Какие из перечисленных свойств площадей является основными

Какие из перечисленных свойств площадей является основными thumbnail

В элементарной математике, самыми трудными считаются геометрические задачи. Как научиться решать геометрические задачи, особенно сложные, конкурсные? При решении геометрических задач, как правило, алгоритмов нет, и выбирать наиболее подходящую к данному случаю теорему не просто. Поэтому, желательно в каждой теме выработать какие-то общие положения, которые полезно знать всякому решающему геометрические задачи.
Предлагаем один из алгоритмов решения многих геометрических задач – метод площадей, т.е. решение задач с использованием свойств площадей.

Основные свойства площадей.

Свойство №1

Если вершину треугольника передвигать по прямой, параллельной основанию, то площадь при этом не измениться. 

Доказательство: Рассмотрим ▲ABC и ▲ADC. Они имеют общее основание и равные высоты, так как прямые  AC и  BD параллельные, то расстояние между ними равно h  – высоте ▲ABC и ▲ADC.
Если площадь треугольника находится по формуле $$S = frac{1}{2} cdot
a cdot h$$, то  $$S_{ABC} = S_{ADC} = frac{1}{2} cdot AC cdot h$$.

Свойство №2

Если
два треугольника имеют одинаковые высоты, то отношение их площадей
равно отношению длин оснований (сторон, на которые опущены эти высоты).
 

Доказательство: Пусть h1 = h2  в двух треугольниках с основаниями a  и b.
Рассмотрим
отношение площадей этих треугольников $$frac{S_{1}}{S_{2}}=
frac{frac{1}{2} cdot a cdot h_{1}}{frac{1}{2} cdot b cdot
h_{2}}$$.
Упростив, получим $$frac{S_{1}}{S_{2}}= frac{a}{b}$$.

Если два треугольника имеют общий
угол, то их площади относятся как произведение сторон, заключающих
этот угол. 

Доказательство:
Рассмотрим ▲ABC  и ▲MBN с общим углом B , где AB = a, BC = b,   MB = aNB = b1. Пусть S1 = SMBN  и S2 = SABC.
Используя формулу площади треугольника вида $$S = frac{1}{2} cdot a cdot b cdot singamma$$, рассмотрим отношение
площадей ▲ABC  и ▲MBN

Тогда 
$$frac{S_{1}}{S_{2}} = frac{frac{1}{2} cdot a_{1} cdot b_{1} cdot
sin B}{frac{1}{2} cdot a cdot b cdot sin B}$$. Упростив, получим $$frac{S_{1}}{S_{2}} = frac{ a_{1} cdot b_{1}} { a cdot b}$$.

Свойство №4

Отношение площадей подобных треугольников равны квадрату коэффициента подобия.

Доказательство:
Рассмотрим  ▲ABC  и ▲MBN. Пусть AB = k MB, BC = k NB  и $$angle ABC = angle MBN$$. Используя формулу площади треугольника
вида $$S = frac{1}{2} cdot a cdot b cdot singamma$$, рассмотрим отношение подобных площадей ▲ABC и ▲MBN.   Тогда   $$frac{S_{1}}{S_{2}} = frac{frac{1}{2} cdot AB cdot BC cdot sin B}{frac{1}{2} cdot MB cdot NB cdot sin B}=       frac{k cdot NB cdot k cdot MB}{MB cdot NB} = k^{2}$$ .

Свойство № 5

Медиана треугольника делит его на две равновеликие части.

Доказательство: 
Рассмотрим ▲ABC . Пусть медиана  BM , тогда $$AM = MC = frac{1}{2}AC$$. Медиана делит треугольник на
два с одинаковой высотой. Найдем площади треугольников  ▲ABM и ▲MBC  по
формуле $$S = frac{1}{2}cdot a cdot h$$. Получим $$S_{ABM} = frac{1}{2}cdot AM cdot h$$  и $$S_{MBC} = frac{1}{2}cdot MC cdot h$$. Значит  $$S_{ABM} = S_{MBC}$$.

Свойство №6

Медианы треугольника делят его на три  равновеликие части.

