Какие эксперименты подтверждают наличие волновых свойств у микрочастиц
Главная
Онлайн учебники
База репетиторов России
Тренажеры по физике
Подготовка к ЕГЭ 2017 онлайн
Глава 5. Квантовая физика
В 1923 году произошло примечательное событие, которое в значительной степени ускорило развитие квантовой физики. Французский физик Л. де Бройль выдвинул гипотезу об универсальности корпускулярно-волнового дуализма. Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также и волновыми свойствами.
Согласно де Бройлю, с каждым микрообъектом связаны, с одной стороны, корпускулярные характеристики – энергия E и импульс p, а с другой стороны, волновые характеристики – частота ν и длина волны λ.
Корпускулярные и волновые характеристики микрообъектов связаны такими же количественными соотношениями, как и у фотона:
Гипотеза де Бройля постулировала эти соотношения для всех микрочастиц, в том числе и для таких, которые обладают массой m. Любой частице, обладающей импульсом, сопоставлялся волновой процесс с длиной волны λ = h / p. Для частиц, имеющих массу,
В нерелятивистском приближении (υ << c)
Гипотеза де Бройля основывалась на соображениях симметрии свойств материи и не имела в то время опытного подтверждения. Но она явилась мощным революционным толчком к развитию новых представлений о природе материальных объектов. В течение нескольких лет целый ряд выдающихся физиков XX века – В. Гейзенберг, Э. Шредингер, П. Дирак, Н. Бор и другие – разработали теоретические основы новой науки, которая была названа квантовой механикой.
Первое экспериментальное подтверждение гипотезы де Бройля было получено в 1927 году американскими физиками К. Девиссоном и Л. Джермером. Они обнаружили, что пучок электронов, рассеивающийся на кристалле никеля, дает отчетливую дифракционную картину, подобную той, которая возникает при рассеянии на кристалле коротковолнового рентгеновского излучения. В этих экспериментах кристалл играл роль естественной дифракционной решетки. По положению дифракционных максимумов была определена длина волны электронного пучка, которая оказалась в полном соответствии с вычесленной по формуле де Бройля.
В следующем 1928 году английский физик Г. Томсон (сын Дж. Томсона, открывшего за 30 лет до этого электрон) получил новое подтверждение гипотезы де Бройля. В своих экспериментах (рис. 5.4.1) Г. Томсон наблюдал дифракционную картину, возникающую при прохождении пучка электронов через тонкую поликристаллическую фольгу из золота.
Рисунок 5.4.1. Упрощенная схема опытов Г. Томсона по дифракции электронов. K – накаливаемый катод, A – анод, Ф – фольга из золота |
На установленной за фольгой фотопластинке отчетливо наблюдались концентрические светлые и темные кольца, радиусы которых изменялись с изменением скорости электронов (т. е. длины волны) согласно де Бройлю (рис. 5.4.2).
Рисунок 5.4.2. Картина дифракции электронов на поликристаллическом образце при длительной экспозиции (a) и при короткой экспозиции (b). В случае (b) видны точки попадания отдельных электронов на фотопластинку |
В последующие годы опыт Дж. Томсона был многократно повторен с неизменным результатом, в том числе при условиях, когда поток электронов был настолько слабым, что через прибор единовременно могла проходить только одна частица (В. А. Фабрикант, 1948 г.). Таким образом, было экспериментально доказано, что волновые свойства присущи не только большой совокупности электронов, но и каждому электрону в отдельности.
Впоследствии дифракционные явления были обнаружены также для нейтронов, протонов, атомных и молекулярных пучков. Экспериментальное доказательство наличия волновых свойств микрочастиц привело к выводу о том, что это универсальное явление природы, общее свойство материи. Следовательно, волновые свойства должны быть присущи и макроскопическим телам. Однако вследствие большой массы макроскопических тел их волновые свойства не могут быть обнаружены экспериментально. Например, пылинке массой 10–9 г, движущийся со скоростью 0,5 м/с соответствует волна де Бройля с длиной волны порядка 10–21 м, т. е. приблизительно на 11 порядков меньше размеров атомов. Такая длина волны лежит за пределами доступной наблюдению области. Этот пример показывает, что макроскопические тела могут проявлять только корпускулярные свойства.
