Какие металлы содержаться в жестком диске

Какие металлы содержаться в жестком диске thumbnail

Доброго дня, дорогие читатели! Сегодня мы окунемся в атмосферу Клондайка. В конце XVIII в. Калифорнию охватила золотая лихорадка. Люди приезжали со всех концов света в погоне за крупицами драгоценного металла. Читайте эту статью, и вы сможете почувствовать себя на золотых приисках, не выходя из дома. Я расскажу, как можно добыть золото из компьютера.

Золотая лихорадка запомнилась одним интересным случаем — играя в ручье возле своего дома, двенадцатилетний мальчик Конрад Рид нашел массивный желтоватый булыжник. И долгое время семья подпирала дверь дома золотым камнем весом в 7 кг. А потом слиток продали за впечатляющую цену — 3$.

Поразительно, но многие из нас поступают столь же нерационально, выбрасывая на свалку бытовую технику, старые материнские платы и микросхемы.

Есть ли драгметаллы в компьютерах

Если приблизительно подсчитать вес всего ранее добытого (легальным путем) золота, цифра получится внушительной — 189 000 тонн. И около 10% этого веса приходится на электротехнику.

Однако если разобрать современный компьютер на составные части и детально выяснить, что ценного, помимо информации, находится внутри, результаты будут неутешительными: все «золотоносные» детали компьютера в сумме содержат не больше тридцати миллиграмм золота. А вот детали древнего мастодонта — ЭВМ начала девяностых — содержали до 3 грамм драгметалла.

Так есть ли смысл заниматься золотодобычей из вычислительной техники? Если вы кинетесь разбирать свой игровой компьютер на части в поисках золота, то общая сумма добытого не превысит сотни рублей. А вот если у вас имеется собственная мастерская компьютерной техники, а под столом накопился ворох нерабочих микросхем — выбрасывать их не стоит.

Какие детали компьютера содержат золото

Золото — инертный металл, практически не подвергается коррозии и окислению. К тому же отличный проводник. Поэтому им покрывают контакты, разъемы, слоты памяти, порты, перемычки. Конденсаторы, платы, видеокарты, даже компьютерные вентиляторы и клавиатура содержат драгоценные металлы, причем не только Au, но и Ag, Pt, Pd.

Я расскажу подробней, какие детали самые золотосодержащие.

Материнские платы

Материнская плата — основная деталь любого компьютера. Именно здесь осуществляется контроль над взаимодействием всех составных частей машины. Ее контроллеры, микросхемы чипсета, разъемы и контакты содержат львиную долю (если так можно назвать 3 мг) золота компьютера. Если присмотреться, на этом фото видны позолоченные детали материнской платы:

Нерабочие материнки — неплохой источник Au, если у вас их скопилось несколько десятков.

Процессоры

Процессор — главная деталь программного обеспечения компьютера. Он выполняет всю вычислительную работу. Здесь также много позолоченных деталей. Содержание золотого песка в микропроцессоре intel Pentium pro — свыше 2 мг.

Посмотрите это видео, где показан аффинаж золота из процессора.

А вот в 1 кг микропроцессоров Pentium pro содержится 11,4 гр. золота. Простому обывателю вряд ли удастся собрать столько, а для сисадмина это не проблема.

Жесткие диски

Основной накопитель информации, хард драйв также содержит металлы платиновой группы. Так, золота в одном винчестере — 0,034 гр., а серебра — 0,013 гр.

Чем старше запоминающее устройство — тем больше в нем драгметаллов. И дело даже не в пресловутом качестве приборов советского производства, а в элементарном техническом прогрессе. Стоит вспомнить эволюцию дисков — от массивных виниловых пластинок до микро-CD карточек современных смартфонов.

Сегодняшние детали гораздо тоньше и легче. Соответственно, и золота в них содержится в разы меньше.

Где в компьютере больше всего золота

С уверенностью можно сказать, что чем выше ценность детали компьютера, тем больше в нем драгоценного металла:

  • первое место занимает материнская плата (0,3 гр.);
  • второе — микропроцессор (в среднем 0,2 гр.).

Напомню, что чем старше деталь, тем больше вероятность получить реальную прибыль.

