Какие из приведенных гидроксидов обладают амфотерными свойствами

Какие из приведенных гидроксидов обладают амфотерными свойствами thumbnail

Основания, их классификация, свойства, получение

Основания – это сложные вещества, при диссоциации которых образуются ионы металла или аммония и гидроксид-ионы ОН-.

NaOH <=> Na+ + ОН-

Основания – это вещества, принимающие протоны.

NH3 + H+ = NH4+

1. Какие из перечисленных веществ относятся к основаниям: LiOH, CH3COOH, Fe(OH)2, CH3NH2, H2SO3, Mg(OH)2?

Классификация оснований

Признаки классификации

Группы оснований

Примеры

1. Природа веществ

Неорганические

NaOH гидроксид натрия

Органические

CH3NH2 метиламин

2. Состав веществ (наличие кислорода)

Бескислородные

NH3 -аммиак

Кислородсодержащие

Cu(OH)2 -гидроксид меди (II)

3. Кислотность оснований (по числу гидроксильных групп)

Однокислотные

KOH — гидроксид калия

Двухкислотные

Ca(OH)2 – гидроксид кальция

4. Степень электролитической диссоциации

Слабые

Fe(OH)2 — гидроксид железа (II)

Сильные (щелочи)

NaOH гидроксид натрия

5. Растворимость в воде

Растворимые (щелочи)

NaOH гидроксид натрия

Нерастворимые

Cu(OH)2 -гидроксид меди (II)

6. Летучесть

Летучие

NH3 -аммиак

Нелетучие

Cu(OH)2 -гидроксид меди (II)

7. Устойчивость к нагреванию

Устойчивые

KOH — гидроксид калия

Неустойчивые

Cu(OH)2 -гидроксид меди (II)

2. Охарактеризуйте гидроксид кальция Сa(OH)2 по всем признакам классификации.

ПОЛУЧЕНИЕ

Получение растворимых оснований (щелочей)

Получение нерастворимых оснований

1. Реакцией обмена (если один из продуктов выпадает в осадок):

Na2SO4 + Вa(OH)2 = ВaSO4↓ + 2NaOH

Нерастворимые основания получают реакцией обмена между раствором соли и раствором щелочи:

CuCl2 + 2NaOH = Cu(OH)2↓+ 2NaCl

2. Растворимые основания (щелочи) можно получить взаимодействием щелочного и щелочно-земельного металла или их оксидов с водой:
2Na + 2H2O = 2NaOH + H2

CaO + H2O = Ca(OH)2

3. Электролизом водного раствора соли хлоридов щелочных металлов (в качестве побочного продукта образуется хлор):

2NaCl + 2H2O = 2NaOH + H2 + Cl2 (действием электрического тока)

3. Даны вещества: Fe(OH)2, Ca(OH)2, LiOH, Al(OH)3. Какие вещества образуются при взаимодействии металлов с водой, а какие — действием щелочи на раствор соли?

Химические свойства оснований

1. Диссоциация оснований с образованием гидроксид-ионов ОН-:

NaOH <=> Na+ + OH-
LiOH <=> Li+ + OH-

Наличие гидроксид-ионов в растворе щелочи можно определить при помощи кислотно-основных индикаторов.

2. Взаимодействие с кислотами с образованием соли (реакция нейтрализации):

Mg(OH)2 + 2HNO3 = Mg(NO3)2 + 2H2O
Mg(OH)2 + 2H+ = Mg2+ + 2H2O

3. Взаимодействие щелочей с кислотными оксидами с образованием соли и воды:

2NaOH + SiO2 = Na2SiO3 + H2O (при нагревании)
Ca(OH)2 + CO2 = CaCO3↓ + H2O

4. Взаимодействие раствора щелочи с растворами различных солей с образованием нерастворимого основания:

CuSO4 + 2NaOH = Cu(OH)2 ↓+ Na2SO4
Cu2+ + 2OH- = Cu(OH)2 ↓

5. Разложение нерастворимых оснований при нагревании с образованием оксида металла и воды:

Cu(OH)2 = CuO + H2O (при нагревании)


6. Взаимодействие растворов щелочи с некоторыми неметаллами:

2NaOH + Cl2 = NaCl + NaClO + H2O (на холоде)
6NaOH + 3Cl2 = 5NaCl + NaClO3 + 3H2O (при нагревании)
2NaOH + Si = Na2SiO3 + 2H2

  1. Взаимодействие щелочи с некоторыми металлами (образующие амфотерные соединения).