Рассмотрим еще один пример. Длина волны де Бройля для электрона, ускоренного разностью потенциалов U = 100 В, может быть найдена по формуле
Это нерелятивистский случай, т. к. кинетическая энергия электрона eU = 100 эВ много меньше энергии покоя mc2 ≈ 0,5 МэВ. Расчет дает значение λ ≈ 0,1 нм, т. е. длина волны как раз оказывается порядка размеров атомов. Для таких электронов кристаллическое вещество является хорошей дифракционной решеткой. Именно такие малоэнергичные электроны дают отчетливую дифракционную картину в опытах по дифракции электронов. В то же время такой электрон, испытавший дифракционное рассеяние на кристалле как волна, взаимодействует с атомами фотопластинки как частица, вызывая почернение фотоэмульсии в какой-то определенной точке (рис. 5.4.2).
Таким образом, подтвержденная экспериментально гипотеза де Бройля о корпускулярно-волновом дуализме коренным образом изменила представления о свойствах микрообъектов.
Всем микрообъектам присущи и волновые, и корпускулярные свойства, однако, они не являются ни волной, ни частицей в классическом понимании. Разные свойства микрообъектов не проявляются одновременно; они дополняют друг друга, и только их совокупность характеризует микрообъект полностью. В этом заключается сформулированный знаменитым датским физиком Н. Бором принцип дополнительности. Можно условно сказать, что микрообъекты распространяются как волны, а обмениваются энергией как частицы.
С точки зрения волновой теории, максимумы в картине дифракции электронов соответствуют наибольшей интенсивности волн де Бройля. В области максимумов, зарегистрированных на фотопластинке, попадает большее число электронов. Но процесс попадания электронов в различные места на фотопластинке не индивидуален. Принципиально невозможно предсказать, куда попадет очередной электрон после рассеяния, существует лишь определенная вероятность попадания электрона в то или иное место. Таким образом, описание состояния микрообъекта и его поведения может быть дано только на основе понятия вероятности.
Необходимость вероятностного подхода к описанию микрообъектов является важнейшей особенностью квантовой теории. В квантовой механике для характеристики состояний объектов в микромире вводится понятие волновой функции Ψ (пси-функции). Квадрат модуля волновой функции |Ψ|2 пропорционален вероятности нахождения микрочастицы в единичном объеме пространства. Конкретный вид волновой функции определяется внешними условиями, в которых находится микрочастица. Математический аппарат квантовой механики позволяет находить волновую функцию частицы, находящейся в заданных силовых полях. Безграничная монохроматическая волна де Бройля есть волновая функция свободной частицы, на которую не действуют никакие силовые поля.
Наиболее отчетливо дифракционные явления проявляются в тех случаях, когда размеры препятствия, на котором происходит дифракция волн, соизмеримы с длиной волны. Это относится к волнам любой физической природы и, в частности, к электронным волнам. Для волн де Бройля естественной дифракционной решеткой является упорядоченная структура кристалла с пространственным периодом порядка размеров атома (приблизительно 0,1 нм). Препятствие таких размеров (например, отверстие в непрозрачном экране) невозможно создать искусственно, но для уяснения природы волн де Бройля можно ставить мысленные эксперименты.
Рассмотрим, например, дифракцию электронов на одиночной щели ширины D (рис. 5.4.3).
