Какие молекулы содержатся в ядре
Ядро – главное составляющее живой клетки, которое несет наследственную информацию, закодированную набором генов. Оно занимает центральное положение в клетке. Размеры варьируются, форма обычно сферичная или овальная. В диаметре ядро в разных клетках может быть от 8 до 25мкм. Есть исключения, примеру, яйцеклетки рыб имеют ядра диаметром в 1 мм.
Особенности строения ядра
Заполнено ядро жидкостью и несколькими структурными элементами. В нем выделяют оболочку, набор хромосом, нуклеоплазму, ядрышка. Оболочка двухмембранная, между мембранами находится перенуклеарное пространство.
Внешняя мембрана сходна по строению с эндоплазматическим ретикулумом. Она связана с ЭПР, который будто ответвляется от ядерной оболочки. Снаружи на ядре находятся рибосомы.
Внутренняя мембрана прочная, так как в ее состав входит ламина. Она выполняет опорную функцию и служит местом крепления для хроматина.
Мембрана имеет поры, обеспечивающие обменные процессы с цитоплазмой. Ядерные поры состоят из транспортных белков, которые поставляют в кариоплазму вещества путем активного транспорта. Пассивно сквозь поровые отверстия могут пройти только небольшие молекулы. Также каждая пора прикрыта поросомой, которая регулирует обменные процессы в ядре.
Количество ядер в разных по специализации клетках различно. В большинстве случаев клетки одноядерные, но есть ткани, построенные из многоядерных клеток (печеночная или ткань мозга). Есть клетки лишенные ядра – это зрелые эритроциты.
У простейших выделяют два типа ядер: одни отвечают за сохранение информации, другие – за синтез белка.
Ядро может прибывать в состоянии покоя (период интерфазы) или деления. Переходя в интерфазу, имеет вид сферического образования с множеством гранул белого цвета (хроматина). Хроматин бывает двух видов: гетерохроматин и эухроматин.
Эухроматин – это активный хроматин, который сохраняет деспирализированное строение в покоящемся ядре, способен к интенсивному синтезу РНК.
Гетерохроматин – это участки хроматина, которые находятся в конденсированном состоянии. Он может при необходимости переходить в эухроматиновое состояние.
При использовании цитологического метода окрашивания ядра (по Романовскому-Гимзе) выявлено, что гетерохроматин меняет цвет, а эухроматин нет. Хроматин построен из нуклеопротеидных нитей, названных хромосомами. Хромосомы несут в себе основную генетическую информацию каждого человека. Хроматин — форма существования наследственной информации в интерфазном периоде клеточного цикла, во время деления он трансформируется в хромосомы.
Строение хромосом
Каждая хромосома построена из пары хроматид, которые находятся параллельно друг к другу и связаны только в одном месте – центромере. Центромера разделяет хромосому на два плеча. В зависимости от длины плеч выделяют три вида хромосом:
- Равноплечие;
- разноплечие,
- одноплечие.
Некоторые хромосомы имеют дополнительный участок, который крепится к основному нитевидными соединениями – это сателлит. Сателлиты помогают идентифицировать разные пары хромосом.
Метафазное ядро представляет собой пластинку, где располагаются хромосомы. Именно в эту фазу митоза изучается количество и строение хромосом. Во время метафазы сестринские хромосомы двигаются в центр и распадаются на две хроматиды.
Строение ядрышка
В ядре также находится немембранное образование — ядрышко. Ядрышки представляют собой уплотненные, округлые тельца, способные преломлять свет. Это основное место синтеза рибосомальной РНК и необходимых белков.
Число ядрышек различно в разных клетках, они могут объединяться в одно крупное образование или существовать отдельно друг от друга в виде мелких частиц. При активации синтетических процессов объем ядрышка увеличивается. Оно лишено оболочки и находится в окружении конденсированного хроматина. В ядрышке также содержатся металлы, в большей мере цинк. Таким образом, ядрышко – это динамичное, меняющееся образование, необходимое для синтеза РНК и транспорта ее в цитоплазму.
Нуклеоплазма заполняет все внутреннее пространство ядра. В нуклеоплазме находится ДНК, РНК, протеиновые молекулы, ферментативные вещества.
Функции ядра в клетке
- Принимает участие в синтезе белка, рибосомной РНК.