??? 4. Даны вещества: CaO, SO2, Ba(OH)2, HClO4, KCl, CuCl2.

а) Какие из перечисленных веществ реагируют с гидроксидом натрия?

б) Напишите уравнения возможных реакций.

в) Какая из приведенных реакций относится к реакции нейтрализации?

5. Какие вещества разлагаются при нагревании: Fe(OH)2, NaOH, Al(OH)3, Fe(OH)3, Ba(OH)2? Напишите уравнения возможных реакций.

6.
В трех пробирках даны растворы хлорида натрия, соляной кислоты,
гидроксида натрия. Как можно распознать эти растворы химическим
способом?

7.
Какая масса щелочи NaOH должна находиться в растворе для реакции с 16 г
сульфата меди (II), чтобы получить осадок гидроксида меди(II)?

Амфотерные гидроксиды

Амфотерные гидроксиды – гидроксиды, которые при диссоциации образуют одновременно и катионы Н+, и гидроксид-ионы ОН-.
Амфотерные гидроксиды соответствуют амфотерным оксидам. Например, Al(OH)3, Zn(OH)2, Cr(OH)3, Be(OH)2 и другие.

1) Взаимодействие амфотерных гидроксидов с кислотами:

Al(OH)3 + 3HCl = AlCl3 + 3H2O

Al(OH)3 + 3H+ = Al3+ + 3H2O

2) Взаимодействие амфотерных гидроксидов со щелочью:

Al(OН)3 + NaOH = Na[Al(OH)4] (тетрагидроксоалюминат натрия)
Zn(OН)2 + 2NaOH = Na2[Zn(OH)4] (тетрагидроксоцинкат натрия)

3) Проявляют свойства нерастворимых оснований – разлагаются при нагревании с образованием оксида и воды:

2Al(OH)3 → Al2O3 + 3H2O

??? 8. а) Приведите примеры реакций, доказывающие свойства гидроксида цинка.

б) В какой из приведенных реакций гидроксид цинка проявляется себя как кислота?

в) В какой из приведенных реакций гидроксид цинка проявляется себя как основание?

г) Напишите уравнение реакции получения гидроксида цинка.

Ответы на вопросы, которые вы встретили в конспекте, вы можете отправить в отдельное задание.

Источник

Понятие об
амфотерных оксидах и гидроксидах

Первоначальная классификация химических элементов на металлы и неметаллы является
неполной. Существуют химические элементы и соответствующие им вещества, которые
проявляют двойственную природу – амфотерные свойства. Могут
взаимодействовать как с кислотами и кислотными оксидами, так и с основаниями и
основными оксидами, например,

а)

2Al(OH)3 + 3SO3 = Al2(SO4)3 +
3H2O

Al2O3 + 3H2SO4 =
Al2(SO4)3 + 3H2O

б)

2Al(OH)3 + Na2O = 2NaAlO2 +
3H2O

Al2O3 + 2NaOH = 2NaAlO2 +
H2O

Al(OH)3 ↔ H3AlO3 (ортоалюминиеваякислота) –H2O↔ HAlO2 (метаалюминиеваякислота), здесь AlO2 (I) – одновалентныйкислотныйостатокметаалюминат

Так,
гидроксид и оксид алюминия в реакциях (а) проявляют свойства основных гидроксидов
и оксидов, т.е. реагируют с кислотными гидроксидом и оксидом, образуя
соответствующую соль – сульфат алюминия Al2(SO4)3,
тогда как в реакциях (б) они же проявляют свойства кислотных гидроксидов
и оксидов, т.е. реагируют с основными гидроксидом и оксидом, образуя соль –
метаалюминат натрия NaAlO2. Если указанные реакции протекают в
водном растворе:

Al(OH)3 + NaOH = Na[Al(OH)4]

Другой
пример,

а)

Zn(OH)2 + SO3 = ZnSO4 + H2O

ZnO + H2SO4 = H2O
+ ZnSO4

б)

Zn(OH)2 + Na2O = Na2ZnO2 +
H2O

Zn(OH)2 + 2NaOH = Na2[Zn(OH)4]

ZnO + 2NaOH = Na2ZnO2 + H2O

Zn(OH)2↔H2ZnO2, 

здесь ZnO2(II) – двухвалентный кислотный остаток цинкат.