Рисунок 5.4.3. Дифракция электронов на щели. График справа – распределение электронов на фотопластинке |
Более 85 % всех электронов, прошедших через щель, попадут в центральный дифракционный максимум. Угловая полуширина θ1 этого максимума находится из условия
Это формула волновой теории. С корпускулярной точки зрения можно считать, что при пролете через щель электрон приобретает дополнительный импульс в перпендикулярном направлении. Пренебрегая 15 % электронов, которые попадают на фотопластинку за пределами центрального максимума, можно считать, что максимальное значение py поперечного импульса равно
где p – модуль полного импульса электрона, равный, согласно де Бройлю, h / λ. Величина p при прохождении электрона через щель не меняется, т. к. остается неизменной длина волны λ. Из этих соотношений следует
Квантовая механика вкладывает в это простое на вид соотношение, являющееся следствием волновых свойств микрочастицы, чрезвычайно глубокий смысл. Прохождение электронов через щель является экспериментом, в котором y – координата электрона – определяется с точностью Δy = D. Величину Δy называют неопределенностью измерения координаты. В то же время точность определения y – составляющей импульса электрона в момент прохождения через щель – равна py или даже больше, если учесть побочные максимумы дифракционной картины. Эту величину называют неопределенностью проекции импульса и обозначают Δpy. Таким образом, величины Δy и Δpy связаны соотношением
которое называется соотношением неопределенностей Гейзенберга. Величины Δy и Δpy нужно понимать в том смысле, что микрочастицы в принципе не имеют одновременно точного значения координаты и соответствующей проекции импульса. Соотношение неопределенностей не связано с несовершенством применяемых приборов для одновременного измерения координаты и импульса микрочастицы. Оно является проявлением двойственной корпускулярно-волновой природы материальных микрообъектов. Соотношение неопределенностей позволяет оценить, в какой мере можно применять к микрочастицам понятия классической механики. Оно показывает, в частности, что к микрообъектам неприменимо классическое понятие траектории, так как движение по траектории характеризуется в любой момент времени определенными значениями координат и скорости. Принципиально невозможно указать траекторию, по которой в рассмотренном мысленном эксперименте двигался какой-то конкретный электрон после прохождения щели до фотопластинки.
Однако, при определенных условиях соотношение неопределенностей не противоречит классическому описанию движения тел, в том числе и микрочастиц. Например, электронный пучок в кинескопе телевизора при вылете из электронной пушки имеет диаметр D порядка 10–3 см. В современном телевизоре ускоряющее напряжение U ≈ 15 кВ. Легко подсчитать импульс электрона: Этот импульс направлен вдоль оси трубки. Из соотношения неопределенностей следует, что электронам при формировании пучка сообщается неконтролируемый импульс Δp, перпендикулярный оси пучка: Δp ≈ h / D ≈ 6,6·10–29 кг·м/с.
Пусть до экрана кинескопа электроны пролетают расстояние L ≈ 0,5 м. Тогда размытие Δl пятна на экране, обусловленное волновыми свойствами электрона, составит
Поскольку Δl << D, движение электронов в кинескопе телевизора можно рассматривать с помощью законов классической механики. Таким образом, с помощью соотношения неопределенностей можно выяснить, справедливы или нет законы классической физики в тех или иных случаях.
Рассмотрим еще один мысленный эксперимент – дифракцию электронного пучка на двух щелях (рис. 5.4.4). Схема этого эксперимента совпадает со схемой оптического интерференционного опыта Юнга.
Рисунок 5.4.4. Дифракция электронов на двух щелях |
Анализ этого эксперимента позволяет проиллюстрировать логические трудности, возникающие в квантовой теории. Те же проблемы возникают при объяснении оптического опыта Юнга, исходя из концепции фотонов.
Если в опыте по наблюдению дифракции электронов на двух щелях закрыть одну из щелей, то интерференционные полосы исчезнут, и фотопластинка зарегистрирует распределение электронов, продифрагировавших на одной щели (рис. 5.4.3). В этом случае все электроны, долетающие до фотопластинки, проходят через единственную открытую щель. Если же открыты обе щели, то появляются интерференционные полосы, и тогда возникает вопрос, через какую из щелей пролетает тот или иной электрон?