Какое количество золота содержится в процессорах старого типа

Если вам повезло раздобыть коллекцию процессоры старого типа, можно сказать, что это настоящая золотая жила.

Так, в десяти процессорах типа AMD с коричневым корпусом содержится целый грамм драгоценного металла. А в советских процессорах, особенно для военного применения, счет идет на несколько грамм золота в одном процессоре. Согласно паспорту, старая ЭВМ Эльбрус -2 содержала больше трех кг золота.

Сколько золота содержится в ноутбуке

Ноутбук, как и любая вычислительная техника, содержит драгоценные металлы. Для него применимы все выводы, которые мы с вами сделали в отношении обычного ПК, однако в лаптопе золота еще меньше в силу его размеров. Его количество не превышает 0,3 мг. Существует легенда, что элитные ноутбуки VIP-класса содержат золота в разы больше.

Фактически добыча золота из компьютеров имеет смысл только в промышленных масштабах. На утилизационных заводах счет добытого солнечного металла высшей пробы идет на килограммы.

Легальность подобной добычи

Мнение эксперта

Всеволод Козловский

6 лет в ювелирном деле. Знает все о пробах и может определить подделку за 12 секунд

Если вы всерьез решили добывать золото из старой компьютерной техники, стоит почитать административный кодекс РФ, поскольку согласно закону все золото, находящееся в электронике, принадлежит государству.

Задача пользователей, если техника вышла из строя, — утилизировать ее соответствующим образом. Проще говоря, не выбрасывать на свалку, загрязняя окружающую среду, а сдать в специальные пункты приема, которые потом отвезут партию на утилизационный завод:

  • рабочие вручную разберут и отсортируют все детали, которые потом отправятся на переработку;
  • золотосодержащие детали измельчат и аффинируют.

Дома заняться аффинажем можно только ради интереса, поскольку процесс этот достаточно увлекательный.

Что потребуется для извлечения золота из компьютера в домашних условиях

Для аффинажа нам потребуются в первую очередь хорошие средства защиты: следует защитить руки, глаза, органы дыхания, надеть плотный фартук. Неплохо также иметь мощную вытяжку или проводить химические реакции в хорошо проветриваемом помещении либо на открытом воздухе.

Материалы и реактивы:

  • плоскогубцы;
  • отвертки;
  • газовая или бензиновая горелка;
  • точные весы;
  • фильтры;
  • химический стакан из жаропрочного стекла;
  • концентрированная соляная и азотные кислоты;
  • перекись водорода;
  • метиловый спирт;
  • электрическая плитка.

Процесс добычи

Есть несколько способов, чтобы добыть драгоценные металлы из радиодеталей. Я расскажу о самых простых. Но в любом случае для начала следует хорошо измельчить золотосодержащие детали. Максимально отделить металл от пластика.

Вариант 1

Вытравливание.

Измельченную массу опускаем в химический стакан с раствором соляной кислоты и перекиси водорода в пропорции 1/3. Напомню, что нужно наливать перекись в кислоту, а не наоборот. Не забывайте о технике безопасности и мерах защиты! Оставляем раствор на пять-семь дней.

Периодически помешиваем, чтобы ускорить реакцию. Весь не золотой. А иной металл за это время должен раствориться. Далее золото фильтруется и плавится.

Вариант 2

Собственно аффинаж.

Способ основывается на способности царской водки (смеси соляной и азотной кислот в соотношении 1/3) растворять золото.

Итак, отсортированные и измельченные детали помещаем в царскую водку. Для ускорения процесса смесь можно немного подогреть. Не забывайте о мерах предосторожности! После полного растворения золото можно восстановить из раствора. Доступные восстановители — пиросульфит натрия и железный купорос. Добавлять восстановитель следует понемногу, поскольку реакция восстановления идет с выделением газа.

После того как золото выпадет в осадок, тщательно промываем его водой, не менее пяти раз, промываем спиртом, сушим и плавим с добавлением борной кислоты. Полученное таким образом золото получается высшей пробы.

Зачем нужна утилизация компьютерной техники

Добыча золота дома — увлекательный процесс. И использовать в личных целях его вполне можно. Но реализовать добытый таким образом желтый металл не получится — это противозаконно. Гораздо рациональней утилизировать вышедшую из строя технику согласно закону — отнести в пункт приема бытовой техники.

