Какие элементы содержатся в земной коре
Õèìè÷åñêèé ñîñòàâ çåìíîé êîðû
 ñîñòàâå çåìíîé êîðû ìíîæåñòâî ýëåìåíòîâ, íî îñíîâíóþ å¸ ÷àñòü ñîñòàâëÿþò
êèñëîðîä è êðåìíèé.
Ñðåäíèå çíà÷åíèÿ õèìè÷åñêèõ ýëåìåíòîâ â çåìíîé êîðå íîñÿò íàçâàíèå êëàðêîâ.
Íàçâàíèå áûëî ââåäåíî ñîâåòñêèì ãåîõèìèêîì À.Å. Ôåðñìàíîì â ÷åñòü àìåðèêàíñêîãî ãåîõèìèêà Ôðàíêà Óèãëñóîðòà
Êëàðêà, êîòîðûé ïðîàíàëèçèðîâàâ ðåçóëüòàòû àíàëèçà òûñÿ÷ îáðàçöîâ ïîðîä
ðàññ÷èòàë ñðåäíèé ñîñòàâ çåìíîé êîðû. Âû÷èñëåííûé Êëàðêîì ñîñòàâ çåìíîé êîðû áûë
áëèçîê ê ãðàíèòó ðàñïðîñòðàí¸ííîé ìàãìàòè÷åñêîé ãîðíîé ïîðîäå â
êîíòèíåíòàëüíîé çåìíîé êîðå Çåìëè.
Ïîñëå Êëàðêà îïðåäåëåíèåì ñðåäíåãî ñîñòàâà çåìíîé êîðû çàíÿëñÿ íîðâåæñêèé
ãåîõèìèê Âèêòîð Ãîëüäøìèäò. Ãîëüäøìèäò ñäåëàë ïðåäïîëîæåíèå, ÷òî ëåäíèê,
äâèãàÿñü ïî êîíòèíåíòàëüíîé êîðå ñîñêðåáàåò è ñìåøèâàåò âûõîäÿùèå íà ïîâåðõíîñòü
ãîðíûå ïîðîäû. Ïîýòîìó ëåäíèêîâûå îòëîæåíèÿ èëè ìîðåíû îòðàæàþò ñðåäíèé ñîñòàâ
çåìíîé êîðû. Ïðîàíàëèçèðîâàâ ñîñòàâ ëåíòî÷íûõ ãëèí, îòëîæèâøèõñÿ íà äíå
Áàëòèéñêîãî ìîðÿ âî âðåìÿ ïîñëåäíåãî îëåäåíåíèÿ, ó÷¸íûé ïîëó÷èë ñîñòàâ çåìíîé
êîðû, êîòîðûé î÷åíü ïîõîäèë íà ñîñòàâ çåìíîé êîðû âû÷èñëåííûé Êëàðêîì.
 ïîñëåäñòâèè ñîñòàâ çåìíîé êîðû èçó÷àëñÿ ñîâåòñêèìè ãåîõèìèêàìè Àëåêñàíäðîì
Âèíîãðàäîâûì, Àëåêñàíäðîì Ðîíîâûì, Àëåêñååì ßðîøåâñêèì, íåìåöêèì ó÷¸íûì Ã.
Âåäåïîëåì.