Психологически очень трудно смириться с тем, что ответ на этот вопрос может быть только один: электрон пролетает через обе щели. Мы интуитивно представляем себе поток микрочастиц как направленное движение маленьких шариков и применяем для описания этого движения законы классической физики. Но электрон (и любая другая микрочастица) обладает не только корпускулярными, но и волновыми свойствами. Легко представить, как электромагнитная световая волна проходит через две щели в оптическом опыте Юнга, т. к. волна не локализована в пространстве. Но если принять концепцию фотонов, то мы должны признать, что каждый фотон тоже не локализован. Невозможно указать, через какую из щелей пролетел фотон, как невозможно проследить за траекторией движения фотона до фотопластинки и указать точку, в которую он попадет. Опыт показывает, что даже в том случае, когда фотоны пролетают через интерферометр поштучно, интерференционная картина после пролета многих независимых фотонов все равно возникает. Поэтому в квантовой физике делается вывод: фотон интерферирует сам с собой.
Все вышесказанное относится и к опыту по дифракции электронов на двух щелях. Вся совокупность известных экспериментальных фактов может найти объяснение, если принять, что дебройлевская волна каждого отдельного электрона проходит одновременно через оба отверстия, в результате чего и возникает интерференция. Поштучный поток электронов тоже дает интерференцию при длительной экспозиции, т. е. электрон, как и фотон, интерферирует сам с собой.
Модель. |
Модель. |
Источник
1923 год ознаменовался событием, значимо ускорившим развитие квантовой физики. Французским физиком Л. де Бройлем была предложена гипотеза, предполагающая универсальность корпускулярно-волнового дуализма. В своей концепции Де Бройль сформулировал утверждение о том, что, помимо фотонов и электроны, а также прочие частицы материи имеют как корпускулярные, так и волновые свойства.
Описание гипотезы де Бройля
Идеи де Бройля содержали мысль о том, что любой микрообъект имеет, с одной стороны, корпускулярные характеристики – энергия E и импульс p, а с другой стороны, волновые характеристики – частота v и длина волны λ. При этом количественное соотношение корпускулярных и волновых характеристик аналогично тому же для фотона:
E=hv, p=hvc=hλ.
Как уже было сказано выше, в гипотезе французского физика шла речь о всех видах микрочастиц, соответственно и указанное выше соотношение применимо для любых из них, в том числе, и для обладающих массой m. Любая частица, обладающая импульсом, была сопоставлена с волновым процессом с длиной волны λ=hp.
Для частиц, имеющих массу: λ=hp=h1-v2/c2mv.
В нерелятивистском приближении (υ<<c)
λ=hmv.
Основой идей де Бройля стали размышления о симметрии свойств материи, и в то время, увы, гипотеза не получила опытного подтверждения. Однако, она стала мощнейшим катализатором развития новых идей о природе материальных объектов. На протяжении последующих нескольких лет выдающиеся умы XX века (физики В. Гейзенберг, Э. Шредингер, П. Дирак, Н. Бор и др.) создавали теоретические основы новой науки, названной квантовой механикой.
Дифракция электронов
Впервые гипотеза де Бройля была экспериментально подтверждена в 1927 году, когда американские физики К. Девиссон и Л. Джермер выяснили, что пучок электронов, рассеивающийся на кристалле никеля, дает ясную дифракционную картину, похожую на возникающую тогда, когда на кристалле рассеивается коротковолновое рентгеновское излучение. В исследованиях физиков кристалл служил естественной дифракционной решеткой. По тому, какое положение имели дифракционные максимумы, выяснилась длина волны электронного пучка, и она полностью соответствовала той, что вычислялась по формуле де Бройля.
В 1928 году физик из Англии Г. Томсон (являющийся сыном Дж. Томсона, который открыл за 30 лет до этого электрон) вновь подтвердил гипотезу де Бройля. Эксперименты Томсона позволили наблюдать дифракционную картину, которая возникала, когда пучок электронов проходил через тонкую поликристаллическую фольгу из золота.