- Регулирует функциональную активность клетки.
- Сохранение генетической информации, точная ее репликация и передача потомству.
Роль и значение ядра
Ядро является главным хранилищем наследственной информации и определяет фенотип организма. В ядре ДНК существует в неизмененном виде благодаря репарационным ядерным ферментам, которые способны ликвидировать поломки и мутации. Во время клеточного деления ядерные механизмы обеспечивают точное и равномерное расхождение генетической информации в дочерние клетки.
Источник
Êëèêíèòå, ÷òîáû äîáàâèòü â èçáðàííûå ñåðâèñû.
Êëèêíèòå, ÷òîáû óäàëèòü èç èçáðàííûõ ñåðâèñîâ.
ßäðî ýòî âàæíûé ñòðóêòóðíûé êîìïîíåíò ýóêàðèîòè÷åñêîé êëåòêè , êîòîðûé ñîäåðæèò ìîëåêóëû ÄÍÊ ãåíåòè÷åñêóþ èíôîðìàöèþ.
ßäðî – ýòî âàæíûé ñòðóêòóðíûé êîìïîíåíò ýóêàðèîòè÷åñêîé êëåòêè, êîòîðûé ñîäåðæèò ìîëåêóëû ÄÍÊ – ãåíåòè÷åñêóþ èíôîðìàöèþ. Èìååò îêðóãëóþ èëè îâàëüíóþ ôîðìó. ßäðî õðàíèò, ïåðåäàåò è ðåàëèçóåò íàñëåäñòâåííóþ èíôîðìàöèþ, à òàêæå îáåñïå÷èâàåò ñèíòåç áåëêà. Ïîäðîáíåå î êëåòî÷íîé îðãàíèçàöèè, ñîñòàâå è ôóíêöèÿõ ÿäðà æèâîòíîé èëè ðàñòèòåëüíîé êëåòêè ðàññìîòðèì â òàáëèöå íèæå.
Êîìïîíåíò ÿäðà | Âûïîëíÿåìàÿ ôóíêöèÿ |
---|---|
ßäåðíàÿ îáîëî÷êà. Èìååò ïîðèñòóþ äâóõìåìáðàííóþ ñòðóêòóðó. |
|
Õðîìîñîìû. Ïëîòíûå ïðîäîëãîâàòûå èëè íèòåâèäíûå îáðàçîâàíèÿ, êîòîðûå ìîæíî ðàññìîòðåòü òîëüêî ïðè äåëåíèè êëåòêè. | Ñîäåðæàò ÄÍÊ – íîñèòåëü íàñëåäñòâåííîé èíôîðìàöèè, êîòîðàÿ ïåðåäàåòñÿ îò ïîêîëåíèÿ ê ïîêîëåíèþ. |
ßäðûøêè. Èìåþò ñôåðè÷åñêóþ èëè íåïðàâèëüíóþ ôîðìó. | Ó÷àñòâóþò â ïðîöåññå ñèíòåçà ÐÍÊ, âõîäÿùåé â ñîñòàâ ðèáîñîìû. |
ßäåðíûé ñîê (êàðèîïëàçìà). Ïîëóæèäêàÿ ñðåäà, íàõîäÿùàÿñÿ âíóòðè ÿäðà. | Âåùåñòâî, â êîòîðîì ñîäåðæàòñÿ ÿäðûøêè è õðîìîñîìû. |
Íåñìîòðÿ íà ðàçëè÷èÿ â ñòðîåíèè è ôóíêöèÿõ, âñå ÷àñòè êëåòêè ïîñòîÿííî âçàèìîäåéñòâóþò äðóã ñ äðóãîì, èõ îáúåäèíÿåò îäíà ãëàâíàÿ ôóíêöèÿ – îáåñïå÷åíèå æèçíåäåÿòåëüíîñòè êëåòêè, ñâîåâðåìåííîå äåëåíèå êëåòêè è ïðàâèëüíûé îáìåí âåùåñòâ âíóòðè íåå.
Äîïîëíèòåëüíûå ìàòåðèàëû ïî òåìå: Ñòðîåíèå è ôóíêöèè ÿäðà êëåòêè.
|
| ||||||||||||
| |||||||||||||
| |||||||||||||
Источник
Ядро
Ядро — важнейший компонент эукариотической клетки, в котором содержится генетическая информация (ДНК).