Ïîñëå àíàëèçà âñåõ íàó÷íûõ ðàáîò áûëî âûÿñíåíî, ÷òî íàèáîëåå ðàñïðîñòðàíåííûì
ýëåìåíòîì â ñîñòàâå çåìíîé êîðå ÿâëÿåòñÿ êèñëîðîä. Åãî êëàðê 47%. Ñëåäóþùèé
àîñëå êèñëîðîäà ïî ðàñïðîñòðàíåííîñòè õèìè÷åñêèé ýëåìåíò êðåìíèé ñ êëàðêîì
29,5%. Îñòàëüíûìè ðàñïðîñòðàíåííûìè ýëåìåíòàìè ÿâëÿþòñÿ: àëþìèíèé (êëàðê 8,05),
æåëåçî (4,65), êàëüöèé (2,96), íàòðèé (2,5), êàëèé (2,5), ìàãíèé (1,87) è òèòàí
(0,45). Â ñîâîêóïíîñòè íà ýòè ýëåìåíòû ñîñòàâëÿþò 99,48% îò âñåãî ñîñòàâà çåìíîé
êîðû; îíè îáðàçóþò ìíîãî÷èñëåííûå õèìè÷åñêèå ñîåäèíåíèÿ. Êëàðêè îñòàëüíûõ 80 ýëåìåíòîâ ñîñòàâëÿþò âñåãî 0,01-0,0001 è ïîýòîìó òàêèå
ýëåìåíòû íàçûâàþòñÿ ðåäêèìè. Åñëè æå ýëåìåíò íå òîëüêî ðåäêèé, íî è îáëàäàåò
ñëàáîé ñïîñîáíîñòüþ ê êîíöåíòðèðîâàíèþ, åãî íàçûâàþò ðåäêèì ðàññåÿííûì.
 ãåîõèìèè òàêæå óïîòðåáëÿþò òåðìèí «ìèêðîýëåìåíòû», ïîä êîòîðûì ïîíèìàþò
ýëåìåíòû, êëàðêè êîòîðûõ â äàííîé ñèñòåìå ìåíåå 0,01. À.Å. Ôåðñìàí ïîñòðîèë
ãðàôèê çàâèñèìîñòè àòîìíûõ êëàðêîâ äëÿ ÷¸òíûõ è íå÷¸òíûõ ýëåìåíòîâ ïåðèîäè÷åñêîé
ñèñòåìû. Âûÿâèëîñü, ÷òî ñ óñëîæíåíèåì ñòðîåíèÿ àòîìíîãî ÿäðà êëàðêè óìåíüøàþòñÿ.
Íî ëèíèè, ïîñòðîåííûå Ôåðñìàíîì, îêàçàëèñü íå ìîíîòîííûìè, à ëîìàííûìè. Ôåðñìàí
ïðî÷åðòèë ãèïîòåòè÷åñêóþ ñðåäíþþ ëèíèþ: ýëåìåíòû, ðàñïîëîæåííûå âûøå ýòîé ëèíèè,
îí íàçâàë èçáûòî÷íûìè (Î, Si, Ñà, Fe, Âà, ÐÜ è ò.ä.), íèæå äåôèöèòíûìè (Ar,
Íå, Ne, Sc, Ñî, Re è ò.ä.).
Îçíàêîìèòüñÿ ñ ðàñïðîñòðàíåíèåì âàæíåéøèõ õèìè÷åñêèõ ýëåìåíòîâ â çåìíîé êîðå
ìîæíî ñ ïîìîùüþ ýòîé òàáëèöû:
Õèì. ýëåìåíò | Ïîðÿäêîâûé íîìåð | Ñîäåðæàíèå, â % îò ìàññû âñåé çåìíîé êîðû | Ìîëÿðíàÿ ìàññà | Ñîäåðæàíèå, % êîëè÷åñòâî âåùåñòâà |
Êèñëîðîä O | 8 | 49,13 | 16 | 53,52 |
Êðåìíèé Si | 14 | 26,0 | 28,1 | 16,13 |
Àëþìèíèé Al | 13 | 7,45 | 27 | 4,81 |
Æåëåçî Fe | 26 | 4,2 | 55,8 | 1,31 |
Êàëüöèé Ca | 20 | 3,25 | 40,1 | 1,41 |
Íàòðèé Na | 11 | 2,4 | 23 | 1,82 |
Êàëèé K | 19 | 2,35 | 39,1 | 1,05 |
Ìàãíèé Mg | 12 | 2,35 | 34,3 | 1,19 |
Âîäîðîä H | 1 | 1,00 | 1 | 17,43 |
Òèòàí Ti | 22 | 0,61 | 47,9 | 0,222 |
Óãëåðîä C | 6 | 0,35 | 12 | 0,508 |
Õëîð Cl | 17 | 0,2 | 35,5 | 0,098 |
Ôîñôîð Ð | 15 | 0,125 | 31,0 | 0,070 |
Ñåðà S | 16 | 0,1 | 32,1 | 0,054 |
Ìàðãàíåö Mn | 25 | 0,1 | 54,9 | 0,032 |