Доказательство: 
Рассмотрим ▲ABC. Проведем медианы из всех вершин, которые пересекаются в
точке O. Получим треугольники ▲AOB, ▲BOC, ▲AOC. Пусть их площади равны
соответственно  S1,  S2,  S3. А площадь  ▲ABC равна  S. Рассмотрим ▲ABK и  ▲CBK, они
равной площади, т.к.  BK медиана. В треугольнике ▲AOC OK – медиана, значит
площади треугольников ▲AOKи ▲COK  равны. Отсюда следует, что S1 = S2. Аналогично
можно доказать, что S2 = S3 и S3 = S1 .

Свойство №7

Средние линии треугольника площади S  отсекают от него треугольники площади  .

Доказательство:  Рассмотрим ▲ABC. NM – средняя линия в треугольнике и она равна половине основания AC. Если SABC = S , то $$S_{NBM} = frac{1}{2} cdot NM cdot h_{1}= frac{1}{2}(frac{1}{2} cdot AC)(frac{1}{2}cdot h) = frac{1}{4}cdot S$$. Аналогично можно доказать, что площади всех треугольников равны одной четвертой части площади ▲ABC.

Свойство №8

Медианы треугольника делят его на 6 равновеликих частей.

Доказательство:  По
свойству №7 площади ▲AOB, ▲BOC, ▲AOC равны. По свойству №5 площади   ▲AOM, ▲BOM  равны.
Значит  S1 = S6 . Аналогично S2 = S3. Если  S1 + S6 = S2 + S3  и 2S1 = 2S2  значит  S1 = S2. И так
далее. получим, что все шесть треугольника имеют равные площади и они
составляют шестую часть от площади ▲ABC.

Источник

Опубликовано 1 год назад по предмету
Математика
от Фистах

  1. Ответ

    Ответ дан
    емнмкгднакснр

    А) площадь квадрата равна квадрата своей стороны .

Не тот ответ, который вам нужен?

Найди нужный

Самые новые вопросы

Никита081

Математика – 6 месяцев назад

Сколько здесь прямоугольников

Alinashastova

История – 1 год назад

Какое управление было в древнейшем риме? как звали первого и последнего из царей рима?

diankayusupova3

Литература – 1 год назад

Уроки французского ответе на вопрос : расскажите о герое по следующему примерному плану: 1.почему мальчик оказался в райцентре ? 2.как он чувствовал себя на новом месте? 3.почему он не убежал в деревню? 4.какие отношения сложились у него с товарищами? 5.почему он ввязался в игру за деньги? 6.как характеризуют его отношения с учительницей ? ответе на эти вопросы пожалуйста ! сочините сочинение пожалуйста

tegysigalpa2012

Русский язык – 1 год назад

Помогите решить тест по русскому языку тест по русскому языку «местоимение. разряды местоимений» для 6 класса
1. укажите личное местоимение:
1) некто
2) вас
3) ни с кем
4) собой
2. укажите относительное местоимение:
1) кто-либо
2) некоторый
3) кто
4) нам
3. укажите вопросительное местоимение:
1) кем-нибудь
2) кем
3) себе
4) никакой
4. укажите определительное местоимение:
1) наш
2) который
3) некий
4) каждый
5. укажите возвратное местоимение:
1) свой
2) чей
3) сам
4) себя
6. найдите указательное местоимение:
1) твой
2) какой
3) тот
4) их
7. найдите притяжательное местоимение:
1) самый
2) моего
3) иной
4) ничей
8. укажите неопределённое местоимение:
1) весь
2) какой-нибудь
3) любой
4) этот
9. укажите вопросительное местоимение:
1) сколько
2) кое-что
3) она
4) нами
10. в каком варианте ответа выделенное слово является притяжательным местоимением?
1) увидел их
2) её нет дома
3) её тетрадь
4) их не спросили

pakhotnov228

Русский язык – 1 год назад

Переделай союзное предложение в предложение с бессоюзной связью.
1. океан с гулом ходил за стеной чёрными горами, и вьюга крепко свистала в отяжелевших снастях, а пароход весь дрожал.
2. множество темноватых тучек, с неясно обрисованными краями, расползались по бледно-голубому небу, а довольно крепкий ветер мчался сухой непрерывной струёй, не разгоняя зноя
3. поезд ушёл быстро, и его огни скоро исчезли, а через минуту уже не было слышно шума

