Какие межклеточные структуры содержатся в тканях

Какие межклеточные структуры содержатся в тканях thumbnail

Неотъемлемой часть любого живого организма, который только можно встретить на планете, является межклеточное вещество. Оно образовывается из известных нам компонентов – плазмы крови, лимфы, коллагеновых белковых волокон, эластина, матрикса и так далее. В любом организме клетки и межклеточное вещество неразрывно связаны между собой. И сейчас мы подробно рассмотрим состав этой субстанции, ее функции и особенности.

Общие данные

Итак, межклеточное вещество – это один из многочисленных видов соединительной ткани. Оно присутствует в различных частях нашего организма, и в зависимости от местонахождения меняется и его состав. Как правило, такая связующая субстанция выделяется опорно-трофическими тканями, которые отвечают за целостность работы всего организма. Состав межклеточного вещества можно также охарактеризовать в общем. Это плазма крови, лимфа, белковые, ретикулиновые и эластиновые волокна. В основе этой ткани лежит матрикс, который также называют аморфным веществом. В свою очередь матрикс состоит из очень сложного набора органических веществ, клетки которых по размерам крайне малы по сравнению с основными известными микроскопическими элементами организма.

межклеточное вещество

Особенности связующей ткани

Образуемое межклеточное вещество в тканях является результатом их деятельности. Именно поэтому его состав зависит от того, какую часть организма мы рассматриваем. Если говорить о зародыше, то в данном случае тип вещества будет единым. Тут оно появляется из углеводов, белков, липидов и эмбриальной соединительной ткани. В процессе роста организма более разнообразными по своим функциям и наполнению становятся и его клетки. Вследствие этого меняется и межклеточное вещество. Его можно встретить в эпителии и в недрах внутренних органов, в костях человека и в его хрящах. И в каждом случае мы найдем индивидуальный состав, определить принадлежность которого сможет лишь знающий биолог или медик.

межклеточное вещество в тканях

Самое важное волокно организма

В организме человека межклеточное вещество соединительной ткани выполняет основную опорную функцию. Оно не отвечает за работу конкретного органа или системы, а поддерживает жизнедеятельность и взаимосвязь всех составляющих человека или животного, начиная от самых глубоких органов и заканчивая дермой. В среднем данный связующий компонент представляет собой от 60 до 90 процентов массы всего тела. Иными словами, данная субстанция в организме является опорным каркасом, который обеспечивает нам жизнедеятельность. Такое вещество делится на множество подвидов (см. ниже), структура которых схожа между собой, но не полностью идентична.

Копнем еще глубже – «матрица»

Само же межклеточное вещество соединительной ткани – это матрикс. Он выполняет транспортную функцию между различными системами в организме, служит ему опорой и при необходимости передает различные сигналы от одних органов к другим. Благодаря этому матриксу в человеке или в животном происходит обмен веществ, он участвует в локомоции клеток, а также является важной составляющей их массы. Также важно отметить, что в процессе эмбриогенеза многие клетки, которые ранее были самостоятельными или относились к определенной внутренней системе, становятся частью этой субстанции. Основными составляющими матрикса является гиалуроновая кислота, протеогликаны и гликопротеины. Одним из самых ярких представителей последних является коллаген. Этот компонент наполняет собой межклеточное вещество и встречается буквально в каждом, даже самом маленьком уголке нашего организма.

межклеточное вещество костной ткани

Внутреннее строение скелета

Сформировавшиеся кости нашего организма состоят полностью из клеток-остеоцитов. Они имеют заостренную форму, большое и твердое ядро и минимум цитоплазмы. Обмен веществ в таких «закаменевших» системах нашего тела производится благодаря костным канальцам, которые выполняют дренажную функцию. Само же межклеточное вещество костной ткани образуется лишь в период формирования кости. Этот процесс осуществляется благодаря клеткам-остебластам. Они, в свою очередь, после завершения формирования всех тканей и соединений в подобной структуре разрушаются и прекращают свое существование. Но на начальных этапах данные костные клетки выделяют межклеточное вещество посредством синтеза белка, углеводов и коллагена. После того как матрикс ткани сформирован, клетки начинают производить соли, которые превращаются в кальций. В данном процессе остеобласты как бы блокируют все обменные процессы, которые происходили внутри них, останавливаются и отмирают. Прочность скелета теперь поддерживается за счет того, что функционируют остеоциты. Если же случается какая-либо травма (перелом, к примеру), то остеобласты возобновляются и начинают вырабатывать межклеточное вещество костной ткани в больших количествах, что дает возможность организму справиться с недугом.