Ядро имеется в клетках многих одноклеточных и всех многоклеточных организмов. Как правило, в клетках имеется одно ядро, но бывают и многоядерные клетки. Ядро клетки – это плотное тельце, часто овальной формы. Оно заполнено густым ядерным веществом – кариоплазмой (греч. karyon – “ядро”), или нуклеоплазмой. От цитоплазмы ядро отделено двухслойной ядерной мембраной. Через многочисленные поры в мембране происходит обмен молекулами между ядром и цитоплазмой. В ядре имеется одно или несколько ядрышек, связанных с синтезом РНК.
Кроме ядрышек в ядре находится хроматин (хромосомы). Хромосомы образованны двухцепочечными молекулами ДНК и белками. Хромосомы являются носителями генов, определяющих наследственные свойства клетки и организма в целом.
Ген представляет собой участок молекулы ДНК с определенной последовательностью нуклеотидов.
Наследственная информация (ДНК), заключенная в хромосомах ядра, с помощью РНК и ферментов управляет всеми процессами, протекающими в клетке: биохимическими, физиологическими, морфологическими, синтезом и распадом веществ.
Ядро – центр управления процессами, происходящими в клетке.
Ядро выполняет две основные функции:
- хранение и воспроизведение генетической информации;
- регуляция процессов обмена веществ в клетке.
Ядерная оболочка отделяет содержимое ядра от цитоплазмы. Она состоит из двух цитоплазматических мембран, разделённых полостью, и пронизана множеством ядерных пор.
Наружная ядерная мембрана покрыта рибосомами и переходит непосредственно в каналы эндоплазматической сети. Внутренняя мембрана гладкая.
Ядерные поры обеспечивают транспорт иРНК, тРНК, АТФ, ферментов, ионов и других веществ. Несмотря на активный обмен между ядром и цитоплазмой, ядерная оболочка создаёт возможность существования в ядре особой внутренней среды.
Ядерный сок (кариоплазма, нуклеоплазма) — жидкость, содержащаяся в клеточном ядре.
Ядерный сок состоит из:
- жидкой части;
- ядерного матрикса (белковые тяжи образуют подобие каркаса, пронизывающего ядерный сок);
- различных включений.
В ядерном соке содержатся различные ферменты, свободные нуклеотиды, аминокислоты и прочие продукты метаболизма клетки.
Хроматин — вещество хромосом, представляющее собой комплекс ДНК, РНК и белков. Нити хроматина, уложенные определённым образом, образуют хромосому.
Основную массу хроматина составляют особые белки — гистоны, функция которых заключается в компактной упаковке хромосом. В результате такой упаковки вся ДНК клетки, суммарная длина которой составляет 2 метра, упаковывается в клеточном ядре.
Хромосомы (греч. хрома — цвет, soma — тело) — структуры, расположенные в ядре эукариотической клетки, представляющие собой высокую степень конденсации хроматина. В хромосомах сосредоточена основная часть наследственной информации.
Основу хромосомы составляет линейная молекула ДНК, соединённая со специальными белками.
Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), так как две хроматиды, образующие её, соединены между собой в районе центромеры. Концевые участки хромосом (теломеры) предохраняют их концы от слипания.
Во всех соматических клетках любого организма число хромосом одинаково. Половые клетки всегда содержат вдвое меньше хромосом, чем соматические клетки данного вида.
Центромера — участок хромосомы, разделяющий хромосому на два плеча одинаковой или разной длины.
Форма хромосом зависит от положения центромеры. Во время деления клетки к центромере прикрепляются нити веретена деления. Изменение положения центромеры в определенной хромосоме служит критерием выявления хромосомных перестроек.
Ядрышко — внутриядерная структура, главной функцией которой является синтез рибосом. В отличие от органелл ядрышко не имеет собственной мембраны. Число ядрышек в клетке — от одного до трёх, иногда больше. Размер ядрышка отражает степень активности клетки, которая может сильно варьировать.
В ядрышках идёт синтез рибосомальной РНК, её созревание и сборка рибосомных субчастиц, которые затем через поры ядерной оболочки поступают в цитоплазму.
Источник
В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам.
Белковые вещества составляют основу всех жизненно важных структур клетки, обладают необычайно высокой реакционной способностью, наделены каталитическими функциями.