Ôòîð F | 9 | 0,08 | 19,0 | 0,073 | Áàðèé Âà | 56 | 0,05 | 137,3 | 0,006 |
Àçîò N | 7 | 0,04 | 14,0 | 0,050 |
Ïðî÷èå ýëåìåíòû | ~0,2 |
Ðàñïðåäåëåíèå õèìè÷åñêèõ ýëåìåíòîâ â çåìíîé êîðå ïîä÷èíÿåòñÿ ñëåäóþùèì
çàêîíîìåðíîñòÿì:
1. Çàêîíó Êëàðêà-Âåðíàäñêîãî, êîòîðûé ãëàñèò, ÷òî âñå õèìè÷åñêèå ýëåìåíòû
åñòü âåçäå (çàêîí î âñåîáùåì ðàññåÿíèè);
2. Ñ óñëîæíåíèåì ñòðîåíèÿ àòîìíîãî ÿäðà õèìè÷åñêèõ ýëåìåíòîâ, åãî
óòÿæåëåíèåì, êëàðêè ýëåìåíòîâ óìåíüøàþòñÿ (Ôåðñìàí);
3.  çåìíîé êîðå ïðåîáëàäàþò ýëåìåíòû ñ ÷¸òíûìè ïîðÿäêîâûìè íîìåðàìè è
àòîìíûìè ìàññàìè.
4. Ñðåäè ñîñåäíèõ ýëåìåíòîâ ó ÷åòíûõ âñåãäà êëàðêè âûøå, ÷åì ó íå÷åòíûõ
(óñòàíîâèëè èòàëüÿíñêèé ó÷åíûé Îääî è àìåðèêàíñêèé Ãàðêèñ).
5. Îñîáåííî âåëèêè êëàðêè ýëåìåíòîâ, àòîìíàÿ ìàññà êîòîðûõ äåëèòñÿ íà 4 (O,
Mg, Si, Ñà…), à íà÷èíàÿ ñ Àl, íàèáîëüøèìè êëàðêàìè îáëàäàåò êàæäûé 6-é ýëåìåíò
(O, Si, Ñà, Fe).
Источник
Внешние оболочки нашей планеты и даже космическое пространство изучено лучше, чем внутреннее строение Земли. Тем не менее, многолетние исследования дали нам представление о том, из каких слоев и веществ состоит планета. Рассмотрим химический состав Земли и методы, которыми пользуются ученые.
Химический состав и структура Земли
Земля неоднородная, поскольку ученым удалось выделить несколько слоев, отличающихся по физическим, а также химическим параметрам. Она принадлежит к планетам земной группы (расположенным во внутренней области Солнечной системы).
Структура Земли в масштабе
Структура по химическим параметрам:
- земная кора;
- мантия (верхняя и нижняя);
- ядро (внешнее и внутреннее).
Интересный факт: толщина земной коры под водами – 5-10 км, а под материками – 35-45 км.
Структура по физическим параметрам:
- литосфера;
- астеносфера;
- мезосфера;
- ядро.
В массе планеты преобладает железо (32,1%), кислород (30,1%), кремний (15,1%), магний (13,9%), а также сера, никель, кальций, алюминий. Доля прочих веществ составляет около 1,2%.
Толщина слоев Земли
Ядро (центр планеты) отличается высокой плотностью. Оно состоит преимущественно из железа и никеля. Внутренняя часть твердая, а внешняя – жидкая. По предварительным предположениям, радиус внутреннего ядра – 1200 км, а внешнего – примерно 2200 км.
