Какие ионы содержатся в клетке какова их роль

Какие ионы содержатся в клетке какова их роль thumbnail

Химические элементы клетки

Клетки сходны не только по строению, но и по химическому составу. Клетки всех живых организмов содержат хотя и неодинаковые, но сходные вещества в близких количествах. Сходство в строении и химическом составе у разных клеток свидетельствует о единстве их происхождения. В составе клетки обнаруживают более 80 химических элементов, при этом каких-либо специальных элементов, которые характерны только для живых организмов, не обнаружено. Однако только в отношении 27 элементов известно, что они выполняют определенные функции. Остальные 53 элемента, вероятно, попадают в организм с водой, пищей, воздухом и не участвуют в жизнедеятельности.

Элементы, входящие в состав клетки, можно разделить на три группы: макроэлементы , микроэлементы и ультрамикроэлементы .

Содержание некоторых химических элементов в клетке (в % на сухую массу):

Кислород 65-75; Углерод 15-18; Водород 8-10; Магний 0,02-0,03; Натрий 0,02-0,03; Кальций 0,04-2,00; Азот 1,5-3,0; Калий 0,15-0,4; Сера 0,15-0,2; Фосфор 0,20-1,00; Хлор 0,05-0,10; Железо 0,01-0,015; Цинк 0,0003; Медь 0,0002; Йод 0,0001; Фтор 0,0001

Особенности химического состава клетки

Обнаружено, что некоторые организмы – интенсивные накопители определенных элементов. Так, ряд морских водорослей накапливает йод , лютики накапливают литий , ряска – радий , диатомовые водоросли и злаки – кремний , моллюски и ракообразные – медь , позвоночные – железо , некоторые бактерии – марганец и т. д. Элементарный состав организмов и химический состав окружающей среды всегда существенно отличаются. Например, кремния в почве около 33%, а в растениях лишь 0,15%, кислорода в почве около 49%, а в растениях 70% и т.д. Это указывает на избирательную способность организмов использовать только определенные химические элементы, необходимые для построения и жизнедеятельности клеток.

Химические элементы, которые входят в состав клеток и выполняют биологические функции, называют биогенными .

Все химические элементы участвуют в построении организма в виде ионов либо в составе тех или иных соединений. Например, углерод, водород и кислород входят в состав углеводов и жиров. В составе белков к ним добавляются азот и сера, в составе нуклеиновых кислот – азот и фосфор; железо участвует в построении молекулы гемоглобина; магний находится в составе хлорофилла; медь обнаружена в некоторых окислительных ферментах; йод содержится в составе молекулы тироксина (гормона щитовидной железы); натрий и калий обеспечивают электрический заряд на мембранах нервных клеток и нервных волокон; цинк входит в молекулу гормона поджелудочной железы – инсулина; кобальт находится в составе витамина B12 .

Ионы в клетке и организме

Многие элементы в клетке содержатся в виде ионов. Из катионов важны К+, Na+ , Са2+, Mg2+, а из анионов – Н2Р04- , Сl- и НСО3-. Содержание катионов и анионов в клетке обычно значительно отличается от содержания их в среде обитания клетки. В частности, концентрация К+ внутри клетки очень высокая, a Na+ – низкая. Напротив, в окружающей клетку среде (крови, морской воде) очень мало К+ и довольно высока концентрация Na+. Например, в мышечных клетках содержание К+ в 30 раз выше, чем в крови, и наоборот, содержание Na+ в 10 раз ниже, чем в окружающей среде. Пока клетка жива, эти различия в концентрации К+ и Na+ между клеткой и межклеточной средой стойко удерживаются. От концентрации солей внутри клетки зависят буферные свойства цитоплазмы . Буферностью называют способность клетки сохранять определенную концентрацию водородных ионов (рН). В клетке поддерживается слабощелочная реакция (рН 7,2). Имеющиеся в организме нерастворимые минеральные соли, например фосфат кальция, входят в состав межклеточного вещества костной ткани, в раковины моллюсков, обеспечивая прочность этих образований.

Источник

Минеральные вещества в клетке находятся в виде солей в твёрдом состоянии, либо диссоциированы на ионы.
Неорганические ионы представлены катионами и анионами минеральных солей.

Пример:

катионы: K+, Na+, Ca2+, Mg2+, NH4+.

Анионы: Cl−, H2PO4−, HPO42−, HCO3−, NO3−, SO42−, PO43−, CO32−.

Вместе с растворимыми органическими соединениями неорганические ионы обеспечивают стабильные показатели осмотического давления.

Концентрация катионов и анионов в клетке и в окружающей её среде — различна. Внутри клетки преобладают катионы K+ и крупные отрицательные органические ионы, в околоклеточных жидкостях всегда больше ионов Na+ и Cl−. В результате образуется разность потенциалов между содержимым клетки и окружающей её средой, обеспечивающая такие важные процессы, как раздражимость и передача возбуждения по нерву или мышце.  