межклеточное вещество крови

Особенности строения крови

Каждый прекрасно знает, в состав нашей красной жидкости входит такой компонент, как плазма. Она обеспечивает необходимую вязкость, возможность оседания крови и многое другое. Таким образом, межклеточное вещество крови – это и есть плазма. Макроскопически представляет она собою вязкую жидкость, которая либо прозрачная, либо имеет легкий желтоватый оттенок. Плазма всегда собирается в верхней части сосуда после осаждения других основных элементов крови. Процентное содержание такой межклеточной жидкости в крови – от 50 до 60%. Основу самой же плазмы составляет вода, в которой содержатся липиды, белки, глюкоза и гормоны. Также плазма впитывает в себя все продукты переработки обмена веществ, которые после утилизируются.

Читайте также:  Медь в каких лекарствах содержится

межклеточное вещество соединительной ткани

Виды белков, которые находятся в нашем организме

Как мы уже поняли, строение межклеточного вещества основывается на белках, которые являются конечным продуктом работы клеток. В свою очередь эти белки можно поделить на две категории: те, которые обладают адгезивными свойствами, и те, которые устраняют адгезию клеток. К первой группе главным образом мы относим фибронектин, который является основной матрикса. За ним следуют нидоген, ламинин, а также фибриллярные коллагены, которые образуют волокна. По этим канальцам транспортируются различные вещества, которые обеспечивают обмен веществ. Вторая группа белков – это антиадгезивные компоненты. В их состав входят различные гликопротеины. Среди них назовем тенасцин, остеонектин, тромпоспондин. Данные компоненты отвечают в первую очередь за заживление ран, повреждений. Они в большом количестве вырабатываются также во время инфекционных заболеваний.

Функциональность

Очевидно, что роль межклеточного вещества в любом живом организме весьма велика. Данная субстанция, состоящая преимущественно из белков, образуется даже между самыми твердыми клетками, которые находятся друг от друга на минимальном расстоянии (костная ткань). Благодаря своей гибкости и канальцам-проводникам в этой «полужидкости» происходит обмен веществ. Сюда могут выделяться продукты переработки основных клеток, или же поступать полезные компоненты и витамины, которые только что попали в организм с пищей или другим путем. Межклеточное вещество пронизывает наш организм полностью, начиная с кожи и заканчивая оболочкой клеток. Именно поэтому как западная медицина, так и восточная давно уже пришли к выводу о том, что все в нас взаимосвязано. И если повреждается один из внутренних органов, то это может оказать влияние на состояние кожи, волос, ногтей, или же наоборот.

клетки и межклеточное вещество

Вечный двигатель

Присутствующее межклеточное вещество в тканях нашего организма буквально обеспечивает его жизнедеятельность. Оно делится на множество различных категорий, может иметь различную молекулярную структуру, а в некоторых случаях разнятся и функции вещества. Что же, рассмотрим, какие бывают типы такой соединительной материи и что характерно для каждого из них. Упустим мы тут, пожалуй, только плазму, так как ее функции и особенности мы уже достаточно изучили, и повторяться не станем.

Межклеточное простое соединение

Прослеживается между клетками, которые находятся на расстоянии от 15 до 20 нм друг от друга. Связующая ткань в таком случае свободно располагается в данном пространстве и не препятствует проходу полезных веществ и отходов работы клеток по своим канальцам. Одной из наиболее знаменитых разновидностей такой связи является «замок». В таком случае билипидные мембраны клеток, находящихся в пространстве, а также часть их цитоплазмы сдавливаются, образуя прочную механическую связь. По ней и проходят различные компоненты, витамины и минералы, которые обеспечивают работу организма.

роль межклеточного вещества

Межклеточное плотное соединение

Наличие межклеточного вещества не всегда обозначает, что сами клетки находятся на огромном расстоянии друг от друга. В данном случае при подобном их сцеплении плотно сживаются мембраны всех составляющих отдельной системы организма. В отличие от предыдущего варианта – «замка», где клетки также соприкасаются, – тут подобные «влипания» препятствуют прохождению различных веществ по волокнам. Стоит отметить, что подобный тип межклеточного вещества наиболее надежно защищает организм от окружающей среды. Чаще всего столь плотное слияние клеточных мембран можно встретить в кожном покрове, а также в различных типах дермы, которая окутывает внутренние органы.

