Какие элементы обладают амфотерными свойствами

Какие элементы обладают амфотерными свойствами thumbnail

Амфотерность – это очень важная тема школьного курса химии, которая очень часто бывает недопонята учениками старших классов. Если так происходит, в дальнейшем, это может привести к серьезным проблемам на уроках, так как в химии все новые темы базируются на предыдущих.

Сегодня, я хочу поговорить об амфотерности, наиболее простым и доступным языком. Надеюсь, что эта статья сможет стать полезна учащимся школ, проходящим эту тему, учителям при ее объяснение и всем, кто просто хочет разобраться в химии по каким либо причинам.

Начнем мы вот с чего. Есть такие версии Таблицы Менделеева, в которых химические элементы разделены по цветам. Например, периодическая система из школьных учебников по химии от автора О.С. Габриеляна выглядит так:

В ней, черным цветом обозначены знаки металлов, образующих основные оксиды и основания, красным – знаки неметаллов, зеленым – знаки металлов, обладающих амфотерными свойствами.

Теперь вспоминаем другое, когда мы проходили основания, мы должны были заметить, что их образует метал, которому соответствует основный оксид, например:

Na – Na2O – NaOH

K – K2O – KOH

Ca – CaO – Ca(OH)2

Все эти металлы, в периодической системе Д,И. Менделеева обозначены черным цветом.

Так же мы должны были заметить, что в основе кислот лежат неметаллы, которым соответствуют кислотные оксиды, например:

S – SO3 – H2SO4

N – N2O5 – HNO3

P – P2O5 – H3PO4

Cl – Cl2O7 – HCLO4

Все они обозначены в Таблице красным цветом.

Однако, у нас остаются еще и зеленые элементы, которые являются металлами, образующими амфотерные оксиды и гидроксиды. Что же это значит? Давайте начнем с определения амфотерных веществ.

Амфотерные вещества (от греч. Амфотеро – и тот, и другой) – это вещества, которые в зависимости от условий реакций проявляют основные или кислотные свойства.

Чтобы это понять, в школах часто предлагают провести такой эксперимент (или подобный). Возьмем любую водорастворимую соль цинка и добавим в нее немного щелочи, в результате реакции образуется осадок:

ZnCl2 + NaOH = NaCl + Zn(OH)2 (осадок)

Помимо прочего, этот осадок амфотерный гидроксид и сейчас мы это докажем.

Отфильтруем осадок и поместим небольшое его количество в две пробирки. В пробирку №1 добавим несколько миллилитров раствора серной кислоты. При этом осадок растворится, значит реакция будет идти:

Zn(OH)2 + H2SO4 (p-p) = ZnSO4 + 2H2O

В пробирку №2 с высушенным гидроксидом цинка добавим кристаллический гидроксид натрия и нагреем смесь. При этом мы будем наблюдать протекание химической реакции, которая записывается согласно следующей схеме:

Zn(OH)2 + 2NaOH =(сплавление)= Na2ZnO2(цинкат натрия) + H2O

При этом гидроксид цинка проявил свои кислотные свойства, поэтому реакция прошла так. Для простоты написания реакций мы даже можем представить амфотерные гидроксиды в их кислотной форме, например:

Zn(OH)2 – H2ZnO2

H2ZnO2 + 2NaOH =(сплавление)= Na2ZnO2 + H2O

Кстати оксид цинка в точно таких же условиях, поведет себя как кислотный оксид:

ZnO + 2NaOH =(сплавление)= Na2ZnO2 + H2O

Так же точно, дело будет обстоять и с другими амфотерными гидроксидами, например гидроксид алюминия можно представить в форме двух кислот:

Реакция гидроксида алюминия с кислотой будет протекать стандартно:

Al(OH)3 + 3HCL = AlCl3 + 3H20

Реакция гидроксида алюминия со щелочью, будет протекать по схеме:

Al(OH)3 + NaOH =(сплавление)= NaAlO2 + H2O

В данном случае берем остаток метаалюминиевой кислоты, так как очевидно, что при сплавление будет удаляться вода.

Стоит учесть, что в расплаве и растворе данные реакции будут протекать по разному.