Читайте также:  В каких препаратах содержится фосфор и кальций

Пластик — настоящий бич современного общества. А одна батарейка загрязняет тяжелыми металлами 20 кубометров земли и воды. Если каждый из нас будет беречь окружающую среду, мы сможем сохранить планету для наших детей.

Источник

Все знают что такое жесткий диск в компьютере, но из чего он сделан и как он работает понимают не все.

Жёсткий диск состоит из корпуса и круглых пластин, сделанных из специального магнитного сплава, которые собраны с очень маленьким зазором между собой. Само по себе это устройство которое ещё называют ВИНЧЕСТЕР работает довольно тихо, но находясь в жёстком креплении к системному блоку он и создаёт шум и вибрацию. Особенно эти звуковые эффекты ощутимы, если жёстких дисков в компьютере два и более.

Сама пластина (круглая) обычно изготавливается из алюминия (и гораздо реже из стеклокерамики).

В отличие от энергозависимого хранилища, такого как ОЗУ , жесткий диск хранит свои данные даже при выключенном питании. Вот почему вы можете перезагрузить или выключить компьютер , который за собой выключает жесткий диск, но при этом при включении компьютера снова иметь доступ ко всем данным.

Жесткий диск не только состоит из магнитного материала, но также имеет электронные схемы, которые контролируют движение головок чтения и записи над магнитным диском. Это необходимо, так как он должен знать, где он должен читать или где он должен писать. Для этого нужно понимать терминологию: секторы, дорожки, цилиндры.

Внимательно посмотрите на изображение выше.

Каждый диск имеет набор концентрических колец (технически называемых «гусеницы»), которые используются для хранения данных, и каждая головка считывает одно из этих концентрических колец на цилиндре. На 3,5-дюймовом жестком диске может быть более тысячи дорожек.Все головки движутся одновременно и позиционируются для чтения или записи на одну и ту же дорожку на своей соответствующей тарелке, что означает, что они образуют цилиндрическую форму и, следовательно, известны как “цилиндр”. Таким образом, если головка 2 установлена для считывания с дорожки 23, то головка 3 также будет установлена для считывания с дорожки 23. Поэтому можно сказать, что головка 2 расположена так, чтобы считываться с цилиндра 23 (что подразумевает, что головка 3 и последующие головки также расположены так, чтобы считываться с того же самого пути, т.е. с цилиндра 23).

Наконец, каждая дорожка разделена на маленькие сегменты. Каждый сегмент называется “сектором”, как показано на рисунке.

Сектор – это наименьший физический носитель на диске, размер которого в большинстве случаев составляет 512 байт (0,5 кБ) этот стандарт был установлен в 1956 году. Все аппаратные операции происходят с точки зрения секторов.

В 1970-х годах были введены большие размеры, такие как 1024 и 2048 байтов, чтобы вместить большие емкости. Один сектор оптического диска обычно может содержать 2048 байтов.

Каждый сектор занимает физическое местоположение на устройстве хранения и обычно состоит из трех частей: заголовок сектора, код с исправлением ошибок (ECC) и область, в которой фактически хранятся данные.

Если какое-либо приложение или какой-то файл хочет получить доступ к одному конкретному сектору, то он может обратиться к нему, указав, на какой головке он находится, и на каком цилиндре он находится, и, наконец, соответствующий соответствующий сектор. Это позволило бы затем однозначно идентифицировать сектор, к которому мы хотим получить доступ”.

Таким образом, электронная схема, состоящая из контроллера, будет управлять движением головки чтения/записи и головки чтения/записи (контроллер двигателя это он).

Источник

Современные технологии и методы вторичной переработки радиолома и компонентов предоставляют возможность извлекать цветные и драгоценные металлы из любых радиодеталей. Особенным спросом пользуются жесткие диски компьютеров, содержащие детали из редкоземельных металлов.

Для этого необходимо знать, как демонтировать жесткий диск ПК для утилизации и вторичной переработки. Использованные диски, неспособные больше накапливать информацию поступают в скупку для вторичной переработки. Сделать это может любой желающий.