Рисунок 5.4.1. Упрощенная схема опытов Г. Томсона по дифракции электронов. K – накаливаемый катод, A– анод, Ф – фольга из золота.
За фольгой установлена фотопластинка, на которой наблюдались явные концентрические светлые и темные кольца. Радиусы этих колец варьировались в зависимости от скорости электронов (т. е. длины волны) согласно де Бройлю (рис. 5.4.2).
Рисунок 5.4.2. Картина дифракции электронов на поликристаллическом образце при длительной экспозиции (a) и при короткой экспозиции (b).
В случае (b) видны точки попадания отдельных электронов на фотопластинку.
В последующие годы эксперимент Г. Томсона многократно повторяли и результат был неизменен даже в тех случаях, когда поток электронов был столь слабым, что через прибор единовременно проходила только одна частица (например, опыт В. А. Фабриканта в 1948 г.). Так была доказана идея, что волновые свойства характерны как для большой совокупности электронов, так и для каждого электрона в отдельности.
В последующем явления дифракции обнаружились и для нейтронов, протонов, атомных и молекулярных пучков. Доказанное экспериментально наличие волновых свойств различных видов микрочастиц позволило сделать вывод об универсальности этого явления в природе, являющегося общим свойством материи. Если продолжать данное рассуждение, волновыми свойствами должны обладать и макроскопические тела. Но из-за больших показателей массы, присущих макроскопическим телам, их волновые свойства затруднительно доказать при помощи экспериментов.
Пример 1
К примеру, пылинка массой 10–9 г, которая движется со скоростью 0,5 м/с, обладает волной де Бройля с длиной примерно 10–21 м, т. е. меньше размера атома на 11 порядков. Подобная длина волны находится за границами области, которая доступна для наблюдения.
Приведенный пример демонстрирует, что для макроскопических тел доступно лишь проявление корпускулярных свойств.
Приведем еще пример.
Пример 2
U = 100 В, длину волны де Бройля для него мы можем определить по формуле: λ=h2meU
Приведенный пример – нерелятивистский случай, поскольку разница между кинетической энергией электрона eU=100 эВ и энергией покоя mc2≈0,5 МэВ достаточно значима (кинетическая энергия значимо меньше энергии покоя).
В результате расчета получим: λ≈0,1 нм, т. е. полученная длина волны примерно соответствует размерам атомов. Для таких электронов кристалл служит отличной решеткой для дифракции. Как раз подобные малоэнергичные электроны показывают четкую дифракционную картину при проведении экспериментов по дифракции электронов. Вместе с этим электрон с такими характеристиками, испытавший дифракционное рассеяние на кристалле как волна, осуществляет взаимодействие с атомами фотопластинки в качестве частицы и вызывает почернение фотоэмульсии в некоторой точке (рис. 5.4.2).
Резюмируя, еще раз отметим, что гипотеза де Бройля о корпускулярно-волновом дуализме, доказанная экспериментально, глобально поменяла представления о том, какими свойствами обладают микрообъекты.
Определение 1
Все микрообъекты обладают и волновыми, и корпускулярными свойствами, но при этом не являются ни волной, ни частицей в стандартном представлении.
Одновременного проявления различных свойств микрообъектов не происходит: они являются дополнением друг друга, и лишь их совокупность характеризует микрообъект в целом.
Эти заключения были сформулированы датским физиком Н.Бором и получили название принципа дополнительности. Упрощенно возможно говорить о том, что микрообъекты распространяются как волны, а обмениваются энергией как частицы.
Если смотреть на вопрос с позиции волновой теории: существует соответствие максимумов в дифракционной картине электронов и максимальной интенсивности волн де Бройля. Наибольшее количество электронов находится в областях максимумов, зарегистрированных на фотопластинке. Однако схема попадания электронов в различные места на фотопластинке не индивидуальна. В принципе нет возможности заранее предположить, куда попадет очередной электрон после рассеяния; допустима только некоторая вероятность попадания электрона в то или иное место. Следовательно, описать состояние микрообъекта и его поведение возможно только, опираясь на понятие вероятности.
