Какие ионы содержатся в водных растворах cuso4

Медный купорос
В лабораторных условиях
В лаборатории CuSO4 можно получить действием концентрированной серной кислоты на медь при нагревании:
Cu + 2H2SO4 → CuSO4 + SO2 ↑ + 2H2O
температура не должна превышать 60 °С, при большей температуре в значительных количествах образуется побочный продукт — сульфид меди(I):
5Cu + 4H2SO4 → 3CuSO4 + Cu2S ↓ + 4H2O
Также в лабораторных условиях сульфат меди (II) может быть получен реакцией нейтрализации гидроксида меди(II) серной кислотой, для получения сульфата меди высокой чистоты используют соответственно чистые реактивы:
Cu(OH)2 + H2SO4 → CuSO4 + 2H2O
Чистый сульфат меди может быть получен следующим образом. В фарфоровую чашку наливают 120 мл дистиллированной воды, прибавляют 46 мл химически чистой серной кислоты плотностью 1,8 г/см3 и помещают в смесь 40 г чистой меди (например, электролитической). Затем нагревают до 70—80 °С и при этой температуре в течение часа постепенно, порциями по 1 мл, прибавляют 11 мл конц. азотной кислоты. Если медь покроется кристаллами, прибавить 10—20 мл воды. Когда реакция закончится (прекратится выделение пузырьков газа), остатки меди вынимают, а раствор упаривают до появления на поверхности пленки кристаллов и дают остыть. Выпавшие кристаллы следует 2—3 перекристаллизовать из дистиллированной воды и высушить.
Очистка
Очистить загрязненный или технический сульфат меди можно перекристаллизацией — вещество растворяется в кипящей дистиллированной воде до насыщения раствора, после чего охлаждается до приблизительно +5 °С. Полученный осадок кристаллов отфильтровывается. Однако даже многократная перекристаллизация не позволяет избавиться от примеси соединений железа, которые являются наиболее распространенной примесью в сульфате меди.
Для полной очистки медный купорос кипятят с диоксидом свинца PbO2 или пероксидом бария BaO2, пока отфильтрованная проба раствора не покажет отсутствия железа. Затем раствор фильтруют и упаривают до появления на поверхности пленки кристаллов, после чего охлаждают для кристаллизации.
По Н. Шоорлю очистить сульфат меди можно так: к горячему раствору CuSO4 прибавить небольшие количества пероксида водорода H2O2 и гидроксида натрия NaOH, прокипятить и отфильтровать осадок. Выпавшие из фильтрата кристаллы дважды подвергаются перекристаллизации. Полученное вещество имеет чистоту не ниже квалификации «ХЧ».
Глубокая очистка
Существует более сложный способ очистки, позволяющий получить сульфат меди особой чистоты, с содержанием примесей около 2·10-4 %.
Для этого готовится водный, насыщенный при 20°С раствор сульфата меди (вода используются только бидистиллированная). В него добавляют перекись водорода в количестве 2-3 мл 30 % раствора на 1 литр, перемешивают, вносят свежеосаждённый основной карбонат меди в количестве 3-5 грамм, нагревают и кипятят 10 минут для разложения H2O2.
Затем раствор охлаждают до 30—35 °С, фильтруют и приливают 15 мл 3%-ного раствора диэтилдитиокарбамата натрия и выдерживают в мешалке три-четыре часа не понижая температуры. Далее раствор быстро процеживают от крупных хлопьев комплексов и вносят активированный уголь БАУ-А на полчаса при перемешивании. Затем раствор следует отфильтровать вакуумным методом.
Дальше в раствор CuSO4 приливают на 1 л около 200 мл насыщенного раствора NaCl квалификации «Ч» и вносят чистый алюминий в проволоке или обрезках до полного прохождения реакции, выделения меди и просветления раствора (при этом выделяется водород). Выделенную медь отделяют от алюминия взбалтыванием, осадок промывают декантацией сперва водой затем заливают горячим 5—10 % раствором соляной кислоты ХЧ при взбалтывании в течение часа и постоянным подогревом до 70—80 °С, затем промывают водой и заливают 10—15%-ной серной кислотой (ОСЧ 20-4) на час с подогревом при том же интервале температур. От степени и тщательности промывания кислотами, а также квалификации применяемых далее реактивов зависит чистота дальнейших продуктов.