Являясь компонентами буферных систем организма, ионы определяют их свойства — способность поддерживать рН на постоянном уровне (близко к нейтральной реакции), несмотря на то, что в процессе обмена веществ непрерывно образуются кислые и щелочные продукты.

Пример:

анионы фосфорной кислоты (HPO42− и H2PO4−) создают фосфатную буферную систему млекопитающих, поддерживающую рН внутриклеточной жидкости в пределах (6,9)–(7,4).
Угольная кислота и её анионы (H2CO3 и CO32−) создают бикарбонатную буферную систему и поддерживают рН внеклеточной среды (плазмы крови) на уровне (7,4).

Соединения азота, фосфора, кальция и другие неорганические вещества используются для синтеза органических молекул (аминокислот, белков, нуклеиновых кислот и др.).

Пример:

ионы некоторых металлов (Mg, Ca, Fe, Zn, Cu, Mn, Mo, Br, Co) являются компонентами многих ферментов, гормонов и витаминов или активируют их.

Калий — обеспечивает функционирование клеточных мембран, поддерживает кислотно-щелочное равновесие, влияет на активность и концентрацию магния.

Ионы Na+ и K+ способствуют проведению нервных импульсов и возбудимости клетки. Эти ионы входят также в состав натрий-калиевого насоса (активный транспорт) и создают трансмембранный потенциал клеток (обеспечивают избирательную проницаемость клеточной мембраны, что достигается за счёт разности концентраций ионов Na+ и K+: внутри клетки больше K+, снаружи больше Na+).

Ключевая роль в регуляции мышечного сокращения принадлежит ионам кальция (Ca2+). Миофибриллы обладают способностью взаимодействовать с АТФ и сокращаться лишь при наличии в среде определённых концентраций ионов кальция. Ионы кальция также необходимы для процесса свёртывания крови.

Железо входит в состав гемоглобина крови.

Азот входит в состав белков. Все важнейшие части клеток (цитоплазма, ядро, оболочка и др.) построены из белковых молекул.

Фосфор входит в состав нуклеиновых кислот; обеспечивает нормальный рост костной и зубной тканей.

При недостатке минеральных веществ нарушаются важнейшие процессы жизнедеятельности клетки.

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е.А., Пасечник В.В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

Источник

Неорганические ионы. Неорганические ионы клетки представлены: катионами К+, Na+, Са2+, Mg2+, NH3 и анионами Сl-, NO3-, H2PO4-, HCO3-, HPO42-.

Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения.

Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6—9.

Угольная кислота и ее анионы создают бикарбонатную буферную систему и поддерживают рН внеклеточной среды (плазмы крови) на уровне 4—7.

Соединения азота служат источником минерального питания, синтеза белков, нуклеиновых кислот. Атомы фосфора входят в состав нуклеиновых кислот, фосфолипидов, а также костей позвоночных, хитинового покрова членистоногих. Ионы кальция входят в состав вещества костей, они также необходимы для осуществления мышечного сокращения, свертывания крови.

Атомный состав: в состав клетки входит около 70 элементов Периодической системы элементов Менделеева, причем 24 из них присутствуют во всех типах клеток.

Макроэлементы — Н, О, N, С, микроэлементы — Mg, Na, Са, Fe, К, Р, CI, S, ультрамикроэлементы — Zn, Сu, I, F, Мn, Со, Si и др.

Молекулярный состав: в состав клетки входят молекулы неорганических и органических соединений.

Вода. Молекула воды имеет нелинейную пространственную структуру и обладает полярностью. Между отдельными молекулами образуются водородные связи, определяющие физические и химические свойства воды.

Физические свойства воды:

• вода может находиться в трех состояниях — жидком, твердом и газообразном;

• вода — растворитель. Полярные молекулы воды растворяют полярные молекулы других веществ. Вещества, растворимые в воде, называют гидрофильными. Вещества, не растворимые в воде, — гидрофобными;

• высокая удельная теплоемкость. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии. Это свойство воды обеспечивает поддержание теплового баланса в организме;

• высокая теплота парообразования. Для испарения воды необходима достаточно большая энергия. Температура кипения воды выше, чем у многих других веществ. Это свойство воды предохраняет организм от перегрева;

• молекулы воды находятся в постоянном движении, они сталкиваются друг с другом в жидкой фазе, что немаловажно для процессов обмена веществ;

• сцепление и поверхностное натяжение. Водородные связи обусловливают вязкость воды и сцепление ее молекул с молекулами других веществ (когезия). Благодаря силам сцепления молекул на поверхности воды создается пленка, которую характеризует поверхностное натяжение;

• плотность. При охлаждении движение молекул воды замедляется. Количество водородных связей между молекулами становится максимальным. Наибольшую плотность вода имеет при 4°С. Замерзая, вода расширяется (необходимо место для образования водородных связей), и ее плотность уменьшается, поэтому лед плавает на поверхности воды, что защищает водоем от промерзания;

• способность к образованию коллоидных структур. Молекулы воды образуют вокруг нерастворимых молекул некоторых веществ оболочку, препятствующую образованию крупных частиц. Такое состояние этих молекул называется дисперсным (рассеянным). Мельчайшие частицы веществ, окруженные молекулами воды, образуют коллоидные растворы (цитоплазма, межклеточные жидкости).