Оксиды и
гидроксиды, которые способны реагировать и с кислотами, и со щелочами, называют
амфотерными.

Химические
элементы, которым соответствуют амфотерные оксиды и гидроксиды, обладают
переходными химическими свойствами, не относящимися ни к металлам, ни к
неметаллам, их называют амфотерными.

Амфотерность (от греч. amphoteros
– и тот, и другой) – способность химических соединений проявлять и кислотные, и
основные свойства в зависимости от природы реагента, с которым амфотерное
вещество вступает в кислотно-основное взаимодействие. Амфотерные оксиды и
гидроксиды – оксиды и гидроксиды, проявляющие как основные, так и кислотные
свойства. Они реагируют как с кислотами, так и с основаниями. Амфотерным
оксидам соответствуют амфотерные гидроксиды, например,

ВeО – Вe(ОН)2,

Сr2O3 – Сr(ОН)3.

Амфотерные гидроксиды практически нерастворимы в воде. Они являются слабыми
кислотами и слабыми основаниями.

Амфотерными оксидами и гидроксидами являются, как правило, оксиды и
гидроксиды металлов, в которых валентность металла III, IV иногда II.

Среди оксидов элементов главных подгрупп амфотерными являются: BeO, Al2O3,
SnO, SnO2, PbO, Sb2O3.

Амфотерными гидроксидами являются следующие гидроксиды элементов главных
подгрупп: Ве(ОН)2, Al(ОН)3, Рb(ОН)2 и
некоторые другие.

Оксиды и гидроксиды, в которых валентность металла III, IV, являются,
как правило, амфотерными: Сг2O3 и Cr(OH)3, Fe2O3
и Fe(OH)3. Однако последние элементы в декадах d–элементов
(например, Zn) образуют амфотерные оксиды и гидроксиды даже в низких степенях
окисления, например, ZnO и Zn(OH)2.

ХИМИЧЕСКИЕ СВОЙСТВА АМФОТЕРНЫХ ГИДРОКСИДОВ

(нерастворимы в воде)

Амфотерный гидроксид

Кислотный остаток (А)

Оксид

Zn(OH)2

со щелочами проявляет кислотные
свойства:

H2ZnO2↔ZnO2 (II) кислотный остаток – цинкат

ZnO

Al(OH)3

со щелочами проявляет кислотные
свойства:

HAlO2↔AlO2 (I) кислотный остаток – метаалюминат

Al2O3

Be(OH)2

со щелочами проявляет кислотные
свойства:

H2BeO2↔BeO2 (II) кислотный остаток – бериллат

BeO

Cr(OH)3

со щелочами проявляет кислотные
свойства:

HCrO2↔CrO2 (I) кислотный остаток – хромат

Cr2O3

1.Реагируют с кислотами: Zn(OH)2 + 2HCl = ZnCl2 + 2H2O

2.Реагируют со щелочами: Zn(OH)2 + 2NaOH = Na2[Zn(OH)4]

Видео “Амфотерные свойства гидроксида алюминия”

Видео “Получение и химические свойства амфотерных
гидроксидов”

Тренажёр “Амфотерные свойства оксида алюминия”

Тренажёр – виртуальная лаборатория “Амфотерные свойства оксида алюминия”

Применение

Из всех амфотерных гидроксидов наибольшее применение находит гидроксид
алюминия:

·       
лекарственные препараты, приготовленные на
основе гидроксида алюминия, врач назначает при нарушении
кислотно-щелочного баланса в пищеварительном тракте;

·       
в качестве антипирена (средства для
подавления способности гореть) вещество вводят в состав пластмасс и красок;

·       
путём разложения гидроксида алюминия в
металлургии получают оксид алюминия (глинозём) — сырьё для получения
металлического алюминия.

Товары, в
производстве которых используется гидроксид алюминия: лекарственный препарат
«Алмагель» и металлургический глинозём

Гидроксид цинка в
промышленности служит сырьём для получения различных соединений этого металла,
в основном — солей.