Нуклеиновые кислоты входят в состав важнейшего органа клетки — ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.
План синтеза белка хранится в ядре клетки, а непосредственно синтез происходит вне ядра, поэтому необходима помощь для доставки закодированного плана из ядра к месту синтеза. Такую помощь оказывают молекулы РНК.
Процесс начинается в ядре клетки: раскручивается и открывается часть «лестницы» ДНК. Благодаря этому буквы РНК образуют связи с открытыми буквами ДНК одной из нитей ДНК. Фермент переносит буквы РНК, чтобы соединить их в нить. Так буквы ДНК «переписываются» в буквы РНК. Новообразованная цепочка РНК отделяется, и «лестница» ДНК снова закручивается.
После дальнейших изменений этот вид закодированной РНК готов.
РНК выходит из ядра и направляется к месту синтеза белка, где буквы РНК расшифровываются. Каждый набор из трех букв РНК образует «слово», обозначающее одну конкретную аминокислоту.
Другой вид РНК отыскивает эту аминокислоту, захватывает ее с помощью фермента и доставляет к месту синтеза белка. По мере прочтения и перевода сообщения РНК цепочка аминокислот растет. Эта цепочка закручивается и укладывается в уникальную форму, создавая один вид белка.
Примечателен даже процесс укладки белка: на то, чтобы с помощью компьютера просчитать все возможности укладки белка среднего размера, состоящего из 100 аминокислот, потребовалось бы 1027 лет. А для образования в организме цепочки из 20 аминокислот требуется не более одной секунды — и этот процесс происходит непрерывно во всех клетках тела.
Гены, генетический код и его свойства.
На Земле живет около 7 млрд людей. Если не считать 25—30 млн пар однояйцовых близнецов, то генетически все люди разные: каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.
Такие различия объясняются различиями в генотипах—наборах генов организма; у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках — следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.
Это не означает, что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы.
Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК – гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.
Кодирование наследственной информации происходит с помощью генетического кода, который универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены, и кодирующих белки конкретных организмов.
Генетический код состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности (ААТ, ГЦА, АЦГ, ТГЦ и т.д.), каждый из которых кодирует определенную аминокислоту (которая будет встроена в полипептидную цепь).
Аминокислот 20, а возможностей для комбинаций четырех нуклеотидов в группы по три – 64 четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот
поэтому одна аминокислота может кодироваться несколькими триплетами.
Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.
Собственно кодом считается последовательность нуклеотидов в молекуле и-РНК, т.к. она снимает информацию с ДНК (процесс транскрипции) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции).
В состав и-РНК входят нуклеотиды АЦГУ, триплеты которых называются кодонами: триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ.
Именно кодонами и-РНК отражается генетический код в записи.
Таким образом, генетический код — единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Генетический код основан на использовании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.
Основные свойства генетического кода:
1. Генетический код триплетен. Триплет (кодон) — последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав белков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот остаются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказывается равным трем. (В этом случае число возможных триплетов нуклеотидов составляет 43 = 64).
2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими триплетами (поскольку аминокислот 20, а триплетов — 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты выполняют специфические функции: в молекуле иРНК триплеты УАА, УАГ, УГА — являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.
3. Одновременно с избыточностью коду присуще свойство однозначности: каждому кодону соответствует только одна определенная аминокислота.
4. Код коллинеарен, т.е. последовательность нуклеотидов в гене точно соответствует последовательности аминокислот в белке.
5. Генетический код неперекрываем и компактен, т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп-сигналов (терминирующих кодонов).
6. Генетический код универсален, т. е. ядерные гены всех организмов одинаковым образом кодируют информацию о белках вне зависимости от уровня организации и систематического положения этих организмов.
Существуют таблицы генетического кода для расшифровки кодонов и-РНК и построения цепочек белковых молекул.
Реакции матричного синтеза.
В живых системах встречается реакции, неизвестные в неживой природе — реакции матричного синтеза.
Термином “матрица” в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул.
Матричный принцип лежит в основе важнейших синтетических реакций клетки, таких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах.
Здесь происходит направленное стягивание мономеров в определенное место клетки — на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно.
Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот ДНК или РНК.