После промывки кислотами медь снова моют водой и растворяют в 15—20%-ной серной кислоте (ОСЧ 20-4) без её большого избытка с добавлением перекиси водорода (ОСЧ 15-3). После прохождения реакции полученный кислый раствор сульфата меди кипятят для разложения избытка перекиси и нейтрализуют до полного растворения вначале выпавшего осадка перегнанным 25%-ным раствором аммиака (ОСЧ 25-5) или приливают раствор карбоната аммония, очищенного комплексно-адсорбционным методом до особо чистого.
После выстаивания в течение суток раствор медленно фильтруют. В фильтрат добавляют серную кислоту (ОСЧ) до полного выпадения голубовато-зелёного осадка и выдерживают до укрупнения и перехода в зелёный основной сульфат меди. Зелёный осадок выстаивают до компактности и тщательно промывают водой до полного удаления растворимых примесей. Затем осадок растворяют в серной кислоте, фильтруют, устанавливают рН=2,5—3,0 и перекристаллизовывают два раза при быстром охлаждении, причем при охлаждении раствор каждый раз перемешивают для получения более мелких кристаллов сульфата меди. Выпавшие кристаллы переносят на воронку Бюхнера и удаляют остатки маточного раствора с помощью водоструйного насоса. Третья кристаллизация проводится без подкисления раствора с получением чуть более крупных и оформленных кристаллов.
Физические свойства
Пентагидрат сульфата меди (II) (медный купорос) — синие прозрачные кристаллы триклинной сингонии. Плотность 2,284 г/см3. При температуре 110 °С отщепляется 4 молекулы воды, при 150 °С происходит полное обезвоживание.
Строение кристаллогидрата
Структура медного купороса приведена на рисунке. Как видно, вокруг иона меди координированы два аниона SO42− по осям и четыре молекулы воды (в плоскости), а пятая молекула воды играет роль мостиков, которые при помощи водородных связей объединяют молекулы воды из плоскости и сульфатную группу.
Растворимость CuSO4, г/100 г H2O
Термическое воздействие
При нагревании пентагидрат последовательно отщепляет две молекулы воды, переходя в тригидрат CuSO4·3H2O (этот процесс, выветривание, медленно идёт и при более низких температурах [в том числе при 20—25 °С]), затем в моногидрат (при 110 °С) CuSO4·H2O, и выше 258 °C образуется безводная соль.
Выше 650 °C становится интенсивным пиролиз безводного сульфата по реакции:
2CuSO4 → t 2CuO + 2SO2 + O2
Растворимость
Растворимость сульфата меди (II) по мере роста температуры проходит через плоский максимум, в течение которого растворимость соли почти не меняется (в интервале 80—200 °C). (см. рис.)
Как и все соли, образованные ионами слабого основания и сильной кислоты, сульфат меди (II) гидролизуется, (степень гидролиза в 0,01 М растворе при 15 °C составляет 0,05 %) и даёт кислую среду (pH указанного раствора 4,2). Константа диссоциации составляет 5⋅10−3.
Химические свойства
Электролитическая диссоциация
CuSO4 — хорошо растворимая в воде соль и сильный электролит, в растворах сульфат меди(II) так же, как и все растворимые соли, диссоциирует в одну стадию:
CuSO4 → Cu2+ + SO42−
Реакция замещения
Реакция замещения возможна в водных растворах сульфата меди с использованием металлов активнее меди, стоящих левее меди в электрохимическом ряду напряжения металлов:
CuSO4 + Zn → Cu ↓ + ZnSO4
Реакция с растворимыми основаниями (щелочами)
Сульфат меди(II) реагирует с щелочами с образованием осадка гидроксида меди(II) голубого цвета:
CuSO4 + 2KOH → Cu(OH)2 ↓ + K2SO4 CuSO4 + 2LiOH → Cu(OH)2 ↓ + Li2SO4 CuSO4 + 2NaOH → Cu(OH)2 ↓ + Na2SO4
Сокращённое ионное уравнение (Правило Бертолле)
Cu2+ + 2OH− → Cu(OH)2 ↓
Реакция обмена с другими солями
Сульфат меди вступает также в обменные реакции по ионам Cu2+ и SO42-
CuSO4 + BaCl2 → CuCl2 + BaSO4 ↓ CuSO4 + K2S → CuS ↓ + K2SO4
Прочее
С сульфатами щелочных металлов и аммония образует комплексные соли, например, Na2[Cu(SO4)2]·6H2O.