ggg3288

Русский язык – 1 год назад

помогите прошу!перепиши предложения, расставляя недостающие знаки препинания. объясни, что соединяет союз и. если в предложении один союз и, то во втором выпадающем списке отметь «прочерк».пример:«я шёл пешком и,/поражённый прелестью природы/, часто останавливался».союз и соединяет однородные члены.ночь уже ложилась на горы (1) и туман сырой (2) и холодный начал бродить по ущельям.союз и соединяет:1) части сложного предложенияоднородные члены,2) однородные членычасти сложного предложения—.поэт — трубач зовущий войско в битву (1) и прежде всех идущий в битву сам (ю. янонис).союз и соединяет:1) части сложного предложенияоднородные члены,2) ​

Аккаунт удален

Физика – 1 год назад

Вокруг прямого проводника с током (смотри рисунок) существует магнитное поле. определи направление линий этого магнитного поля в точках a и b.обрати внимание, что точки a и b находятся с разных сторон от проводника (точка a — снизу, а точка b — сверху). рисунок ниже выбери и отметь правильный ответ среди предложенных.1. в точке a — «от нас», в точке b — «к нам» 2. в точке a — «к нам», в точке b — «от нас» 3. в обеих точках «от нас»4. в обеих точках «к нам»контрольная работа по физике.прошу,не наугад важно

Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Источник

План-конспект урока по теме «Решение задач с использованием свойств площадей»

Цель: развитие умений в применение знаний на практике; развивать мышление, внимание и память;

воспитывать умение контролировать себя и не бояться ошибаться;

научиться находить различные пути поиска решения задач с использованием свойств площадей.

hello_html_m2ca3c020.png

С – 1 С – 2

hello_html_53c6c656.png

С – 3 С – 4

hello_html_m28d3264e.png

С – 5 С – 6

hello_html_1220d93f.png

С – 7 С – 8

Рис. 2.

Ход урока

  1. Организационный момент.

  2. Сообщение темы урока

Учитель: Сегодня мы на уроке будем решать задачи, свойства площадей.

Двух учеников приглашают к доске.

    1. Запишите на доске все формулы площади треугольника.

    2. Запишите на доске формулы площади трапеции.

Ответы

1).

2)

3) ,

где

4)

5) ,

r – радиус вписанной в треугольник окружности

6)

II. 1).

2) , где MN – средняя линия трапеции

3) ,

где d1, d2 – диагонали трапеции, α – угол между ними

4) ,

где с – боковая сторона трапеции, h –перпендикуляр из середины другой боковой стороны на первую или её продолжение

Пока ученики записывают формулы, спросить учеников с мест правила «Свойства площадей».

Ответ

1). Каждая фигура имеет положительную площадь.

2). Площадь квадрата со стороной равной единице длины равна единице площади.

3). Если фигура разбивается на две части, являющиеся простыми фигурами, то площадь этой фигуры равна сумме площадей её частей.

Рассмотрите площади треугольника, написанные на доске.

Вопрос. Какая из формул является основной?

Ответ. .

Назовите следствия из этой формулы, используя таблицу «Свойства площадей».

С–1. Если вершину треугольника передвигать по прямой, параллельной основанию, то площадь при этом не изменится.

С–2. Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты).

С–3. Если два треугольника имеют общий угол, то их площади относятся как произведение сторон, заключающих этот угол.

С–4. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

С–5. Медиана треугольника делит его на 2 равновеликие части.

С–6. Медианы треугольника делят его на три равновеликие части.

С–7. Медианы треугольника делят его на 6 равновеликих частей.

С–8. Средняя линия треугольника площади отсекает от него треугольник площади .

Решение задач

Задача 1. Дано – трапеция, и – диагонали. Пересекающиеся диагонали разбивают трапецию на 4 треугольника с вершиной в точке О. и – треугольники, которые прилегают к основаниям и треугольники и – треугольники, которые прилегают к боковым сторонам. Обозначим , , , , .