Третий типаж – десмосома

Данная субстанция представляет собой в своем роде липкую связь, которая образуется над поверхностью клеток. Это может быть небольшая площадка, диаметром не более 0,5 мкм, которая будет обеспечивать максимально эффективную механическую связь между мембранами. Благодаря тому, что десмосомы обладают липкой структурой, они весьма плотно и надежно склеивают между собой клетки. Вследствие этого обменные процессы в них происходят более эффективно и быстро, нежели в условиях простого межклеточного вещества. Такие липкие образования встречаются в межклеточных тканях любого типа, и все они связаны между собой волокнами. Их синхронная и последовательная работа позволяет организму как можно скорее реагировать на любые внешние поражения, а также перерабатывать сложные органические структуры и передавать их в нужные органы.

Клеточный нексус

Такой тип контакта между клетками еще называют щелевым. Суть заключается в том, что тут участие принимают только две клетки, которые плотно прилегают друг к другу, и при этом между ними находится множество белковых канальчиков. Обмен веществ происходит только между конкретными двумя составляющими. Между клетками, которые настолько близко расположены друг к другу, имеется межклеточное пространство, однако в данном случае оно практически бездейственно. Далее по цепной реакции, после обмена веществами между двумя составляющими, витамины и ионы передаются по белковым каналам дальше и дальше. Считается, что этот способ обмена веществ наиболее эффективный, и чем здоровее организм, тем лучше он развивается.

Как работает нервная система

Говоря об обмене веществ, транспорте витаминов и минералов по организму, мы упустили весьма важную систему, без которой не может функционировать ни единое живое существо – нервную. Нейроны, из которых она состоит, по сравнению с другими клетками нашего организма находятся друг от друга на очень большом расстоянии. Именно поэтому данное пространство заполнено межклеточным веществом, которое именуется синапсом. Данный тип соединительной ткани может находиться только между идентичными нервными клетками или же между нейроном и так называемой клеткой-мишенью, в которую должен поступить импульс. Характерной чертой работы синапса является то, что он передает сигнал только от одной клетки к другой, не распространяя его сразу на все нейроны. По такой цепочке информация доходит до своей «мишени» и извещает человека о боли, недомогании и т. д.

Читайте также:  Какие витамины содержатся в чае

Краткое послесловие

Межклеточное вещество в тканях, как оказалось, играет крайне важную роль в развитии, формировании и дальнейшей жизнедеятельности каждого живого организма. Такое вещество составляет большую часть массы нашего тела, оно выполняет самую важную функцию – транспортную, и позволяет всем органам работать слаженно, дополняя друг друга. Межклеточное вещество способно самостоятельно восстанавливаться после различных повреждений, приводить весь организм в тонус и корректировать работу тех или иных поврежденных клеток. Эта субстанция делится на множество различных типов, она встречается как в скелете, так и в крови, и даже в нервных окончаниях живых существ. И во всех случаях она сигнализирует нам о том, что происходит с нами, дает возможность почувствовать боль, если работа определенного органа нарушена, или потребность в получении определенного элемента, когда его не хватает.

Источник

Межклеточное вещество — составная часть соединительной ткани позвоночных и многих беспозвоночных животных, включающая соединительнотканные волокна и аморфное основное вещество, выполняющая механическую, опорную, защитную и трофическую функции.

Межклеточное вещество образуется у зародыша из белков, углеводов, липидов, продуцируемых клетками эмбриональной соединительной ткани, начиная со стадии гаструлы. Гистогенез Межклеточного вещества продолжается и в постэмбриональном периоде. Наибольшая роль в образовании Межклеточного вещества принадлежит фибробластам, хондробластам, остеобластам. Полагают, что в образовании Межклеточного вещества волокнистой соединительной ткани могут участвовать гистиоциты, лаброциты (тучные клетки) и др.

Соединительнотканные волокна Межклеточного вещества могут быть представлены коллагеновыми, эластическими, ретикулярными, или ретикулиновыми (аргирофильными), и другими волокнами, от чего зависит прочность, эластичность и в определенной степени архитектоника соединительной ткани органов (дерма различных участков кожи, сухожилия, строма кроветворных органов и др.).

Аморфное основное вещество, окружающее соединительнотканные волокна и клетки соединительной ткани, состоит из высокополимерных соединений, от концентрации и состава которых в различных видах соединительной ткани зависят физические, химические и биологические свойства Межклеточного вещества (вязкость, гидрофильности интенсивность метаболических процессов, тургор и др.).