Ион Cu2+ окрашивает пламя в зелёный цвет.
Производство и применение
Друза кристаллов пентагидрата сульфата меди(II) CuSO4 · 5H2O, выращенная в домашних условиях
Монокристалл пентагидрата
Сульфат меди (II) — важнейшая из солей меди. Часто служит исходным сырьём для получения других соединений меди.
Безводный сульфат меди — хороший влагопоглотитель и может быть использован для абсолютирования этанола, осушения газов (в том числе воздуха) и как индикатор влажности.
В строительстве водный раствор сульфата меди применяется для нейтрализации последствий протечек, ликвидации пятен ржавчины, а также для удаления выделений солей («высолов») с кирпичных, бетонных и оштукатуренных поверхностей, а также как антисептическое и фунгицидное средство для предотвращения гниения древесины.
В сельском хозяйстве медный купорос применяется как антисептик, фунгицид и медно-серное удобрение. Для обеззараживания ран деревьев используется 1%-ный раствор (100 г на 10 л), который втирается в предварительно зачищенные поврежденные участки. Против фитофтороза томатов и картофеля производятся опрыскивания посадок 0,2 % раствором (20 г на 10 л) при первых признаках заболевания, а также для профилактики при угрозе возникновения болезни (например, в сырую влажную погоду). Раствором сульфата меди поливается почва для обеззараживания и восполнения недостатка серы и меди (5 г на 10 л). Однако чаще медный купорос применяется в составе бордоской жидкости — основного сульфата меди CuSO4·3Cu(OH)2 против грибковых заболеваний и виноградной филлоксеры. Для этих целей сульфат меди(II) имеется в розничной торговле.
Для борьбы с цветением воды в водохранилищах также используется химическая обработка медным купоросом.
Также он применяется для изготовления минеральных красок, в медицине, как один из компонентов электролитических ванн для меднения и т. п. и в составе прядильных растворов в производстве ацетатного волокна.
В пищевой промышленности зарегистрирован в качестве пищевой добавки E519. Используется как фиксатор окраски и консервант.
В быту применяют для выведения пятен ржавчины на потолке после затоплений.
В пунктах скупки лома цветных металлов раствор медного купороса применяется для выявления цинка, марганца и магния в алюминиевых сплавах и нержавейке. При выявлении этих металлов появляются красные пятна.
Токсикология
Сульфат меди(II) является соединением с умеренной токсичностью и относится к классу опасности 4 (малоопасное вещество). Смертельная доза медного купороса составляет от 45 до 125 граммов для взрослого человека перорально (при проглатывании), в зависимости от массы, состояния здоровья, иммунитета к избытку меди и от других факторов. Признаки отравления становится заметным при разовом потреблении более 0,5 г соединения внутрь (т. н. токсическая доза). LD50 для крыс 612,9 мг/кг. Картина отравления при вдыхании аэрозолей более сложна.
Попадание на кожу сухого вещества безопасно, но его необходимо смыть. Аналогично при попадании растворов и увлажненного твердого вещества. При попадании в глаза необходимо обильно промыть их проточной водой (слабой струей). При попадании в желудочно-кишечный тракт твердого вещества или концентрированных растворов необходимо промыть желудок пострадавшего 0,1 % раствором марганцовки, дать выпить пострадавшему солевое слабительное — сульфат магния 1—2 ложки, вызвать рвоту, дать мочегонное. Кроме того, попадание в рот и желудок безводного вещества может вызвать термические ожоги.
Слабые растворы сульфата меди при приёме внутрь действуют как сильное рвотное средство и иногда применяются для провоцирования рвоты.
При работе с порошками и пылью сульфата меди (II), следует соблюдать осторожность и не допускать их пыления, необходимо использовать маску или респиратор, а после работы вымыть лицо. Острая токсическая доза при вдыхании аэрозоля — 11 мг/кг. При попадании сульфата меди через дыхательные пути в виде аэрозоля нужно вывести пострадавшего на свежий воздух, прополоскать рот водой и промыть крылья носа.
Хранить вещество следует в сухом прохладном месте, в плотно закрытой жесткой пластиковой или стеклянной упаковке, отдельно от лекарств, пищевых продуктов и кормов для животных, в недоступном для детей и животных месте.