Источник

Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?

1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH)2. Однако существуют исключения. Так, гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2 к основаниям не относятся.

2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2. Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.

Химические свойства оснований

Все основания подразделяют на:

щелочи и нерастворимые основания

Напомним, что бериллий и магний к щелочноземельным металлам не относятся.

Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.

Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.

Взаимодействие оснований с кислотами

Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:

примеры реакций нейтрализации

Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:

взаимодействие гидроксида железа серной и кремниевой кислотами

Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH)2 могут образовывать основные соли при недостатке кислоты, например:

образование основных солей

Взаимодействие с кислотными оксидами

Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:

взаимодействие щелочей с кислотными оксидами

Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P2O5, SO3, N2O5, с образованием средних солей:

Cu(OH)2 + SO3 <.p>

Нерастворимые основания вида Me(OH)2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:

Cu(OH)2 + CO2 = (CuOH)2CO3 + H2O

С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:

гидроксид железа и диоксид кремния не реагируют

Взаимодействие оснований с амфотерными оксидами и гидроксидами

Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:

NaOH взаимодействие с Al2O3 Al(OH)3 ZnO Zn(OH)2 при сплавлении

Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:

взаимодействие водных растворов щелочей с амфотерными оксидами и нидроксидами гидроксокомплексы

В случае алюминия при действии избытка концентрированной щелочи вместо соли Na[Al(OH)4] образуется соль Na3[Al(OH)6]:

образвание гексагидроксоалюмината натрия

Взаимодействие оснований с солями

Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:

1) растворимость исходных соединений;

2) наличие осадка или газа среди продуктов реакции

Например:

взаимодействие оснований с солями необходимые требования

Термическая устойчивость оснований

Все щелочи, кроме Ca(OH)2, устойчивы к нагреванию и плавятся без разложения.

Все нерастворимые основания, а также малорастворимый Ca(OH)2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000oC:

разложение гидроксида кальция

Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 oC:

разложение гидроксида меди температура

Химические свойства амфотерных гидроксидов

Взаимодействие амфотерных гидроксидов с кислотами

Амфотерные гидроксиды реагируют с кислотами:

Взаимодействие гидроксида цинка с серной кислотой

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с такими кислотами, как H2S, H2SO3 и H2СO3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:

гидроксиды трехвалентных металлов не реагируют с сернистой угольной и сероводородной кислотами

Взаимодействие амфотерных гидроксидов с кислотными оксидами

Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO3, P2O5, N2O5):

Al(OH)3 SO3 реакция

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с кислотными оксидами SO2 и СO2.

Взаимодействие амфотерных гидроксидов с основаниями

Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:

NaOH водный раствор реакция с Al(OH)3

А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:

твердый NaOH реакция с Al(OH)3 при сплавлении

Взаимодействие амфотерных гидроксидов с основными оксидами

Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:

Na2O + Al(OH)3 взаимодействие

Термическое разложение амфотерных гидроксидов

Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду:

Al(OH)3 реакция разложения

Источник

6.3. 
Амфотерные гидроксиды, их свойства

Амфотерные гидроксиды – электролиты,
образующие при диссоциации одновременно катионы Н+и анионы ОН–:

X+ + OH– ⇌ ХOH = HXO ⇌ H++ XO–.

Амфотерные гидроксиды в кислой среде ведут
себя как основания, а в щелочной – как кислоты.

K амфотерным гидроксидам относятся Be(OH)2,
Zn(OH)2, Pb(OH)2, Sn(OH)2, Al(OH)3,
Fe(OH)3,
Cr(OH)3 и некоторые
другие, им соответствуют амфотерные оксиды. Практически все они нерастворимы в
воде, являются слабыми электролитами и диссоциируют ступенчато.

Химические свойства
амфотерных гидроксидов

Например:

2Al(OH)3 + Na2O  2NaAlO2 + 3H2O↑.

Некоторые
амфотерные гидроксиды (Be(OH)2, Zn(OH)2, Pb(OH)2)
реагируют с кислотным оксидом СО2 с образованием осадков
основных солей и воды. Например:

2Be(OH)2 +
CO2 = (BeOH)2CO3 +
H2O.

Например:

Zn(OH)2 +
2KOH (тв.)  K2ZnO2 + 2H2O↑,

Zn(OH)2 + 2KOH = K2[Zn(OH)4].