Найдите связь между площадями треугольника.

hello_html_m19507fd1.png

Рис. 2.2

Выразите площадь трапеции через и , т. е. через площади треугольников, прилегающих к основаниям трапеции.

Так как , то надо выразить и через и .

Вопрос. Что можно сказать про площади и ?

Ответ. =, т. к. треугольники и имеют одинаковые площади, а если от равных отнять площадь , то получим равные площади и .

Выразите через и . , .

Докажите, что и .

(2.1)

(2.2)

Перемножив (2.1) и (2.2), получим

.

.

Вопрос. Как сформулировать правило, которое мы вывели?

Ответ. Площадь треугольника, прилегающего к боковой стороне трапеции есть среднее геометрическое между площадями треугольников, прилегающих к основаниям трапеции.

Вопрос. Как вывести соотношение , используя свойства площадей?

Ответ. .

Вопрос. Какое свойство площадей здесь использовались?

Ответ. С – 3, С – 2 (ученики отвечают устно).

Вопрос. Как можно ещё вывести соотношения ?

Ответ. .

; .

Найдите площадь трапеции (рис. 3)

hello_html_73c3e578.png

Рис. 3

или .

Таким соотношением связана площадь трапеции с площадями треугольников, прилегающих к её основаниям. Итак, для трапеции

.

Вопрос. Справедливо ли это соотношение для любого четырёхугольника?

Ответ. Нет, т. к. .

Основания у треугольников и одинаковые (рис. 2.4), но их вершины не на параллельных прямых.

hello_html_m6b7e7b1a.png

Рис. 2.4

Вопрос. А какое соотношение между можно вывести для четырёхугольника (рис. 2.4)?

Ответ. ,

т. е. произведения площадей треугольников, прилегающих к противоположным сторонам четырёхугольника равны.

Задача 2. (обратная).

Дано: выпуклый четырёхугольник

Докажите, что этот четырёхугольник есть трапеция.

Доказательство.

С другой стороны, (рис. 2.4). , следовательно , но , (рис. 2.4), следовательно , следовательно , следовательно , следовательно и , т. е. , а это означает, что , т. е. четырёхугольник – трапеция.

Задача 3. Через некоторую точку, взятую внутри треугольника проведены 3 прямые, соответственно параллельные сторонам треугольника. Эти прямые разделяют треугольник на 6 частей, из которых три треугольника с площадями . Найдите площадь треугольника.

hello_html_5c8adf0b.png

Рис. 2.5

Дано: . . . . , , .

Найдите .

Решение.

1)  , следовательно 9площади подобных треугольников относятся как квадрат коэффициента подобия).

2) ;.

.

, отсюда .

Итог урока

Повесить таблицу «Итог урока» (сделать из достаточно плотной бумаги, с магнитами на обратной стороне, прикрепляется мгновенно на обратную доску).

Вопрос. Мысленно вернитесь ко всем задачам, которые были рассмотрены на уроке. Попытайтесь вспомнить из всех свойств площадей, какие свойства мы применяли на уроке.

Ответ. 1) Равные фигуры имеют одинаковые площади.

2) Если фигура разбивается на части, являющиеся простыми фигурами, то площадь этой фигуры равна сумме площадей её частей.

3) Если от равных отнять равные, то получим равные.

Вопрос. Какие следствия из формулы мы применяли?

Ответ. С – 1, С – 2, С – 3, С – 4, С – 5 все следствия ученики рассказывают.

Вопрос. Из множества формул для нахождения площади простых фигур какие бы вы использовали?

Ответ. ;.

Задание на дом

1. Диагонали делят трапецию на 4 треугольника. Площади двух из них равны 1 см2 и 2 см2. Какой может быть площадь трапеции?

2. Точки – середины сторон выпуклых четырёхугольников и . Докажите, что .

3. Дано: ; – середины сторон соответственно. пересекает в точке . Докажите, что (задача автора).