Мантия – самый толстый слой. В ее составе преобладают силикатные породы с большим количеством железа, магния. Вещество твердое, невзирая на температуру – всему виной высокое давление. Лишь некоторые слои мантии отличаются вязкостью и пластичностью.
Океаническая и материковая кора разительно отличаются свойствами и составом. Океаническая кора образуется в основном базальтом – железо-магниевой силикатной породой. Материковая состоит из кислорода, кремния, алюминия и других веществ.
Как определили, из каких элементов состоит Земля?
Изучение химического состава Земли можно разделить на две группы. В первую входят породы, химический состав которых уже известен. Определить, в каком процентном соотношении представлены те или иные вещества на всей планете, ученые могут на основании геологических исследований и данных.
Сейсмографы используют для обнаружения и регистрации сейсмических волн всех типов
С распространенными веществами все намного проще, но также существует такое понятие, как редкоземельные элементы. Это группа из 18 элементов, которые редко встречаются в земной коре. Все они являются металлами, например, скандий, тулий, лантан и др. Так как редкоземельные элементы рассеяны по всей планете, их долю в массе рассчитывают по средним данным.
Интересный факт: самым редким на Земле является радиоактивный элемент астат (At). Изначально его синтезировали искусственным путем и только после этого обнаружили в природе. Содержание астата в земной коре – не более 1 грамма.
Что касается состава глубоких слоев планеты, то современные технологии все еще не дают возможности изучить их напрямую. Для исследований ученым доступна лишь малая часть земной коры, толщиной около 10 км, не говоря уже о недосягаемости мантии.
Поэтому остается лишь строить гипотезы и определять внутреннее строение Земли по косвенным признакам. Для этого используются топографические, гравиметрические (связанные с силой притяжения) данные. Исследуется подводный рельеф Мирового океана в целом и отдельных его составляющих.
В геологии случаются обнажения горных пород, которые оказываются на поверхности в ходе различных процессов, природных и техногенных. В результате вулканической активности происходит подъем пород с больших глубин – они становятся доступными для изучения в первозданном виде.
Еще один метод – анализ сейсмических волн, проходящих сквозь Землю. Зачастую это делается искусственным путем при помощи мощного взрыва на поверхности. Специальные приборы и датчики отмечают, насколько быстро образовавшиеся колебания распространяются по земной коре.
Кольская сверхглубокая скважина до закрытия
Узнать внутреннее строение пытаются и путем бурения сверхглубоких скважин. Самой глубокой (среди имеющих научное значение) считается Кольская скважина в Мурманской области. Она занесена в Книгу рекордов Гиннеса. Бурение завершено в 1991 году на глубине 12 262 м. В настоящее время скважина закрыта, но власти намерены сделать ее туристическим объектом.
Если химический состав горных пород известен, то содержание тех или иных элементов устанавливается на основании геологических данных. Внутреннее строение Земли определено гипотетически за счет различных наблюдений, анализа горных пород, сейсмологических волн, сверхглубокого бурения и других методов.
Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Эксперт и постоянный автор научно-популярного журнала: «Как и Почему». Свидетельство о регистрации средства массовой информации ЭЛ № ФС 77 – 76533. Издание «Как и почему» kipmu.ru входит в список социально значимых ресурсов РФ.
Источник
ЗНАЕТЕ ЛИ ВЫ?
Химики и петрографы начиная со второй половины XIX в. изучали химический состав горных пород методами весового и объемного химического анализа. Суммируя результаты многочисленных анализов горных пород, Ф. Кларк показал, что в земной коре преобладают восемь химических элементов: кислород, кремний, алюминий, железо, магний, кальций, калий и натрий. Этот основной вывод неоднократно подтвержден результатами последующих исследований. Методами химического анализа, которыми пользовались в XIX в., определение низких концентраций элементов было невозможно. Требовались принципиально иные подходы.