Амфотерный гидроксид + Раствор щелочи = Комплексная соль

Al(OH)3 + NaOH → Na[Al(OH)4]

Реакция оксида алюминия и самого алюминия с раствором щелочи будет протекать по следующей схеме:

Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4]

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2

Точно такие же реакции будут давать другие амфотерные металы, их оксиды и гидроксиды с растворами щелочей, например цинк:

Zn + 2NaOH + 2H2O → Na2[Zn(OH)4] + H2

ZnO + 2NaOH + H2O → Na2[Zn(OH)4]

Zn(OH)2 + 2NaOH → Na2[Zn(OH)4]

Все очень просто 🙂

Однако, не стоит забывать еще одно очень важное правило. Если элемент-металл проявляет несколько степеней окисления, то его оксид и гидроксид с низшей степенью окисления будут проявлять, как правило, основные свойства, с высшей — кислотные, а с промежуточной — амфотерные. Например, для хрома:

Похожем образом дело обстоит и с другими элементами. Например, то же железо может проявлять степени окисления 2+, 3+ и 6+. Но зная правило, мы не растеряемся и отнесем гидроксид железа (II) к основаниям, а гидроксид железа (III) к амфотерным гидроксидам.

Амфотерные оксиды и гидроксиды образуют чаще всего те элементы, которые составляют побочные подгруппы Периодической системы Д. И. Менделеева. Так как эти элементы могут проявляться в разных степенях окисления, их называют переходными элементами или переходными металлами.

Читайте также:  Каким свойством не обладает метан

Вот собственно и все.

До новых встреч, уважаемые читатели!

Источник

Амфоте́рность (от др.-греч. ἀμφότεροι «двоякий, двойственный; обоюдный») — способность некоторых химических веществ и соединений проявлять в зависимости от условий как кислотные, так и осно́вные свойства.

Понятие амфоте́рность как характеристика двойственного поведения вещества было введено в 1814 г. Ж. Гей-Люссаком и Л. Тенаром. А. Ганч в рамках общей химической теории кислотно-основных взаимодействий (1917-1927 гг.) определил амфоте́рность как «способность некоторых соединений проявлять как кислотные, так и основные свойства в зависимости от условий и природы реагентов, участвующих в кислотно-основном взаимодействии, особенно в зависимости от свойств растворителя»[1].

Амфотерны гидроксиды таких элементов главных подгрупп, как бериллий, алюминий, галлий, мышьяк, сурьма, селен и др., таких элементов побочных подгрупп как хром, цинк, молибден, вольфрам и многих других. Обычно в химическом поведении гидроксидов преобладает или кислотный, или основный характер[2].

Амфотерность как химическое свойство[править | править код]

Амфотерность как химическое свойство вещества может проявляться по-разному:

1. В рамках теории электролитической диссоциации это способность вещества к электролитической диссоциации как по механизму кислот (с отщеплением ионов гидроксония, H+ ), так и по механизму оснований (отщепление гидроксид-ионов, OH– ). Электролиты, которые в растворе ионизируются одновременно по кислотному и основному типам называются амфолитами[3]. Если обозначить амфотерный электролит формулой XOH, то его диссоциацию можно описать схемой:

Например, кислотно-основные свойства азотистой кислоты определяются равновесными процессами диссоциации с образованием нитрит-аниона и нитрозильного катиона:

Идеальным амфолитом будет вода:

Также к числу идеальных амфолитов относят гидроксид галлия Ga(OH)3, вторые и третьи константы диссоциации которого по кислотному и основному типам практически одинаковы[2].

2. В рамках протолитической теории Брёнстеда-Лоури проявление амфотерности рассматривается как способность протолита выступать донором и акцептором протона. Например, для воды амфотерность проявляется как автопротолиз[4]:

Амфолитами также будут вещества, имеющие в своём составе функциональные группы, способные быть донорами и акцепторами протонов. Например, к амфотерным органическим электролитам относятся белки, пептиды и аминокислоты. Так аминокислоты имеют в своём составе, по крайней мере, карбоксильную группу –COOH и аминогруппу –NH2. В растворе эти группы подвергаются частичной ионизации:

Таким образом, молекула аминокислоты находится в двух равновесных формах, заряженной (цвиттер-ион) и незаряженной. В этих комбинациях R–COOH и R–NH3+ являются потенциальными кислотами (донорами протонов, катионов), а R–COO– и R–NH2 – сопряженными потенциальными основаниями (акцепторами протонов, катионов).