Источник
1. При диссоциации 1 моль Na2SO4 образуются:
- 1 моль ионов натрия и 1 моль сульфат-ионов
- 2 моль ионов натрия и 4 моль сульфат-ионов
- 2 моль ионов натрия и 1 моль сульфат-ионов
- 2 моль ионов натрия, 1 моль ионов серы и 4 моль ионов кислорода;
2. В разбавленном растворе серной кислоты наиболее высока концентрация частиц:
- H+
- SO42-
- HSO4-
- H2SO4;
3. Наибольшей электропроводностью обладает раствор, 1 л которого содержит 1 моль:
- CH3COOH
- C2H5OH
- H2S
- CH3COONa;
4. Наименьшую степень диссоциации имеет:
- сульфат натрия
- ацетат калия
- азотная кислота
- пропионовая кислота;
5. Не является электролитом:
- хлорид фениламмония
- глюкоза
- муравьиная кислота
- формиат натрия;
6. Одновременно в растворе не могут находиться ионы:
- H+ и CO32-
- Ag+ и NO3-
- Ba2+ и Cl-
- Na+ и OH-;
7. Электрический ток хорошо проводит:
- дистиллированная вода
- водный раствор сахара
- водный раствор хлорида серебра
- водный раствор хлорида натрия;
8. Электрический ток практически не проводит водный раствор:
- аммиака
- соляной кислоты
- кислорода
- хлорида бария;
9. В растворе электролита под действием электрического поля:
- катионы движутся к катоду, а анионы – к аноду
- анионы движутся к катоду, а катионы– к аноду
- катионы и анионы движутся к катоду
- катионы и анионы движутся к аноду;
10. Химическая связь в электролитах:
- ковалентная неполярная или слабо полярная
- ионная
- ковалентная сильно полярная
- ковалентная сильно полярная или ионная;
11. Сумма коэффициентов в уравнении электролитической диссоциации средней соли, полученной при взаимодействии гидроксида железа (III) и серной кислоты, равна:
- 3
- 4
- 5
- 6;
12. Наибольшее количество ионов в 1 л раствора, содержащего 1 моль вещества, содержится в случае:
- NaCl
- CH3COOH
- NaHSO4
- NaHSO3;
13. Какая из приведенных ниже пар веществ может реагировать в водном растворе:
- NaOH и KCl
- NaNO3 и AgCl
- NaOH и MgCl2
- Na2SO4 и FeCl3;
14.Сокращенно ионное уравнение: H+ + OH- → H2O соответствует реакции:
- соляной кислоты и едкого натра
- соляной кислоты и карбоната натрия
- соляной кислоты и оксида натрия
- соляной или серной кислоты и оксида натрия;
15. Сумма всех коэффициентов в полном и сокращенном ионном уравнении реакции NaCl и AgNO3 в растворе равна:
- 3 и 7
- 7 и 3
- 4 и 3
- 3 и 4;
16. Реакция ионного обмена идет до конца, если в результате реакции образуется:
- нерастворимое вещество
- газообразное вещество
- малодиссоциирующее вещество
- во всех этих случаях;
17. Реактивом на ион Ag+ является растворимое вещество, содержащее ион:
- Cl-
- CO32-
- S2-
- SO42- ;
18. Реакция сульфита натрия и соляной кислоты идет потому, что в результате реакции образуется:
- нерастворимое вещество
- газообразное вещество
- растворимое вещество
- реакция не идет;
19. Реактивом на ион NH4+ является:
- разбавленная кислота как источник протонов H+
- разбавленная щелочь как источник ионов OH-
- концентрированная серная кислота
- растворимая соль бария;
20. Сокращенное ионное уравнение: NaHSO4 → Na+ + HSO4-, HSO4- → H+ + SO42- , соответствует реакции:
- диссоциации средней соли
- диссоциации кислой соли
- диссоциации основной соли
- разложения вещества;
21. Левая часть краткого ионного уравнения реакции CO32- + 2H+ =…. соответствует взаимодействию в растворе:
- угольной кислоты и гидроксида натрия
- карбоната кальция и соляной кислоты
- углекислого газа и воды
- азотной кислоты и карбоната натрия;
22. Правая часть краткого ионного уравнения ……. = CO2 + H2O соответствует взаимодействию:
- карбоната калия с азотной кислотой