Мощный импульс изучению химических элементов с очень низкой концентрацией в веществе земной коры дало применение более чувствительного метода — спектроскопического анализа. Новые факты позволили В. И. Вернадскому сформулировать принцип «всюдности» всех химических элементов. В докладе на XII съезде российских естествоиспытателей и врачей в декабре 1909 г. он заявил: «В каждой капле и пылинке вещества на земной поверхности, по мере увеличения тонкости наших исследований, мы открываем все новые и новые элементы… В песчинке или в капле, как в микрокосмосе, отражается общий состав космоса»[10].
Идея «всюдности» химических элементов долгое время вызывала настороженность даже со стороны крупных ученых. Это было связано с тем, что элементы, содержащиеся в количестве ниже уровня чувствительности метода, при анализе не обнаруживались. Создавалась иллюзия их полного отсутствия, что отразилось на терминологии. В геохимии возникли термины редкие элементы (die seltene Elementen — нем.; rare elements — англ.), частота (die Haufigkeit — нем.) обнаружения. В действительности имеет место не реальная редкость или малая частота встречаемости элемента при анализах, а его низкая концентрация в изучаемых пробах, которая не может быть определена недостаточно чувствительными методами анализа.
Низкая чувствительность метода часто не позволяла определять количество элемента, а лишь констатировать присутствие его «следов». С тех пор в геохимической литературе широко используется термин, применявшийся В.М.Гольдшмидтом и его коллегами в 1930-х гг.: элементы-следы (die Spurelemente — нем.; trace elements — англ.; des elements traces — фр.).
В итоге усилий ученых разных стран в 20-х гг. XX в. сложилось общее представление о составе земной коры.
Средние значения относительного содержания химических элементов в земной коре и других глобальных и космических системах известный геохимик А. Е. Ферсман предложил называть кларками в честь ученого, который наметил путь к количественной оценке распространения химических элементов.
Кларк — весьма важная величина в геохимии. Анализ значений кларков позволяет понять многие закономерности распределения химических элементов на Земле, в Солнечной системе и доступной нашим наблюдениям части Вселенной. Кларки химических элементов земной коры различаются более чем на десять математических порядков. Столь существенное количественное различие должно отразиться на качественно неодинаковой роли двух групп элементов в земной коре. Наиболее ярко это проявляется в том, что элементы первой группы, содержащиеся в относительно большом количестве, образуют самостоятельные химические соединения, а элементы второй группы с малыми кларками преимущественно распылены, рассеяны среди химических соединений других элементов. Элементы первой группы называют главными, элементы второй — рассеянными. Их синонимами в английском языке являются minor elements, rare elements, наиболее употребляемый синоним trace elements. Условной границей между группами главных и рассеянных элементов в земной коре может служить величина 0,1 %, хотя кларки большей части рассеянных элементов значительно меньше и измеряются тысячными и меньшими долями процента. Понятие о состоянии рассеяния химических элементов, так же как и о их «всюдности», было введено в науку В. И. Вернадским.
Полный химический состав верхнего, так называемого гранитного, слоя континентального блока земной коры приведен в табл. 1.1.