Факт, что необходимо использовать вероятностный подход, описывая микрообъекты, является важной отличительной чертой квантовой теории. Квантовая механика для характеристики состояний микрообъектов включает в себя понятие волновой функции Ψ (пси-функции).
Определение 2
Квадрат модуля волновой функции |Ψ|2 пропорционален вероятности нахождения микрочастицы в единичном объеме пространства.
Определенный вид волновой функции задается внешними условиями, в которых находится микрочастица. Математический инструментарий квантовой механики дает возможность определять волновую функцию частицы, которая находится в заданных силовых полях. Безграничная монохроматическая волна де Бройля является волновой функцией свободной частицы, на которую не действуют никакие силовые поля.
Максимально четко явление дифракции наблюдается тогда, когда размерность препятствия, на котором происходит дифракция волн, соизмерима с длиной волны. Подобное поведение характерно для волн любой физической природы и, в частности, электронных волн. Для волн де Бройля естественная дифракционная решетка – это упорядоченная структура кристалла с пространственным периодом порядка размеров атома (приблизительно 0,1 нм). Нет возможности создать искусственным образом препятствие указанного размера (к примеру, отверстие в непрозрачном экране), однако, чтобы уяснить природу волн де Бройля, возможно проводить, так сказать, мысленные эксперименты.
Для примера разберем дифракцию электронов на одиночной щели шириной D (рис. 5.4.3)
Рисунок 5.4.3. Дифракция электронов на щели. График справа – распределение электронов на фотопластинке.
Из общей массы электронов, проходящих через щель, свыше 85% окажутся в центральном дифракционном максимуме. Угловая полуширина θ1 этого максимума определится из условия
Dsinθ=λ
Указанная формула – часть волновой теории. Если рассуждать, опираясь на корпускулярные свойства, возможно сказать, что, когда электрон проходит через щель, он получает дополнительный импульс в перпендикулярном направлении. Можем пренебречь оставшимися 15% электронов, попадающих на фотопластинку за пределами центрального максимума, и тогда будем считать, что максимальное значение py поперечного импульса равно:
pу=p·sin θ1=hλ·sin θ1
В этой формуле p является модулем полного импульса электрона, равным (по гипотезе де Бройля) hλ. Величина p, когда электрон проходит через щель, неизменна, поскольку неизменной является длина волны λ. Указанные выражения дают возможность записать следующее соотношение:
pу=hD
Для задач квантовой механики это несложное с виду соотношение, служащее следствием волновых свойств микрочастицы, имеет глубочайший смысл. Электроны проходят через щель, что есть эксперимент, где y – координата электрона – определяется с точностью Δy = D.
Определение 3
Величина Δy носит название неопределенности измерения координаты.
Вместе с тем, точность определения y – составляющей импульса электрона в момент прохождения через щель – равна py или даже больше, учитывая побочные максимумы дифракционной картины.
Определение 4
Эта величина носит название неопределенности проекции импульса и обозначается как Δpy.
Определение 5
Показатели Δy и Δpy связаны соотношением:
∆у·∆p≥h
и оно названо соотношением неопределенностей Гейзенбурга.
Величины Δy и Δpy следует уяснить в том смысле, что микрочастицы не обладают одновременно точным значением координаты и соответствующей проекцией импульса. Соотношение неопределенностей не имеет отношения к несовершенству используемых приборов, чтобы одновременно измерить координаты и импульс микрочастицы. Соотношение Гейзенбурга есть проявление той самой дуальной корпускулярно-волновой природы материи микрообъектов. Соотношение дает возможность дать оценку тому, насколько применимы к микрочастицам постулаты классической механики. Оно также демонстрирует, что к микрообъектам невозможно применить понятие траектории в классическом понимании, поскольку характеристикой движения по траектории в любой момент времени являются определенные значения координат и скорости. В принципе нет возможности указать траекторию, по которой в некотором мысленном эксперименте двигался некий определенный электрон после прохождения щели до фотопластинки.