3. Амфотерность может проявляться как способность вещества к взаимодействию как с кислотами, так и с основаниями. Это характерно для оксидов, гидроксидов и комплексных соединений некоторых p-элементов и большинства d-элементов в промежуточных степенях окисления. Амфотерность в той или иной степени является общим свойством гидроксидов[3]. Например, для соединений хрома (III) известны реакции[5]:

Не соответствуют действительности традиционные представления о проявлении амфотерности гидроксидов как диссоциации по кислотному и основному типам[2]. В общем виде амфотерное поведение нерастворимых гидроксидов хрома (III), алюминия, цинка может быть описано как реакции ионного обмена ионов среды с лигандами H2O и OH–. Например, для Al(OH)3 ионные равновесия могут быть записаны следующим образом:

4. В ряде случаев важным косвенным признаком амфотерности является способность элемента образовывать два ряда солей, катионного и анионного типа[6]. Например, для цинка: ZnCl2, [Zn(H2O)4]SO4 (катионные) и Na2ZnO2, Na2(Zn(OH)4) (анионные).

Ссылки[править | править код]

  • Амфотерный // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Литература[править | править код]

  • Амфотерные гидроксиды и их поведение в водных растворах / Корольков Д. В. Основы неорганической химии. – М.: Просвещение, 1982. – 271 с.
  • Кислотные и основные свойства / Общая химия. Под ред. Е. М. Соколовской и Л. С. Гузея. — М.: Изд-во Моск. ун-та, 1989. — 640 с. ун-та, 1989. — 640 с

Примечания[править | править код]

  1. ↑ Танганов Б.Б. Химические методы анализа. – Улан-Удэ, 2005.- 550 с.
  2. 1 2 3 Амфотерные гидроксиды и их поведение в водных растворах / Корольков Д. В. Основы неорганической химии. – М.: Просвещение, 1982. – 271 с.
  3. 1 2 Угай Я. А. Общая и неорганическая химия. – М.: Высшая школа, 1997. – 527 с.
  4. ↑ Автопротолиз воды / Жуков С. Т. Химия. 8-9 класс
  5. ↑ Лидин Р. А., Молочко В. А., Андреева Л. Л. Химические свойства неорганических веществ. – М.: Химия, 2000. – 480 с.: ил.
  6. ↑ Кислотные и основные свойства / Общая химия. Под ред. Е. М. Соколовской и Л. С. Гузея. — М.: Изд-во Моск. ун-та, 1989. — 640 с. ун-та, 1989. — 640 с .

Источник

Простые вещества сходные с металлическими элементами по структуре и ряду химических и физических параметров называют амфотерными, т.е. это те элементы, проявляющие химическую двойственность. Надо отметить, что это не сами металли, а их соли или оксиды. К, примеру, оксиды некоторых металлов могут обладать двумя свойствами, при одних условиях они могут проявлять свойства присущие кислотам, в других, они ведут себя как щелочи.

К основным амфотерным металлам относят алюминий, цинк, хром и некоторые другие.

Термин амфотерность был введен в оборот в начале XIX века. В то время химические вещества разделяли на основании их сходных свойств, проявляющиеся при химических реакциях.

Читайте также:  Какими сходными отличительными свойствами обладают уксус и вода

понятие амфотерности

Что такое амфотерные металлы

Список металлов, которые можно отнести амфотерным, достаточно велик. Причем некоторые из них можно назвать амфотерными, а некоторые – условно.

список амфотерных элементов

Перечислим порядковые номера веществ, под которыми они расположены в Таблице Менделеева. В список входят группы с 22 по 32, с 40 по 51 и еще много других. Например, хром, железо и ряд других можно с полным основанием называть основными, к последним можно отнести и стронций с бериллием.

Кстати, самым ярким представителем амфорных металлов считают алюминий.

Именно его сплавы в течение длительного времени используют практически во всех отраслях промышленности. Из него делают элементы фюзеляжей летательных аппаратов, кузовов автомобильного транспорта, и кухонную посуду. Он стал незаменим в электротехнической промышленности и при производстве оборудования для тепловых сетей. В отличии от многих других металлов алюминий постоянно проявляет химическую активность. Оксидная пленка, которая покрывает поверхность металла, противостоит окислительным процессам. В обычных условиях, и в некоторых типах химических реакций алюминий может выступать в качестве восстановительного элемента.

Этот металл способен взаимодействовать с кислородом, если его раздробить на множество мелких частиц. Для проведения операции такого рода необходимо использование высокой температуры. Реакция сопровождается выделением большого количества тепловой энергии. При повышении температуры в 200 ºC, алюминий вступает в реакцию с серой. Все дело в том, что алюминий, не всегда, в нормальных условиях, может вступать в реакцию с водородом. Между тем, при его смешивании с другими металлами могут возникать разные сплавы.