Таблица 1.1
Кларки химических элементов гранитного слоя коры континентов (в порядке убывания значений)(по А. А Беусу, 1976)
Химический элемент | Атомный номер | Среднее содержание, 1×10-4 % | Химический элемент | Атомный номер | Среднее содержание, 1×10-4 % | ||||
О | 481 000 | Mg | |||||||
Si | 399 000 | Ti | |||||||
А1 | 80 000 | H | |||||||
Fe | P | ||||||||
К | F | ||||||||
Са | Мn | ||||||||
Na | Ва | ||||||||
S | Ег | 3,6 | |||||||
С | Yb | 3,6 | |||||||
Sr | Hf | 3,5 | |||||||
Rb | Sn | 2,7 | |||||||
Cl | и | 2,6 | |||||||
Zr | Be | 2,5 | |||||||
Се | Br | 2,2 | |||||||
V | Та | 2,1 | |||||||
Zn | As | 1,9 | |||||||
La | W | 1,9 | |||||||
Yr | Ho | 1,8 | |||||||
Cl | Tl | 1,8 | |||||||
Nd | Eu | 1,4 | |||||||
Li | Tb | 1,4 | |||||||
N | Ge | 1,3 | |||||||
Ni | Mo | 1,3 | |||||||
Cu | Lu | 1,1 | |||||||
Nb | I | 0,5 | |||||||
Ga | Tu | 0,3 | |||||||
Pb | In | 0,25 | |||||||
Th | Sb | 0,20 | |||||||
Sc | Cd | 0,16 | |||||||
В | Se | 0,14 | |||||||
Sm | Ag | 0,088 | |||||||
Gd | Hg | 0,033 | |||||||
Pr | 7,9 | Bi | 0,010 | ||||||
Co | 7,3 | Au | 0,0012 | ||||||
Dy | 6,5 | Те | 0,0010 | ||||||
Cs | 3,8 | Re | 0,0007 | ||||||
Формы нахождения химических
Элементов в земной коре
Для образования любого химического соединения требуется концентрация исходных компонентов не меньше минимальной, ниже которой реакция невозможна. Поэтому в земной коре преобладают химические соединения главных элементов с высокими кларками.
Несмотря на то, что общее количество природных химических соединений — минералов — составляет 2 — 3 тыс. видов, число минералов, образующих распространенные горные породы, невелико.
Более 80 % массы земной коры представлено силикатами алюминия, железа, кальция, магния, калия и натрия; около 12 % составляет оксид кремния. Все эти минералы имеют кристаллическое строение, которое и определяет общие особенности кристаллохимии земной коры.
В.М.Гольдшмидт показал, что силикатный состав и кристаллическое строение земной коры весьма важны для распределения не главных, рассеянных элементов.
Согласно концепции Гольдшмидта в кристаллохимических структурах ионы ведут себя как жесткие сферы (твердые шары). Поэтому радиус каждого иона рассматривается как постоянная величина.
Главная особенность ионов в кристаллохимических структурах заключается в том, что радиусы отрицательно заряженных ионов (анионов) значительно больше радиусов положительно заряженных ионов (катионов). Представим анионы в виде крупных шаров, а катионы — в виде мелких. Тогда моделью кристаллического вещества с ионным типом связи будет пространство, заполненное плотно прилегающими большими шарами — анионами, между которыми должны размещаться мелкие шарики — катионы. Согласно представлениям Гольдшмидта этот каркас играет роль своеобразного геохимического фильтра, способствующего дифференциации химических элементов по величине их ионов. В конкретную кристаллохимическую структуру могут войти не любые элементы, обладающие необходимой валентностью, а лишь те, ионы которых имеют соответствующий размер радиусов.
Образование распространенных минералов сопровождается своего рода сортировкой рассеянных элементов.
Для пояснения этого процесса обратимся к распространенному минералу — полевому шпату. Его кристаллохимическая структура образована группировками, состоящими из трех катионов кремния и одного алюминия, каждый из которых связан с четырьмя анионами кислорода. Группировка в целом представляет собой комплексный анион, где восемь ионов кислорода, три кремния и один алюминия. Это создает один отрицательный заряд, который уравновешивается одновалентным катионом калия. В итоге существует трехкамерная структура, состав которой отвечает формуле K[AlSi3O8].
Величина радиуса иона калия составляет 0,133 нм. Его место в структуре может занять только катион с близкой величиной радиуса. Таковым является двухвалентный катион бария, радиус которого равен 0,134 нм. Барий менее распространен, чем калий. Обычно он присутствует в виде незначительной примеси в полевых шпатах. Только в особых случаях создается его значительная концентрация и образуется редкий минерал цельзиан (бариевый полевой шпат).
Аналогичным образом в распространенных минералах и горных породах избирательно задерживаются химические элементы, концентрация которых не так велика для образования самостоятельных минералов.