- карбоната кальция с соляной кислотой
- карбоната бария с серной кислотой
- углекислого газа и воды;
23. Не может быть правой частью краткого ионного уравнения реакции запись:
- Ag+ + Cl- + H2O
- CaCO3
- H2 + Mg2+
- H2O + Cu2+;
24. Реакция между карбонатом магния и уксусной кислотой отражается кратким ионным уравнением:
- CO32- + 2H+ = CO2 + H2O
- MgCO3 + 2H+ = Mg2+ + CO2 + H2O
- MgCO3 + 2CH3COOH = Mg2+ + 2CH3COO- + CO2 + H2O
- CO32- + 2CH3COOH = 2CH3COO- + CO2 + H2O;
25. Гидроксид калия может быть получен в реакции ионного обмена, в растворе между:
- гидроксидом натрия и хлоридом калия
- гидроксидом бария и сульфатом калия
- гидроксидом меди (II) и хлоридом калия
- хлоридом калия и водой;
26. В результате реакции хлорида алюминия с водой образуется:
- кислая соль
- основная соль
- гидроксид
- реакция не идет;
27. При реакции хлорида магния с водой образуется:
- кислая соль
- основная соль
- гидроксид
- реакция не идет;
28. При реакции карбоната натрия с водой образуется:
- кислая соль
- основная соль
- гидроксид
- реакция не идет;
29. При растворении хлорида цинка в воде среда становится:
- щелочной
- кислой
- нейтральной
- щелочной, кислой или нейтральной в зависимости от температуры и давления;
30. При растворении ортофосфата калия в воде среда становится:
- щелочной
- кислой
- нейтральной
- щелочной, кислой или нейтральной в зависимости от температуры и давления;
31. При растворении нитрата кальция в воде среда становится:
- щелочной
- кислой
- нейтральной
- щелочной, кислой или нейтральной в зависимости от температуры и давления;
32. В растворе нитрата алюминия метилоранж имеет окраску:
- красную
- желтую
- оранжевую
- бесцветную;
33. Щелочную среду имеет раствор:
- сульфата калия
- силиката натрия
- хлорида цинка
- нитрата аммония;
34. Фенолфталеин приобретет малиновую окраску в растворе:
- сульфата меди (II)
- хлорида калия
- карбоната натрия
- нитрата бария;
35. Кислая среда в растворе:
- KI
- NaF
- NaNO2
- CuSO4;
36. В растворе йодида цинка лакмус имеет окраску:
- красную
- синею
- зеленую
- фиолетовую;
37. Нейтральная среда в растворе:
- сульфата калия
- нитрата натрия
- ацетата натрия
- фторида калия;
38. Щелочную среду имеют растворы:
- Na2S и Na2SO4
- Na2SO4 и NaF
- NaF и NaNO2
- NaNO2 и AlCl3;
39. В большей степени гидролиз протекает в растворе каждой из двух солей:
- FeCl2 и NaClO2
- FeCl3 и NaClO
- FeCl3 и NaClO2
- FeCl2 и NaClO;
40. При сливании растворов AlCl3 и Na2CO3 продуктами являются:
- Al2(CO3)3 и NaCl
- Al(OH)3, CO2 и NaCl
- Al(OH)3, H2CO3 и NaCl
- Al(OH)2Cl, NaHCO3 и NaCl;
41. Установите соответствие между составом соли и типом её гидролиза в водном растворе:
Состав соли | Тип гидролиза |
1) FeCl2 | А) по катиону |
2) КNO3 | Б) по аниону |
3) Al2S3 | В) по катиону и аниону |
Г) гидролизу не подвергается; |
42. Установите соответствие между составом соли и типом её гидролиза в водном растворе:
Состав соли | Тип гидролиза |
1) Zn(NO3)2 | А) по катиону |
2) Na2CO3 | Б) по аниону |
3) CaCl2 | В) по катиону и аниону |
Г) гидролизу не подвергается; |
43. Установите соответствие между формулой соли и её способностью к гидролизу:
Формула соли | Способность к гидролизу: |
1) NH4NO3 | А) по катиону |
2) NaI | Б) по аниону |
3) CH3COOK | В) по катиону и аниону |
4) Al2S3 | Г) гидролизу не подвергается |
5) Ba(NO2)2; |
44. Установите соответствие между формулой соли и соответствием концентраций ионов H+ и OH- в ней :
Формула соли: | Концентрации H+ и OH-: |
1) ZnCl2 | А) [H+] = [OH-] |
2) КI | Б) [H+] > [OH-] |
3) Na2SO3 | В) [H+] < [OH-] |
4) Al(NO3)3. |
Ответы
Источник