Наибольшую ценность представляют магниты из редкоземельных металлов, которые можно дорого продать. Алюминиевый корпус и детали стоят дешевле, но на них тоже можно хорошо заработать. Много дисков есть на предприятиях, в офисах компании, в школах и различных организациях. Если они не подлежат ремонту, то лучше утилизировать и потратить полученные деньги на покупку новой оргтехники.

Демонтаж

Перед разборкой нужно внимательно осмотреть деталь и определить, где находятся винты. Как правило, их должно быть 6 штук. Центральный спрятан под этикеткой с описанием изделия. Для демонтажа лучше пользоваться отверткой и монтажным ножом. 

Сначала необходимо отсоединить все провода и разъемы. Затем нужно аккуратно отвинтить все винтики и вынуть магнитные головки, которые представляют наибольшую ценность в устройстве. Для демонтажа рекомендуется иметь набор отверток.

Пригодятся как плоские, так и крестовидные. Затем необходимо снять головку для чтения и записи информации. Когда это сделано, остается только удалить двигатель привода, что само по себе не представляет большого труда. Демонтированный жесткий диск можно реализовывать в скупку. 

В каких дисках больше драгметаллов

Количество драгоценных и цветных металлов зависит от года выпуска, производителя и модели. Больше всего редкоземельных металлов использовалось в моделях выпущенных 10 –20 лет назад. Например, устройства компании: 

  • IBM;
  • Trek Technology; 
  • Western Digital и т. д. 

Ведущие производители для того, чтобы обеспечить высокие характеристики компьютеров и жестких дисков применяли значительное количество драгметаллов. Сегодня их количество значительно меньше, поэтому выгодно реализовывать винчестеры от старых моделей компьютеров.

Перед началом разборки следует знать, как выглядят конкретные детали, чтобы ценные не выбросить и не отвезти в скупку дешевые компоненты. Если в материнской плате много золота, то в жестком диске – редкоземельных металлов. Это следует хорошо запомнить перед подготовкой устройства к реализации. 

В нашей стране существует огромное количество старых компьютеров и жестких дисков, которые больше не используются. Эти устройства можно разобрать и выгодно утилизировать. Это намного выгоднее, чем выбросить на свалку или хранить на балконе или на складе. 

Читайте также:  В каких травах содержатся сапонины

Многие предприятия модернизируют оборудование и не знают, что делать со старой компьютерной техникой. Наиболее простой и эффективный способ, это разобрать, вынуть жесткие диски и утилизировать по выгодной цене. 

Реализовать компоненты из редкоземельных металлов можно в компании «М-Радиодетали». Клиенты могут реализовать любые радиодетали по высокой цене. Воспользоваться услугами компании можно в любом регионе. 

Источник

Он магнитный. Он электрический. Он фотонный. Нет, это не новое супергеройское трио из вселенной Marvel. Речь идёт о хранении наших драгоценных цифровых данных. Нам нужно где-то их хранить, надёжно и стабильно, чтобы мы могли иметь к ним доступ и изменять за мгновение ока. Забудьте о Железном человеке и Торе — мы говорим о жёстких дисках!

Итак, давайте погрузимся в изучении анатомии устройств, которые мы сегодня используем для хранения миллиардов битов данных.

You spin me right round, baby

Механический накопитель на жёстких дисках (hard disk drive, HDD) был стандартом систем хранения для компьютеров по всему миру в течение более 30 лет, но лежащие в его основе технологии намного старше.

Первый коммерческий HDD компания IBM выпустила в 1956 году, его ёмкость составляла аж 3,75 МБ. И в целом, за все эти годы общая структура накопителя не сильно изменилась. В нём по-прежнему есть диски, которые используют для хранения данных намагниченность, и есть устройства для чтения/записи этих данных. Изменился же, и очень сильно, объём данных, который можно на них хранить.

В 1987 году можно было купить HDD на 20 МБ примерно за 350 долларов; сегодня за такие же деньги можно купить 14 ТБ: в 700 000 раз больший объём.

