеют 6 атомов углерода)
    – глюкоза, фруктоза, и пентозы (имеют 5 атомов углерода) – рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот.

  • Олигосахариды (греч. ὀλίγος — немногий)
  • При гидролизе олигосахариды распадаются на моносахариды. В состав олигосахаридов может входить от 2 до 10 моносахаридных остатков.
    Если в состав олигосахарида входят 2 остатка моносахарида, то его называют дисахарид. К дисахаридам относятся сахароза, лактоза,
    мальтоза. При гидролизе сахароза распадается на глюкозу и фруктозу.

    Олигосахариды

  • Полисахариды
  • Это биополимеры, в состав которых входят сотни тысяч моносахаридов. Они обладают высокой молекулярной массой,
    нерастворимы в воде, на вкус несладкие.

    Крахмал, целлюлоза, гликоген, хитин и муреин – все это биополимеры. Давайте вспомним, где они находятся.

    Клеточная стенка образована: у растений – целлюлозой, у грибов – хитином, у бактерий – муреином. Запасным питательным
    веществом растений является крахмал, животных – гликоген.

Целлюлоза

Перечислим функции, которые выполняют углеводы:

  • Энергетическая
  • В результате расщепления 1 г углеводов высвобождается 17,6 кДж энергии.

  • Запасающая
  • Запасным питательным веществом растений и животных соответственно являются крахмал и гликоген. Расщепление гликогена позволяет
    нам оставаться в сознании и быть активными между приемами пищи.

    Гликоген представляет собой разветвленную молекулу, состоящую
    из остатков глюкозы. За счет больших размеров такая молекула хорошо удерживается в клетке, а ее разветвленность позволяет ферментам
    быстро отщеплять множество молекул глюкозы одновременно.

    Гликоген

    Существуют заболевания, при которых распад
    гликогена нарушается: в результате нейроны не получают глюкозы (источника энергии, соответственно не синтезируются и молекулы АТФ). Из-за этого становятся возможны частые потери сознания.

  • Структурная (опорная)
  • Целлюлоза входит в состав клеточных стенок растений, придавая им необходимую твердость. Хитин образует клеточную стенку
    грибов и наружный скелет членистоногих.

Классификация углеводов

Нуклеиновые кислоты (от лат. nucleus — ядро)

Высокомолекулярные органические соединения, представленные двумя видами: ДНК (дезоксирибонуклеиновые кислоты) и РНК
(рибонуклеиновые кислоты). ДНК и РНК – биополимеры, мономером которых является нуклеотид. Запомните, что нуклеотид
состоит из 3 компонентов:

  • Азотистое основание
  • Для ДНК характерны следующие азотистые основания: аденин – тимин, гуанин – цитозин; для РНК: аденин – урацил,
    гуанин – цитозин. Исходя из принципа комплементарности, данные основания соответствуют друг другу, в результате
    чего между ними образуются связи.

    Между аденином и тимином образуется 2 водородные связи, а между гуанином и цитозином – 3.

    Азотистые основания

    Именно по этой причине количество аденина в молекуле ДНК всегда совпадает с количеством тимина. К примеру, если
    в ДНК 20% аденина, то с уверенностью можно сказать, что в ней 20% тимина. Выходит на оставшиеся основания – цитозин
    и гуанин – остается 60%, значит, цитозин и гуанин составляют в ДНК 30% каждый. Таким нехитрым образом, зная процент
    содержания одного основания, можно подсчитать все остальные.

  • Остаток сахара
  • В ДНК остаток сахара – дезоксирибоза, в РНК – рибоза.

  • Остаток фосфорной кислоты – фосфат
  • Строение ДНК

Мы подробно изучили структуру ДНК (дезоксирибонуклеиновой кислоты) – двойной правозакрученной спиральной молекулы. Теперь
настало время детально поговорить об РНК (рибонуклеиновой кислоте). Все виды РНК синтезируются на матрице – ДНК, различают
три вида РНК:

  • Рибосомальная РНК (рРНК)
  • Синтезируется в ядрышке. рРНК входит в состав
    малых и больших субъединиц рибосом. В процентном отношении рРНК составляет 80-90% всей РНК клетки.

  • Информационная РНК (иРНК, син. – матричная РНК, мРНК)
  • Синтезируется в ядре в ходе процесса транскрипции (лат. transcriptio — переписывание).
    Фермент РНК-полимераза строит цепь иРНК по принципу комплементарности с ДНК. Исходя из данного принципа,
    гуанин (Г) в молекуле ДНК соединяется с цитозином (Ц) в РНК. Далее соответственно: цитозин (Ц) – гуанин (Г),
    аденин (А) – урацил (У), тимин (Т) – аденин (А).

    Комплементарность ДНК и РНК

  • Транспортная РНК (тРНК)
  • Обеспечивает транспорт аминокислоты к рибосоме во время синтеза белка. Благодаря этому становится возможным
    соединение аминокислот друг с другом, образуется белок. тРНК имеет характерную форму клеверного листа.

    тРНК

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.