Мономерные молекулы, из которых синтезируется полимер, — нуклеотиды или аминокислоты — в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке.
Затем происходит “сшивание” мономерных звеньев в полимерную цепь, и готовый полимер сбрасывается с матрицы.
После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти “сборка” только какого-то одного полимера.
Матричный тип реакций — специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого — его способности к воспроизведению себе подобного.
К реакциям матричного синтеза относят:
1. репликацию ДНК— процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.
Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.
Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов.
Молекула способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина.
Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка.
Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях.
Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться — процесс устранения ошибок называется репарацией. Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.
2. транскрипцию – синтез и-РНК на ДНК, процесс снятия информации с молекулы ДНК, синтезируемой на ней молекулой и-РНК.
И-РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности при участии фермента, который активирует начало и конец синтеза молекулы и-РНК.
Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.
3. трансляцию— синтез белка на и-РНК; процесс перевода информации, содержащейся в последовательности нуклеотидов и-РНК, в последовательность аминокислот в полипептиде.
4. синтез РНК или ДНК на РНК вирусов
Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы:
нетранскрибируемая цепь ДНК А Т Г Г Г Ц ТАТ
транскрибируемая цепь ДНК Т А Ц Ц Ц Г А Т А
транскрипция ДНК ß ß ß
кодоны мРНК А У Г Г Г Ц У А У
трансляция мРНК ß ß ß
антикодоны тРНК У А Ц Ц Ц Г А У А
аминокислоты белка метионин глицин тирозин
Таким образом, биосинтез белка – это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.
Молекулы белков по существу представляют собой полипептидные цепочки, составленные из отдельных аминокислот. Но аминокислоты недостаточно активны, чтобы соединиться между собой самостоятельно. Поэтому, прежде чем соединиться друг с другом и образовать молекулу белка, аминокислоты должны активироваться. Эта активация происходит под действием особых ферментов.
В результате активирования аминокислота становится более лабильной и под действием того же фермента связывается с т-РНК. Каждой аминокислоте соответствует строго специфическая т-РНК, которая находит «свою» аминокислоту и переносит ее в рибосому.
Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК. Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот.
Одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал» от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок.
Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника – матричной или информационной РНК (м-РНК или и-РНК), которая синтезируется в ядре под влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК. Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план — в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и-РНК и далее на белок.
Молекула и-РНК поступает в рибосому и прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный кодоном (триплет), взаимодействует совершенно специфично с подходящим к нему по строению триплетом (антикодоном) в транспортной РНК, которая принесла в рибосому аминокислоту.
Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и-РНК присоединяется другая т-РНК с другой аминокислотой и так до тех пор, пока не будет считана вся цепочка и-РНК, пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка.
А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит из рибосомы.
Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому.
В процессе синтеза белка участвует одновременно не одна, а несколько рибосом — полирибосомы.
Основные этапы передачи генетической информации:
синтез на ДНК как на матрице и-РНК (транскрипция)
синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК (трансляция).
Этапы универсальны для всех живых существ, но временные и пространственные взаимоотношения этих процессов различаются у про- и эукариотов.
У эукариот транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану. Затем в цитоплазме РНК транспортируются к месту синтеза белка — рибосомам. Лишь после этого наступает следующий этап — трансляция.
У прокариот транскрипция и трансляция идут одновременно.
Таким образом,
местом синтеза белков и всех ферментов в клетке являются рибосомы — это как бы «фабрики» белка, как бы сборочный цех, куда поступают все материалы, необходимые для сборки полипептидной цепочки белка из аминокислот. Природа синтезируемого белка зависит от строения и-РНК, от порядка расположения в ней нуклеоидов, а строение и-РНК отражает строение ДНК, так что в конечном итоге специфическое строение белка, т. е. порядок расположения в нем различных аминокислот, зависит от порядка расположения нуклеоидов в ДНК, от строения ДНК.
Изложенная теория биосинтеза белка получила название матричной теории. Матричной эта теория называется потому, что нуклеиновые кислоты играют как бы роль матриц, в которых записана вся информация относительно последовательности аминокислотных остатков в молекуле белка.
Создание матричной теории биосинтеза белка и расшифровка аминокислотного кода является крупнейшим научным достижением XX века, важнейшим шагом на пути к выяснению молекулярного механизма наследственности.
Источник