Мы рассмотрим устройство не совсем такого размера, но тоже достойное по современным меркам: 3,5-дюймовый HDD Seagate Barracuda 3 TB, в частности, модель ST3000DM001, печально известную своим высоким процентом сбоев и вызванных этим юридических процессов. Изучаемый нами накопитель уже мёртв, поэтому это будет больше похоже на аутопсию, чем на урок анатомии.

Основную массу жёсткого диска составляет литой металл. Силы внутри устройства при активном использовании могут быть довольно серьёзными, поэтому толстый металл препятствует изгибанию и вибрациям корпуса. Даже в крошечных 1,8-дюймовых HDD в качестве материала корпуса используются металл, однако обычно они делаются не из стали, а из алюминия, потому что должны быть как можно более лёгкими.

Перевернув накопитель, мы видим печатную плату и несколько разъёмов. Разъём в верхней части платы используется для двигателя, вращающего диски, а нижние три (слева направо) — это контакты под перемычки, позволяющие настраивать накопитель под определённые конфигурации, разъём данных SATA (Serial ATA) и разъём питания SATA.

Serial ATA впервые появился в 2000 году. В настольных компьютерах это стандартная система, используемая для подключения приводов к остальной части компьютера. Спецификация формата претерпела множество ревизий, и сейчас мы пользуемся версией 3.4. Наш труп жёсткого диска имеет более старую версию, но различие заключается только в одном контакте в разъёме питания.

В подключениях передачи данных для приёма и получения данных используется дифференцированный сигнал: контакты A+ и A- используются для передачи инструкций и данных в жёсткий диск, а контакты B — для получения этих сигналов. Подобное использование спаренных проводников значительно снижает влияние на сигнал электрического шума, то есть устройство может работать быстрее.

Если говорить о питании, то мы видим, что в разъёме есть по паре контактов каждого напряжения (+3.3, +5 и +12V); однако большинство из них не используется, потому что HDD не требуется много питания. Эта конкретная модель Seagate при активной нагрузке использует менее 10 Вт. Контакты, помеченные как PC, используются для precharge: эта функция позволяет вытаскивать и подключать жёсткий диск, пока компьютер продолжает работать (это называется горячей заменой (hot swapping)).

Контакт с меткой PWDIS позволяет удалённо перезагружать (remote reset) жёсткий диск, но эта функция поддерживается только с версии SATA 3.3, поэтому в моём диске это просто ещё одна линия питания +3.3V. А последний контакт, помеченный как SSU, просто сообщает компьютеру, поддерживает ли жёсткий диск технологию последовательной раскрутки шпинделей staggered spin up.

Перед тем, как компьютер сможет их использовать, диски внутри устройства (которые мы скоро увидим), должны раскрутиться до полной скорости. Но если в машине установлено много жёстких дисков, то внезапный одновременный запрос питания может навредить системе. Постепенная раскрутка шпинделей полностью устраняет возможность таких проблем, но при этом перед получением полного доступа к HDD придётся подождать несколько секунд.

Сняв печатную плату, можно увидеть, как она соединяется с компонентами внутри устройства. HDD не герметичны, за исключением устройств с очень большими ёмкостями — в них вместо воздуха используется гелий, потому что он намного менее плотный и создаёт меньше проблем в накопителях с большим количеством дисков. С другой стороны, не стоит и подвергать обычные накопители открытому воздействию окружающей среды.

Благодаря использованию таких разъёмов минимизируется количество входных точек, через которые внутрь накопителя могут попасть грязь и пыль; в металлическом корпусе есть отверстие (большая белая точка в левом нижнем углу изображения), позволяющее сохранять внутри давление окружающей среды.

Теперь, когда печатная плата снята, давайте посмотрим, что находится внутри. Тут есть четыре основных чипа:

  • LSI B64002: чип основного контроллера, обрабатывающий инструкции, передающий потоки данных внутрь и наружу, корректирующий ошибки и т.п.
  • Samsung K4T51163QJ: 64 МБ DDR2 SDRAM с тактовой частотой 800 МГц, используемые для кэширования данных
  • Smooth MCKXL: управляет двигателем, крутящим диски
  • Winbond 25Q40BWS05: 500 КБ последовательной флеш-памяти, используемой для хранения встроенного ПО накопителя (немного похожего на BIOS компьютера)

Компоненты печатной платы различных HDD могут отличаться. Для больших объёмов требуется больше кэша (в самых современных монстрах может быть до 256 МБ DDR3), а чип основного контроллера может быть чуть более изощрённым в обработке ошибок, но в целом различия не так велики.