Например:

Al(OH)3 +
3HCl = AlCl3 + 3H2O.

Все
амфотерные гидроксиды (как и большинство оснований) разлагаются при нагревании
на оксид и воду. Например:

2Al(OH)3  Al2O3 +
3H2O.

В связи с
этим нужно учитывать, что фактически в процессе сплавления их со щелочами и
оксидами участвует не сам амфотерный гидроксид, а соответствующий ему оксид.

УПРАЖНЕНИЯ

1) СО2 и
HCl 2) Н2 и NaOH 3) NО
и NaNO3 4) H2SO4 и NaOH

 Решение:  Гидроксид хрома –
амфотерный гидроксид. Амфотерные гидроксиды реагируют с кислотами и щелочами, с
кислотыми и основными оксидами. Поэтому нам подходит вариант 4 –серная кислота
и гидроксид натрия (щелочь):

2Cr(OH)3 + 3H2SO4 = Cr2(SO4)3 + 6H2O

Cr(OH)3 + NaOH
= Na[Cr(OH)4]

Ответ: 4

________________________________________________________________

2.    

Гид­рок­сид калия вза­и­мо­дей­ству­ет с каж­дым из
двух ве­ществ

1) нит­ра­том на­трия и нит­ра­том се­реб­ра

2) гид­рок­си­дом алю­ми­ния и нит­ра­том се­реб­ра

3) гид­рок­си­дом цинка и ок­си­дом меди(I)

4) хло­ри­дом бария и ок­си­дом фос­фо­ра(V)

Решение: 

Гид­рок­сид калия это ще­лочь. она вза­и­мо­дей­ству­ет
с кис­ло­та­ми,кис­лот­ны­ми ок­си­да­ми, ам­фо­тер­ны­ми ок­си­да­ми и гид­рок­си­да­ми,рас­тво­ра­ми
солей при усло­вии, если есть при­знак не­об­ра­ти­мо­сти ре­ак­ции (оса­док,
газ, сла­бый элек­тро­лит). Дан­но­му усло­вию со­от­вет­ству­ет набор ве­ществ
в ва­ри­ан­те 2 — ам­фо­тер­ный гид­рок­сид и соль.

________________________________________________________________

3.    

Осуществить превращения:

Al-1-
Al2O3 -2– NaAlO2 -3–
Al (OH)3 -4– Al2O3

1. 4Al + 3O2  = 2Al2O3

2. Al2O3 + Na2O  2NaAlO2

3. NaAlO2 + HCl + H2O = NaCl + Al(OH)3

4. 2Al(OH)3  Al2O3 +3H2O

________________________________________________________________

4.    

Осуществить превращения:

AlCl3 –1–
Al(OH)3 -2— Na[Al (OH)4] –3–
AlCl3

1. AlCl3 + 3NaOH = 3NaCl + Al(OH)3 |

2. Al(OH)3 + NaOH = Na[ Al(OH)4 ]

3. Na[ Al(OH)4 ]+ 4HCl = NaCl + AlCl3 + 4H2O

________________________________________________________________

ЗАДАНИЯ  ДЛЯ  САМОСТОЯТЕЛЬНОГО
РЕШЕНИЯ

1.    

Закончите уравнения реакций:

Cr(OH)3 +
6HCl = ?

Cr(OH)3 +
NaOH = ?

2.    

Напишите уравнения реакций, описывающие следующие
химические превращения:

а)
ZnCl2 + KOH(избыток) → осадок → растворение осадка;

б)
Cr(NO3)2 +
NaOH(избыток) → осадок
→ растворение осадка.

     3.
Закончи уравнения реакций:

 4. В предложенных рядах исключи (вычеркни) одну лишнюю
формулу – такую, которая не образует с остальными однородную группу. Объясни
свой выбор.

а)
HClO4, H2SO3, HNO3, H3PO4;
б) KOH, Mg(OH)2, Al(OH)3;

в)
HBr, HCl, HF; г) Mg(OH)2, Ca(OH)2, Zn(OH)2,
Ba(OH)2;

д) H2CO3,
H2SO3, HNO3; е) ZnO, BeO, MgO.