Взаимное замещение ионов в кристаллической структуре благодаря близости их радиусов называется изоморфизмом. Это явление было обнаружено еще в начале XIX в., но его значение для глобальной дифференциации рассеянных химических элементов установлено только спустя столетие.
В результате изоморфизма рассеянные элементы закономерно концентрируются в определенных минералах. Полевые шпаты служат носителями бария, стронция, свинца; оливины — никеля и кобальта; цирконы — гафния и т.д. Такие элементы, как рубидий, рений, гафний, не образуют самостоятельных соединений в литосфере и полностью рассеяны в кристаллохимических структурах минералов-хозяев.
Изоморфные замещения — не единственная форма нахождения рассеянных элементов. Феномен рассеяния в земной коре проявляется в разных формах на разном уровне дисперсности.
Наиболее грубодисперсной формой рассеяния являются хорошо окристаллизованные, очень мелкие (обычно менее 0,01 — 0,02 мм в поперечнике) акцессорные минералы. Они образуют механические включения в породообразующих минералах (рис. 1.1).
Рис. 1.1 Включение акцессорных апатита (1) и циркона (2) в зерне полевого шпата. Прозрачный шлиф, увеличение 160´
Содержание акцессориев весьма незначительное, но концентрация рассеянных элементов в них настолько высокая, что эти элементы образуют самостоятельные соединения.
В кристаллических породах в качестве акцессориев присутствуют циркон Zr[SiO4], рутил, реже анатаз и брукит, имеющие однотипный состав ТiO2, апатит Са5[РО4]3F, магнетит Fe2+Fe23+O4, ильменит FeTiO3, монацит СеРО4, ксенотим YPO4, касситерит SnO2, хромит ЕеСг2О4 и другие сорных апатита (7) и минералы группы шпинели, минералы группы колумбита (Fe, Mg) (Nb, Та)2О6 и др. Содержание акцессориев в некоторых породообразующих минералах, особенно в слюдах, довольно заметно.
В некоторых минералах, преимущественно среди сульфидов и им подобных соединений, широко распространены так называемые структуры распада твердого раствора — мелкие выделения минерала-примеси в веществе минерала-хозяина. Их примером могут служить «эмульсионная вкрапленность» халькопирита CuFeS2 и станина Cu2FeSnS4 в сфалерите ZnS, тонкие пластинчатые выделения ильменита FeTiO3 в магнетите Fe2+Fe23+O4, мелкие выделения минералов серебра в галените PbS. В результате в сульфиде свинца присутствует ощутимая примесь серебра, в сульфиде меди — примесь олова, в магнетите — примесь титана.
Применение поляризационного микроскопа и прозрачных шлифов позволило обнаружить в минералах не только твердые включения, но и микро-пустоты, заполненные остатками растворов, из которых осуществлялась кристаллизация (рис. 1.2).
Рис. 1.2. Микрополости в кварце:
1 — кристалл сильвина; 2 — кристалл галита; 3 — пузырек газа; 4 — жидкая фаза. Прозрачный шлиф, увеличение 900´
Это явление, впервые специально рассмотренное в 1858 г. основателем оптической петрографии Г. Сорби, к настоящему времени всесторонне изучено. Микрополости в минералах обычно содержат жидкую и газовую фазы, иногда к ним добавляются мелкие кристаллы. Проблема жидких включений была основательно проанализирована У. Ньюхаузом, который отметил присутствие в жидкостях тяжелых металлов (до нескольких процентов).
Некоторая часть примеси рассеянных элементов, легко экстрагируемая из тонко растертых мономинеральных проб, связана именно с жидкими включениями. Н.П.Ермаков (1972), изучив микровключения из флюорита, обнаружил в них n×10-1 % цинка, марганца, n×10-2 % бария, хрома, меди, никеля и свинца, n× 10-3 % титана. В дальнейшем в жидких включениях были обнаружены и другие рассеянные элементы.