Открыть накопитель просто, достаточно открутить несколько болтов Torx и вуаля! Мы внутри…

Учитывая, что он занимает основную часть устройства, наше внимание сразу привлекает большой металлический круг; несложно понять, почему накопители называются дисковыми. Правильно их называть пластинами; они изготавливаются из стекла или алюминия и покрываются несколькими слоями различных материалов. Этот накопитель на 3 ТБ имеет три пластины, то есть на каждой стороне одной пластины должно храниться 500 ГБ.

Изображение довольно пыльное, такие грязные пластины не соответствуют точности проектирования и производства, необходимого для их изготовления. В нашем примере HDD сам алюминиевый диск имеет толщину 0,04 дюйма (1 мм), но отполирован до такой степени, что средняя высота отклонений на поверхности меньше 0,000001 дюйма (примерно 30 нм).

Читайте также:  В каких овощах и фруктах содержится больше всего сока

Базовый слой имеет глубину всего 0,0004 дюйма (10 микронов) и состоит из нескольких слоёв материалов, нанесённых на металл. Нанесение выполняется при помощи химического никелирования с последующим вакуумным напылением, подготавливающих диск для основных магнитных материалов, используемых для хранения цифровых данных.

Этот материал обычно является сложным кобальтовым сплавом и составлен из концентрических кругов, каждый из которых примерно 0,00001 дюйма (примерно 250 нм) в ширину и 0,000001 дюйма (25 нм) в глубину. На микроуровне сплавы металлов образуют зёрна, похожие на мыльные пузыри на поверхности воды.

Каждое зерно обладает собственным магнитным полем, но его можно преобразовать в заданном направлении. Группирование таких полей приводит к возникновению битов данных (0 и 1). Если вы хотите подробнее узнать об этой теме, то прочитайте этот документ Йельского университета. Последними покрытиями становятся слой углерода для защиты, а потом полимер для снижения контактного трения. Вместе их толщина составляет не больше 0,0000005 дюйма (12 нм).

Скоро мы увидим, почему пластины должны изготавливаться с такими строгими допусками, но всё-таки удивительно осознавать, что всего за 15 долларов можно стать гордым владельцем устройства, изготовленного с нанометровой точностью!

Однако давайте снова вернёмся к самому HDD и посмотрим, что же в нём есть ещё.

Жёлтым цветом показана металлическая крышка, надёжно крепящая пластину к электродвигателю привода шпинделя — электроприводу, вращающему диски. В этом HDD они вращаются с частотой 7200 rpm (оборотов/мин), но в других моделях могут работать медленнее. Медленные накопители имеют пониженный шум и энергопотребление, но и меньшую скорость, а более быстрые накопители могут достигать скорости 15 000 rpm.

Чтобы снизить урон, наносимый пылью и влагой воздуха, используется фильтр рециркуляции (зелёный квадрат), собирающий мелкие частицы и удерживающий их внутри. Воздух, перемещаемый вращением пластин, обеспечивает постоянный поток через фильтр. Над дисками и рядом с фильтром есть один из трёх разделителей пластин: помогающих снижать вибрации и поддерживать как можно более равномерный поток воздуха.

В левой верхней части изображения синим квадратом указан один из двух постоянных стержневых магнитов. Они обеспечивают магнитное поле, необходимое для перемещения компонента, указанного красным цветом. Давайте отделим эти детали, чтобы видеть их лучше.

То, что выглядит как белый пластырь — это ещё один фильтр, только он очищает частицы и газы, попадающие снаружи через отверстие, которое мы видели выше. Металлические шипы — это рычаги перемещения головок, на которых находятся головки чтения-записи жёсткого диска. Они с огромной скоростью движутся по поверхности пластин (верхней и нижней).