И все же определенные условия создают ситуацию, когда соотношение неопределенностей не является противоречием классическому описанию движения тел, в частности, микрочастиц.
Пример 3
К примеру, электронный пучок в кинескопе телевизора при вылете из электронной пушки имеет диаметр D около 10–3 см. В телевизоре ускоряющее напряжение U≈15 кВ.
Нетрудно рассчитать импульс электрона: p=2meU≈6,6·10-23 кг·м/с
Данный импульс имеет направление вдоль оси трубки. Из соотношения неопределенностей вытекает, что электронам при формировании пучка сообщается неконтролируемый импульс Δp, являющийся перпендикуляром к оси пучка: Δp≈hD≈6,6·10–29 кг·м/с.
Допустим, до экрана кинескопа электроны проходят расстояние L≈0,5 м. В таком случае размытие Δlпятна на экране, заданное волновыми свойствами электрона, составит:
∆l≈∆ppL≈5·10-5 см
Так как Δl<<D, возможно рассмотреть движение электронов в кинескопе телевизора при помощи основ классической механики.
Так, используя соотношение неопределенностей, есть возможность выяснять, насколько справедливы законы классической физики в отдельных случаях.
Проведем еще мысленный эксперимент: это будет дифракция электронного пучка на двух щелях
(рис. 5.4.4).
Структура эксперимента аналогична структуре оптического интерференционного опыта Юнга.
Рисунок 5.4.4. Дифракция электронов на двух щелях.
Проанализировав данный эксперимент, мы можем отметить некоторые трудности логических умозаключений в квантовой теории. Собственно, то же затруднение имеет место быть при попытке объяснить оптический опыт Юнга на основе концепции фотонов.
Если в ходе нашего эксперимента закрыть одну из щелей, мы будем наблюдать исчезновение интерференционных полос, а на фотопластинке будет зарегистрировано распределение электронов, продифрагировавших на одной щели (рис. 5.4.3), т.е. долетая до фотопластинки, электроны проходят через одну щель. Открыв обе щели, мы вновь наблюдаем интерференционные полосы, и становится закономерным вопрос: так сквозь какую из щелей проходит каждый электрон?
Конечно, довольно затруднительно представить с точки зрения присущей нашему мышлению логике, что единственным ответом на указанный выше вопрос является факт, что электрон проходит через обе щели. Нашему мышлению свойственно представлять поток микрообъектов в виде направленного движения, например, маленьких шариков и соответственно описывать это движение, опираясь на законы классической физики. Однако для всех микрочастиц характерны как корпускулярные, так и волновые свойства. Нам легко представится, как электромагнитная световая волна пройдёт сквозь две щели в оптическом эксперименте Юнга, поскольку волна не имеет локализации в пространстве. Но при рассмотрении концепции фотонов приходится принять, что и каждый фотон не имеет локализации. Мы не имеем возможности указать, через какую щель прошел фотон, как и не имеем возможности отследить точную траекторию полета фотона до фотопластинки с указанием точной точки его попадания. Опыты демонстрируют такую картину, что, даже когда фотоны проходят сквозь интерферометр поштучно, интерференционная картина после прохождения многих независимых фотонов все равно имеет место быть. Таким образом, квантовая физика формулирует вывод: фотон интерферирует сам с собой.
Сказанное выше имеет отношение и к эксперименту по дифракции электронов на двух щелях. Все известные экспериментальные факты в своей совокупности могут быть объяснены, если признать, что волна по де Бройлю каждого конкретного электрона проходит одномоментно сквозь обе щели, и, как результат, имеет место явление интерференции.
Определение 6
Поштучный поток электронов также дает интерференцию при длительной экспозиции, т. е. электрон, как и фотон, интерферирует сам с собой.
В заключение приведем иллюстрации:
Рисунок 5.4.5. Модель волновых свойств частиц.
Рисунок 5.4.6. Модель дифракции электронов.
Источник