Еще один ярко выраженный металл, относящийся к амфотерным – это железо. Этот элемент имеет номер 26 и расположен между кобальтом и марганцем. Железо, самый распространенный элемент, находящийся в земной коре. Железо можно классифицировать как простой элемент, имеющий серебристо-белый цвет и отличается ковкостью, разумеется, при воздействии высоких температур. Может быстро начинать коррозировать под воздействием высоких температур. Железо, если поместить его в чистый кислород полностью прогорает и может воспламениться на открытом воздухе.

Такой металл обладает способностью быстро переходить в стадию корродирования при воздействии высокой температуры. Помещенное в чистый кислород железо полностью перегорает. Находясь на воздухе металлическое вещество, быстро окисляется вследствие чрезмерной влажности, то есть, ржавеет. При горении в кислородной массе образуется своеобразная окалина, которая называется оксидом железа.

Свойства амфотерных металлов

Они определены самим понятием амфотерности. В типовом состоянии, то есть обычной температуре и влажности, большая часть металлов представляет собой твердые тела. Ни один металл не подлежит растворению в воде. Щелочные основания проявляются только после определенных химических реакций. В процессе прохождения реакции соли металла вступают во взаимодействие. Надо отметить что правила безопасности требуют особой осторожности при проведении этой реакции.

Соединение амфотерных веществ с оксидами или самими кислотами первые показывают реакцию, которая присуща основаниями. В тоже время если их соединять с основаниями, то будут проявляться кислотные свойства.

Нагрев амфотерных гидроксидов вынуждает их распадаться на воду и оксид. Другими словами свойства амфотерных веществ весьма широки и требуют тщательного изучения, которое можно выполнить во время химической реакции.

Свойства амфотерных элементов можно понять, сравнив их с параметрами традиционных материалов. Например, большинство металлов имеют малый потенциал ионизации и это позволяет им выступать в ходе химических процессов восстановителями.

Амфотерные – могут показать как восстановительные, так и окислительные характеристики. Однако, существуют соединения которые характеризуются отрицательным уровнем окисления.

Абсолютно все известные металлы имеют возможность образовывать гидроксиды и оксиды. 

Всем металлам свойственна возможность образования основных гидроксидов и оксидов. Кстати, металлы могут вступать в реакцию окисления только с некоторыми кислотами. Например, реакция с азотной кислотой может протекать по-разному.

Амфотерные вещества, относящиеся к простым, обладают явными различиями по структуре и особенностям. Принадлежность к определенному классу можно у некоторых веществ определить на взгляд, так, сразу видно что медь – это металл, а бром нет.

Как отличить металл от неметалла

Главное различие заключается в том, что металлы отдают электроны, которые находятся во внешнем электронном облаке. Неметаллы, активно их притягивают.

Все металлы являются хорошими проводниками тепла и электричества, неметаллы, такой возможности лишены.

Читайте также:  Какими свойствами обладает чага

Основания амфотерных металлов

В нормальных условиях это вещества не растворяются в воде и их можно спокойно отнести к слабым электролитам. Такие вещества получают после проведения реакции солей металла и щелочи. Эти реакции довольно опасны для тех, кто их производит и поэтому, например, для получения гидроксида цинка в емкость с хлоридом цинка медленно и аккуратно, по капле надо вводить едкий натр.

Вместе тем, амфотерные – взаимодействуют с кислотами как основания. То есть при выполнении реакции между соляной кислотой и гидроксидом цинка, появится хлорид цинка. А при взаимодействии с основаниями, они ведут себя как кислоты.

Оцените статью:

Рейтинг: 0/5 – 0
голосов

Источник

Главная » Металлы » Получение и сферы применения амфотерных металлов

На чтение 4 мин.

Амфотерные металлы — группа простых элементов, которые похожи с материалами из металлической группы. Сходства проявляются в свойствах, характеристиках. Сами по себе компоненты из металлической группы не проявляют подобных свойств, но их соединения часто становятся амфотерными.

Фото 912Амфотерные металлы

Какие элементы относятся к амфотерным?

Амфотерными называют — соединения, которые проявляют химическую двойственность. Они делятся на 3 группы:

  1. Оксиды — Cu2O, Cr2O, PbO2, PbO, SnO
  2. Гидроксиды — Al(OH)3, Fe(OH)3, Zn(OH)2.