Посмотрите это видео, созданное The Slow Mo Guys, чтобы увидеть, насколько они быстрые:

В конструкции не используется чего-то вроде шагового электродвигателя; для перемещения рычагов по соленоиду в основании рычагов проводится электрический ток.

Обобщённо их называют звуковыми катушками, потому что они используют тот же принцип, который применяется в динамиках и микрофонах для перемещения мембран. Ток генерирует вокруг них магнитное поле, которое реагирует на поле, созданное стержневыми постоянными магнитами.

Не забывайте, что дорожки данных крошечны, поэтому позиционирование рычагов должно быть чрезвычайно точным, как и всё остальное в накопителе. У некоторых жёстких дисков есть многоступенчатые рычаги, которые вносят небольшие изменения в направление только одной части целого рычага.

В некоторых жёстких дисках дорожки данных накладываются друг на друга. Эта технология называется черепичной магнитной записью (shingled magnetic recording), и её требования к точности и позиционированию (то есть к попаданию постоянно в одну точку) ещё строже.

На самом конце рычагов есть очень чувствительные головки чтения-записи. В нашем HDD содержится 3 пластины и 6 головок, и каждая из них плавает над диском при его вращении. Для этого головки подвешены на сверхтонких полосках металла.

И здесь мы можем увидеть, почему умер наш анатомический образец — по крайней мере одна из головок разболталась, и что бы ни вызвало изначальный повреждение, оно также погнуло один из рычагов. Весь компонент головки настолько мал, что, как видно ниже, очень сложно получить её качественный снимок обычной камерой.

Однако мы можем разобрать отдельные части. Серый блок — это специально изготовленная деталь под названием «слайдер»: когда диск вращается под ним, поток воздуха создаёт подъёмную силу, поднимая головку от поверхности. И когда мы говорим «поднимает», то имеем в виду зазор шириной всего 0,0000002 дюйма или меньше 5 нм.

Чуть дальше, и головки не смогут распознавать изменения магнитных полей дорожки; если бы головки лежали на поверхности, то просто поцарапали бы покрытие. Именно поэтому нужно фильтровать воздух внутри корпуса накопителя: пыль и влага на поверхности диска просто сломают головки.

Крошечный металлический «шест» на конце головки помогает с общей аэродинамикой. Однако чтобы увидеть части, выполняющие чтение и запись, нам нужна фотография получше.

На этом изображении другого жёсткого диска устройства чтения и записи находятся под всеми электрическими соединениями. Запись выполняется системой тонкоплёночной индуктивности (thin film induction, TFI), а чтение — туннельным магнеторезистивным устройством (tunneling magnetoresistive device, TMR).

Создаваемые TMR сигналы очень слабы и перед отправкой должны проходить через усилитель для повышения уровней. Отвечающий за это чип находится рядом с основанием рычагов на изображении ниже.

Как сказано во введении к статье, механические компоненты и принцип работы жёсткого диска почти не изменились за многие годы. Больше всего совершенствовалась технология магнитных дорожек и головок чтения-записи, создавая всё более узкие и плотные дорожки, что в конечном итоге приводило к увеличению объёма хранимой информации.

Однако механические жёсткие диски имеют очевидные ограничения скорости. На перемещение рычагов в нужное положение требуется время, а если данные разбросаны по разным дорожкам на различных пластинах, то на поиски битов накопитель будет тратить довольно много микросекунд.

Прежде чем переходить к другому типу накопителей, давайте укажем ориентировочные показатели скорости типичного HDD. Мы использовали бенчмарк CrystalDiskMark для оценки жёсткого диска WD 3.5″ 5400 RPM 2 TB:

В первых двух строчках указано количество МБ в секунду при выполнении последовательных (длинный, непрерывный список) и случайных (переходы по всему накопителю) чтения и записи. В следующей строке показано значение IOPS, то есть количество операций ввода-вывода, выполняемых каждую секунду. В последней строке показана средняя задержка (время в микросекундах) между передачей операции чтения или записи и получением значений данных.

В общем случае мы стремимся к тому, чтобы значения в первых трёх строчках были как можно больше, а в последней строчке — как можно меньше. Не беспокойтесь о самих числах, мы просто используем их для сравнения, когда будем рассматривать другой тип накопителя: твердотельный накопитель.

Источник