4. В параллелограмме точки и делят диагональ на три равные части. Точки и – середины сторон и . Найдите отношение площади четырёхугольника к площади параллелограмма (задача автора, дополнительное задание).

Домашнее задание выдаётся каждому ученику на листке.

Источник

  1. Главная
  2. Справочники
  3. Справочник по математике 5-9 класс
  4. Геометрия
  5. Единицы измерения площадей. Свойства площадей

Измерение площадей

Для измерения площадей используют такие единицы измерения:

квадратный сантиметр, квадратный дециметр, квадратный метр, квадратный километр

Вспомните, что квадрат – это прямоугольник, у которого все стороны равны

Какие из перечисленных свойств площадей является основными

Квадратный сантиметр – это площадь квадрата со стороной в 1 см    

Какие из перечисленных свойств площадей является основными

Квадратный дециметрэто площадь квадрата со стороной в 1 дм

Какие из перечисленных свойств площадей является основными 

Квадратный метрэто площадь квадрата со стороной в 1 м

Какие из перечисленных свойств площадей является основными

Для измерения больших площадей используют квадратный километр – это площадь квадрата, сторона которого равна 1 км

Какие из перечисленных свойств площадей является основными

Слова «квадратный километр» сокращенно при числе записывают так – 1 км2, 2 км2, 130 км2.

В квадратных километрах измеряют, например, площади городов (площадь Москвы 1091 км2)

Обозначают площадь заглавной буквой латинского алфавита S

Площади полей измеряют в гектарах (га).

Гектарэто площадь квадрата со стороной 100 м.

Значит, 1 га равен 100 ∙ 100 квадратных метров, то    есть 1 га = 10 000 м2.

Какие из перечисленных свойств площадей является основными

Площади небольших участков земли измеряют в арах (а).

Ар (сотка) – площадь квадрата со стороной 10 м.

Значит, 1 а  =  100 м2.

Так как 1 дм = 10 см, то в 1 дм2 содержится 10 · 10 квадратных сантиметров, то есть 1 дм2 = 100 см2.

Так же устанавливаем, что 1 м2 = 100 дм2.

Так как 1 м = 100 см, то в 1 м2 содержится 100 ∙  100 квадратных сантиметров, то есть 1 м2 = 10 000 см2.

Измерить площадь – значит подсчитать, сколько единичных квадратов в ней помещается.

Соотношения между единицами измерения площадей 

Какие из перечисленных свойств площадей является основными

Если длина и ширина прямоугольника выражены, например, в метрах, то его площадь выражается в квадратных метрах.

Если длина и ширина прямоугольника измерены в разных единицах, то их надо выразить в одних единицах.

Свойства площадей

  1. Равные фигуры имеют равные площади (равные фигуры при наложении совпадут).
  2. Площадь фигуры равна сумме площадей фигур, из которых она состоит.

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Отрезок

Ломаная

Четырехугольники

Прямоугольник, его периметр и площадь. Ось симметрии фигуры

Квадрат. Периметр и площадь квадрата.

Многоугольники. Правильные многоугольники. Равенство фигур.

Плоскость

Прямая

Луч

Шкалы и координаты

Прямоугольный параллелепипед. Пирамида.

Объем прямоугольного параллелепипеда

Куб. Площадь поверхности куба

Куб. Объем куба

Угол. Обозначение углов

Прямой и развернутый угол

Чертежный треугольник

Измерение углов. Транспортир. Виды углов

Треугольник и его виды

Окружность, круг, шар

Отрезок-xx

Геометрия

Правило встречается в следующих упражнениях:

5 класс

Задание 756,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 800,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1242,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1454,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1797,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Упражнение 565,
Мерзляк, Полонский, Якир, Учебник

Упражнение 572,
Мерзляк, Полонский, Якир, Учебник

Упражнение 582,
Мерзляк, Полонский, Якир, Учебник

Упражнение 628,
Мерзляк, Полонский, Якир, Учебник

Упражнение 1,
Мерзляк, Полонский, Якир, Учебник

6 класс

Задание 138,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 465,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 768,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 800,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 833,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 857,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Источник

Читайте также:  Какое назначение имеют механические свойства