К третьей группе относятся металлы — алюминий, медь, железо, цинк, бериллий, свинец и т. д. Они занимают значительную часть в периодической таблице Менделеева и находятся под порядковыми номерами — 22–32, 40–51. Другие идут по отдельности.

Представители металлов:

  1. Железо. Относится к группе амфотерных. Представляет собой простое вещество. Характерные свойства — серебристо-белый цвет, ковкость, универсальность. Если поместить железо в чистый кислород, оно полностью перегорит, а если сделать его мелкодисперсным, может произойти самовозгорание на открытом воздухе. Оксид железа образуется при его горении в среде, насыщенной чистым кислородом. Он представляет собой окалину.
  2. Алюминий. На открытом воздухе покрывается прочной оксидной пленкой, которая защищает его от образования ржавчины. Если раздробить его до мелких частиц, начинает взаимодействовать с кислородом. При контакте с кислородом выделяется большое количество тепла. Если нагреть алюминий до 200°C, он начинает взаимодействовать серой. В результате такой реакции образуется сульфид алюминия.

Амфотерные металлы — простые элементы, которые являются аналогами группы веществ металлического типа. Сходства можно увидеть в химических, физических свойствах.

Свинец (Фото: Instagram / dielektrikum)

Получение

Для получения амфотерных металлов, ученые применяют тот же процесс, что при выделении нерастворимых в воде оснований. Перед проведением работ нужно получить больше информации о взаимодействии амфотерных соединений с щелочами, поскольку с помощью щелочного раствора будет выделяться металл.

Примеры:

  1. Для получения гидроксида цинка нужно смешать раствор сульфата цинка с гидроксидом натрия.
  2. Для получения гидроксида алюминия нужно смешать раствор сульфата алюминия с раствором гидроксида калия.
  3. Для получения трехвалентных гидроксидов хрома, алюминия нужно смешать раствор карбоната с раствором на основе солей этих металлов.

Гидроксид алюминия (Фото: Instagram / ostroukh_roman)

Свойства

Свойства:

  1. При сильном нагревании соединения распадаются на составляющие. Одновременно с этим выделяется амфотерный оксид.
  2. При взаимодействии с щелочами образуются растворимые соли, с кислотами —растворимые соли с амфотерным катионом.
  3. Они могут проявлять восстановительные, окислительные свойства.
  4. Существуют определенные амфотерные металлы, которые имеют отрицательную степень окисления.

Чтобы понять химические свойства этих веществ, их нужно сравнить с обычными металлами. Они имеют множество похожих характеристик. Металлы могут образовывать оксиды, гидроксиды.

Амфотерные свойства могут проявлять металлы и неметаллы. Металлы могут отдавать электроны, которые располагаются на внешнем электронном облаке. Неметаллы притягивают их к себе.

Неметаллы не могут проводить тепло или электричество. Некоторые из них обладают такими способностями, но они незначительны. Металлы хорошо проводят электрический ток, тепло. Их используют для изготовления проводников, радиаторов.

В нормальных условия амфотерные соединения не растворяются в воде. Это твердые материалы с высокой прочностью. Выделить их основание можно после проведения химической реакции, в которой будут задействованы металлические соли, щелочь. Реакция опасна. Проводить ее нужно в специальном защитном снаряжении, медленно и аккуратно.

Большинство металлов этой группы взаимодействуют с щелочами, кислотами, легко поддаются обработке разными способами. Проявляют высокое электросопротивление, магнитные свойства.

Получение амфотерных оксидов (Фото: Instagram / lena._s1997)

Сферы применения:

  1. Изготовление деталей для сейсмических и скоростных датчиков, часовых механизмов, крутящего момента.
  2. Производство деталей для оборудования, которые будут взаимодействовать с агрессивными факторами.
  3. Армирование труб высокого давления.
  4. Кораблестроение, самолетостроение.
  5. Производство бытовых приборов, инструментов. К ним относятся столовые приборы, рулетки, бритвенные лезвия, посуда для кухни.
  6. Сборка видеозаписывающего оборудования.

С каждым годом появляется все больше химических соединений. Благодаря этому открываются новые амфотерные металлы. Их называют материалами будущего, но популярность их растет медленно. Связано это с высокой стоимостью, небольшими размерами готовых изделий.

Источник