Вместе с тем тщательный анализ мономинеральных проб и использование электронного зондирования показали, что все без исключения породообразующие минералы содержат рассеянные элементы в настолько высокодисперсной форме, что они не могут быть обнаружены не только при помощи оптической, но и электронной микроскопии. В этом случае имеет место рассеяние элементов на уровне ионов и молекул. Формы такого рассеяния не ограничиваются рассмотренными ранее явлениями изоморфизма. Известны многочисленные случаи присутствия химических элементов в минералах, не имеющих никакой связи с изоморфизмом.
Результаты многих тысяч анализов, выполненных в разных странах за последние 50 лет, позволяют утверждать, что все породообразующие минералы являются носителями рассеянных элементов. Именно в них сосредоточена основная масса рассеянных элементов, содержащаяся в земной коре. Зная содержание минералов-носителей и концентрацию в них рассеянных элементов, можно рассчитать баланс внутри конкретной горной породы.
При изучении гранитов Тянь-Шаня было обнаружено, что в кварце, несмотря на ничтожную концентрацию свинца, заключено более 5 % всей массы этого металла, содержащегося в породе (табл. 1.2).
Таблица 1.2
Распределение свинца в минералах, слагающих граниты хребта Джумгол(по Л.В.Таусону, 1961)
Минерал | Содержание минерала, % | Содержание свинца в минерале, мг/кг | Общее количество свинца в породе | |
мг/кг | % | |||
Кварц | 35,3 | 1,4 | 5,4 | |
Полевые шпаты | 59,5 | 23,8 | 91,5 | |
Биотит | 3,7 | 0,7 | 2,7 | |
Магнетит | 0,7 | 0,1 | 0,4 | |
Сумма | — | — | 26,0 | 100,0 |
Невозможно предположить изоморфное вхождение свинца, цинка или другого металла в структуру кварца, образованную комбинацией ионов кремния и кислорода. Между тем кварц служит носителем многих рассеянных элементов. Разработан особый метод оценки потенциальной рудоносности горных пород и жил по содержанию в кварце лития, рубидия, бора.
При экспериментальном изучении прочности закрепления рассеянных металлов в породообразующих минералах было обнаружено, что при обработке тонко измельченной минеральной массы последовательными порциями слабых кислотно-щелочных растворителей значительная часть металлов легко извлекается при первой же экстракции, причем это извлечение не сопровождается разрушением кристаллохимической структуры минералов. При дальнейших обработках количество экстрагируемых металлов резко сокращается или прекращается совсем. Это позволило высказать предположение, что часть рассеянных элементов не входит в собственно кристаллохимическую структуру, а приурочена к дефектам реальных кристаллов. Дефекты представляют собой разного рода трещины, причем настолько мелкие, что не обнаруживаются оптическим микроскопом. Легкость извлечения рассеянных металлов объясняется тем, что они связаны с поверхностью минерала-носителя сорбционными силами. В породообразующих силикатах эта форма нахождения рассеянных металлов составляет 10 — 20% от всей массы рассеянных металлов. В частности, непрочно связанная форма свинца в гранитах Тянь-Шаня составляет от 12 до 18 % всей массы рассеянного элемента.
Можно выделить следующие формы нахождения рассеянных элементов в кристаллическом веществе земной коры:
I. Микроминералогические формы’.
1. Элементы, входящие в акцессорные минералы.
2. Элементы, содержащиеся в микроскопических выделениях в результате распада твердых растворов.
3. Элементы, находящиеся во включениях остаточных растворов.
II. Неминералогические формы:
4. Элементы, сорбированные поверхностью дефектов реальных кристаллов.
5. Элементы, входящие в структуру минерала-носителя по законам изоморфизма.
6. Элементы, находящиеся в структуре минерала-носителя в неупорядоченном состоянии.
Сочетание рассмотренных форм нахождения рассеянных элементов сильно меняется в зависимости от многих факторов. Соответственно меняется и суммарное содержание рассеянного элемента в разных участках земной коры. Поэтому для объективной оценки содержания элемента используются методы математической статистики.
Источник