Состав волокон и аморфного вещества неодинаков в различных видах соединительной ткани, в различных ее топографических участках М. в. может быть минерализованным. При этом кристаллы минералов (фосфорнокислый кальций, углекислый кальций и др.) импрегнируют органическую основу М. в. твердых скелетных тканей (дентин, кость). С возрастом М. в. претерпевает инволюционные изменения: меняется соотношение основного вещества и волокон — масса волокнистых структур коллагена и плотность его «упаковки» возрастают, а масса основного вещества уменьшается, происходят конденсация эластических волокон, глубокие физ.-хим. изменения М. в.

В эксперименте на животных выявлено, что недостаточное питание задерживает развитие возрастных изменений коллагена, а «атерогенная» диета вызывает его постарение.

Характером строения М. в. в значительной мере определяются функциональные особенности тех или иных видов соединительной ткани. Чем плотнее М. в., тем сильнее выражена механическая, опорная функция, к-рая достигает наибольшего развития в костной ткани. Трофическая функция, напротив, лучше обеспечивается полужидким по консистенции М. в. (интерстициальная соединительная ткань, окружающая кровеносные сосуды).

Биохимия межклеточного вещества

Коллагеновые и эластические волокна, входящие в состав М. в., построены из склеропротеинов — коллагена (см.) и эластина (см.). Из коллагена состоят и ретикулиновые волокна (см. Аргирофильные волокна), отличающиеся повышенным содержанием углеводов и наличием липидов. В эластических волокнах имеется микрофибриллярный компонент, отличный от эластина по аминокислотному составу. Этот же компонент образует особую разновидность немногочисленных, сходных с эластическими волокнами М. в. (окситалановых), волокон резистентных к действию эластазы. Свойства основного вещества определяются преимущественно углеводно-белковыми биополимерами — гликозаминогликанами (см. Мукополисахариды) и гликопротеидами (см.). Наличие гликозаминогликанов придает основному веществу М. в. выраженную базофильность (см. Базофилия). Качественные и количественные соотношения этих биополимеров, отличающихся интенсивным метаболизмом, различны в разных видах соединительной ткани.

Склеропротеины, гликозаминогликаны и гликопротеиды М. в. синтезируются соединительнотканными клетками, но заключительные этапы «сборки» макромолекул, их агрегатов, образование волокон, а также процессы катаболизма протекают в М. в., в к-ром имеются необходимые для этого ферменты. При взаимодействии макромолекул М. в. происходит самосборка агрегатов возрастающей степени сложности. Вначале связываются гомотипические макромолекулы, затем происходит гетеротипическое взаимодействие — гликозаминогликаны соединяются с неколлагеновыми полипептидами, образуя протеогликаны и еще более сложные агрегаты, включающие гликопротеиды. На третичном уровне взаимодействия в состав агрегатов включаются волокна. Так создается упорядоченная супрамолекулярная структура М. в., специфичная для каждого вида соединительной ткани, от к-рой зависят ее физиол, и биомеханические свойства. Коллагеновые волокна обеспечивают устойчивость к растяжению. Трехмерная сеть электростатически заряженных, связывающих большое количество воды агрегатов протеогликанов создает устойчивость к сжатию, особо выраженную у хрящевой ткани (см.), избирательно задерживает катионы, создавая условия для минерализации кости (см.), регулирует диффузию белковых молекул. Стабильность супрамолекулярной организации М. в. является важным фактором регуляции биосинтезирующей активности соединительнотканных клеток. Во взаимодействии между М. в. и клетками, а также клеток между собой большая роль принадлежит углеводсодержащему белку фибронектину, располагающемуся в зоне соприкосновения клеток и М. в.

Читайте также:  Какой газ содержится в одинаковом количестве во вдыхаемом и выдыхаемом воздухе

Компоненты М. в. вызывают хемотаксис клеток и таким образом участвуют в процессах морфогенеза.

Роль межклеточного вещества в патологии

При развитии патологических процессов в организме физ.-хим. свойства М. в., его проницаемость могут изменяться. Разнообразные изменения М. в., обеспечивающего транспортно-обменную функцию, связаны прежде всего с расстройством микроциркуляции (см.). При расстройствах крово- и лимфообращения на уровне микроциркуляторного русла, сопровождающихся венозным застоем и лимфостазом, развивается отек М. в., что связано с повышением сосудистой проницаемости (см.). При длительном отеке увеличивается количество коллагеновых волокон, что объясняется повышением синтеза коллагена фибробластами в условиях развивающейся гипоксии. Резкое повышение проницаемости микрососудов завершается диапедезными кровоизлияниями в М. в. (см. Кровоизлияние).