5.  Составь уравнения реакций, соответствующие схемам:

1) Zn  Na2→ZnO2 → ZnSO4 → Zn(OH)2 → ZnO;

2) Al2O3 → X → Al(OH)3 → Y → AlCl3;

6.  Предложи cпособ разделения смеси KOH,
Mg(OH)2, Fe(OH)3. Напиши уравнения реакций.

………………………………………………………………………………………

……………………………………………………………………………………..

………………………………………………………………………………………

7.
Осуществите следующие превращения:

Al2O3 → Al → Al2O3 → NaAlO2 → AlCl3

8. Из порошкообразной смеси, содержащей
Na2CO3, Fe,  Al и
BaSO4, выделите химическим путем все соединения в чистом виде.
Напишите уравнения реакций и последовательность их проведения (опишите
технологию всей работы).

9. Напишите схему диссоциации
гидроксида хрома (III), а также молекулярное и ионное уравнения реакций
растворения его в:

а) азотной кислоте;

б) растворе гидроксида натрия.

10. Заполни таблицу по химическим свойствам амфотерных гидроксидов
(укажи продукты реакций). Напиши уравнения реакций на примере Zn(OH)2.

Вещества-реагенты

Продукты реакции с амфотерными
гидроксидами

Основный оксид

щелочных/ щелочно-земельных металлов

…………………………………………………………..

остальных металлов

…………………………………………………………..

Амфотерный оксид

…………………………………………………………..

Kислотный оксид

…………………………………………………………..

Основание

растворимое (щелочь)

…………………………………………………………..

нерастворимое

…………………………………………………………..

Амфотерный гидроксид

…………………………………………………………..

Kислота

…………………………………………………………..

Соль

…………………………………………………………..

Металл

…………………………………………………………..

Неметалл

…………………………………………………………..

Термическое разложение

…………………………………………………………..

1.    

В отличие от гидроксида калия гидроксид алюминия
реагирует с:

а) хлоридом натрия

б) соляной кислотой

в) гидроксидом натрия (р-р)

г) серной кислотой

2.    

Гидроксид меди (II)
можно получить при взаимодействии:

а) 
оксида меди
(II) с водой

б) меди с водой

в) водных растворов хлорида меди (II) и гидроксида натрия

г) меди и водного раствора гидроксида
натрия

3.    

В каких группах указаны формулы веществ, все из
которых реагируют с разбавленным раствором гидроксида калия:

а) Al, 
NaCl,  NH
4Cl

б) P2O5,  Al, 
Cu

в) Mn2O7,  ZnO, 
Na2CO3

г) CO2, 
FeCl2,  Zn(OH)2

4.    

Действием каких веществ из гидроксида калия нельзя
получить нитрат калия:

а) нитрат натрия

б) азотная кислота

в) нитрат меди (II)

г) оксид азота (V)

5.    

Укажите схемы реакций, в результате протекания
которых образуется гидроксид алюминия:

а)Al2O3 + H2O →

б)Al2O3 + KOH (р-р)→

в)AlCl3 + K→

г) Al2(SO4)3 +
3Ba(OH)2 →

6.    

В каких парах между веществами при определенных
условиях возможно химическое  взаимодействие:

а) гидроксид калия и оксид кремния (IV)

б) хлорид калия и гидроксид бария

в)  железа  и гидроксид натрия

г) гидроксид кальция и оксид углерода
(
IV)

7.    

Щелочи могут реагировать:

а) только с сильными кислотами

б) все ответы верны

в) только с кислотными оксидами

г) как с кислотными, так и с
амфотерными оксидами

8.    

Укажите формулы веществ, с водными растворами
которых реагирует Cu(OH)2:

а)NaOH (разб.)

б) HCl

в)все ответы
верны

г) KCl

9.    

Основание не образуется при взаимодействии избытка
разбавленного раствора щелочи с:

а) сульфатом алюминия

б) хлоридом железа (II)

в) нитратом аммония

г) все ответы верны

10.                      

Гидроксид алюминия проявляет кислотные свойства,
реагируя с:

а) соляной кислотой

б) гироксидом калия

в) серной кислотой

г) нет верного ответа

Ответы:

1

в

2

в

3

г

4

а

5

г

6

а

7

г

8

б

9

а

10

б

Источник