При нарушениях обмена соединительной ткани, т. е. мезенхимальных дистрофиях, в М. в. накапливаются продукты метаболизма, которые могут приноситься с кровью и лимфой, быть результатом патол, синтеза или появляться в результате деструкции основного вещества и волокон соединительной ткани. Расстройства обмена белков и гликозаминогликанов М. в. ведут к развитию мукоидного и фибриноидного набухания с образованием фибриноида (см. Фибриноидное превращение), что завершается гиалинозом (см.). Эти виды мезенхимальных диспротеинозов рассматриваются как последовательные стадии дезорганизации соединительной ткани при коллагеновых болезнях (см.). Расстройства обмена гликопротеидов М. в. приводят к слизистой дистрофии (см.). Наследственные нарушения обмена гликозаминогликанов М. в. проявляются так наз. болезнями накопления — мукополисахаридозами (см.), в т. ч. гаргоилизмом (см.). Наследственная несостоятельность основного вещества и волокнистых структур соединительной ткани лежит в основе болезни Марфана (см. Марфана синдром).

Как в Межклеточном веществе, так и в клетках соединительной ткани могут накапливаться липиды, особенно холестерин, что встречается при системных липидозах, в частности семейном гиперхолестеринемическом ксантоматозе. Появление в М. в. пигментов является признаком различных болезней и патол, процессов общего и местного характера. Так, общий гемосидероз (см.), развивающийся при накоплении гемосидерина в клетках и М. в., встречается при болезнях системы кроветворения (анемия, гемобластоз), интоксикациях гемолитическими ядами, некоторых инф. заболеваниях, переливаниях несовместимой крови, резус-конфликте и т. д., а местный гемосидероз — при кровоизлияниях, хроническому венозном застое в пределах органа, как это наблюдается, напр., при буром уплотнении легких (см.). Отложения порфиринов в М.в. скелетных тканей (кость, дентин) находят при врожденной порфирии (см.), меланина — в дерме при аддисоновой болезни (см.) и пигментной ксеродерме (см. Ксеродерма пигментная).

В Межклеточном веществе могут выпадать соли мочевой кислоты, как это встречается при подагре (см.); соли кальция в М. в. появляются при кальцинозе (см.). В воспалительной реакции (см. Воспаление) М. в. принимает непосредственное участие; с ним связана экссудация в ткани и полости тела плазмы, миграция клеток крови и образование экссудата. В М. в. может образоваться воспалительный инфильтрат, возникать гранулемы при острых (брюшной и сыпной тифы) и хронических (бруцеллез, туберкулез, лепра, сифилис) инфекционных заболеваниях; развертываться местные аллергические реакции как немедленного, так и замедленного типа (см. Аллергия). М. в. — обязательный компонент многих опухолей (см.); в опухолях мягких тканей, костей и одонтогенных оно может преобладать над клеточными элементами. Для выявления патологических изменений М. в. широко используются методы гистохимии, иммунофлюоресценции, поляризационной и электронной микроскопии, рентгеноструктурного анализа и ауторадиографии.

См. также Соединительная ткань.

Библиография: Давыдовский И. В., Общая патология человека, М., 1969; Мазуров В. И. Биохимия коллагеновых белков, М., 1974; Никитин В. Н., Перский Е. Э. и Утевская Л.. А, Возрастная и эволюционная биохимия коллагеновых структур, Киев, 1977; Серов В. В. и Пауков В. С. Ультраструктурная патология, с. 39, М., 1975, библиогр.; Слуцкий Л. И. Биохимия нормальной и патологически измененной соединительной ткани, Л., 1969; Фукс Б. Б. и Фукс Б.И. Очерки морфологии и гистохимии соединительной ткани, Л., 1968; Хрущов Н. Г. Функциональная цитохимия рыхлой соединительной ткани, М., 1969; Allgemeine Pathologie, hrsg. v. A., Hecht u. а., B., 1977; Chemistry and molecular biology of the intercellular matrix, ed. by E. A. Balazs, v. 1—3, L.—N. Y., 1970; Chvapil M. Physiology of connective tissue, L. — Prague, 1967; Fassbender H. G. Pathology of rheumatic diseases, B., 1975; Mathews М. В.. Connective tissue, macromolecular structure and evolution, B. — N. Y., 1975.

Источник