Биологические функции воды:

• транспортная — вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма. В природе вода переносит продукты жизнедеятельности в почвы и к водоемам;

• метаболическая — вода является средой для всех биохимических реакций и донором электронов при фотосинтезе, она необходима для гидролиза макромолекул до их мономеров;

• участвует в образовании:

1) смазывающих жидкостей, которые уменьшают трение (синовиальная — в суставах позвоночных животных, плевральная, в плевральной полости, перикардиальная — в околосердечной сумке);

2) слизей, которые облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей;

3) секретов (слюна, слезы, желчь, сперма и т.д.) и соков в организме.

Вопросы для закрепления темы:

1.Какие химические элементы входят в состав клетки?

2.Какую роль играют содержащиеся в клетке элементы?

3.Каковы особенности строения и функции воды?

4.Какие соединения называются гидрофобными и гидрофильными соединениями?

5.Назовите ионы неорганических веществ, содержащиеся в клетке.

6.Каково значение для клетки солей фосфора, калия и натрия?

7.Какое свойство воды предохраняет организм от перегрева?



Источник

Особенности химического состава клетки. Неорганические вещества

Вопросы

1. Какова роль воды в клетке и организме?

2. Какие ионы содержатся в клетке? Какова их биологическая роль?

 3.  Какую роль играют содержащиеся в клетке катионы?

Биологические задачи

1. В клетках всех живых организмов имеется вода. При замерзании она расширяется и может разорвать внутренние структуры клетки, тем самым вызвав гибель организмов. Почему же зимой не погибают озимая пшеница, лягушки, насекомые и многие другие организмы при охлаждении их тела ниже 0 градусов?

2. Воду можно налить в стакан “с верхом”, и она не прольется, в отличие от других жидкостей, так как на ней образуется своеобразная “кожица”. Как вы объясните это явление? Благодаря какому свойству воды это возможно?

3. При превращении воды в лед на поверхности водоемов образуется своеобразное “одеяло”, что в условиях умеренного и холодного климата повышает шансы водных организмов на выживание. С каким свойством воды это связано? Что произошло бы, если бы вода не обладала такими свойствами?

4. Из 1-2 кг кальция, содержащегося в организме взрослого человека, 98% находится в составе костной ткани скелета, остальная часть кальция выполняет другие не менее важные функции. Какие?

5. Буферный раствор – это раствор, содержащий смесь какой-либо слабой кислоты и ее растворимой соли. Действие такого раствора заключается в том, чтобы противостоять изменениям pH. Объясните как это происходит.

Интерактивные приложения

1. Распределить химические элементы по группам (макро-, микро- и ультрамикроэлементы) https://learningapps.org/view2529982

2. Тест “Неорганические вещества клетки” https://learningapps.org/view2530854

3. Установить соответствие между химическим элементом и его функцией https://learningapps.org/view9809856

Тест

1. Между понятием «хлорофилл» и «магний» существует определенная связь. Такая же связь существует между понятием «гемоголобин» и одним из четырех понятий, приведенных ниже. Найдите это понятие.

  1. железо
  2. марганец
  3. йод
  4. кальций

2. Какие свойства воды делают ее хорошим растворителем веществ в клетке?

  1. малые размеры
  2. полярность молекул
  3. хорошая теплопроводность
  4. капиллярность

3. Чем полезна соль, обогащенная йодом?

  1. йод влияет на состав форменных элементов крови
  2. йод способствует синтезу витамина А
  3. йод предупреждает заболевание гриппом
  4. йод регулирует деятельность щитовидной железы

4. Какой химический элемент придает крови красный цвет?

  1. кислород
  2. азот
  3. фтор
  4. железо

5. Какое вещество клетки является органическим?

  1. соль фосфорной кислоты
  2. соль угольной кислоты
  3. вода
  4. фруктоза

6. Какой химический элемент из указанного перечня содержится в клетке в большем количестве?

  1. углерод
  2. сера
  3. фосфор
  4. калий

7. Магний необходим растениям, так как он входит в состав

  1. гемоглобина
  2. хлорофилла
  3. нуклеиновых кислот
  4. аденозинтрифосфорной кислоты

8. Вещества клетки объединяют в две группы – гидрофильные и гидрофобные по отношению к

  1. воде
  2. белкам
  3. липидам
  4. нуклеиновым кислотам

9. Ионы К+ и Na– в организме участвуют в

  1. переносе кислорода
  2. регуляции выработки гормонов
  3. передаче возбуждения по нерву
  4. образовании ферментов

10. Какой элемент относится к группе макроэлементов

  1. йод
  2. углерод
  3. хлор
  4. медь

Контрольная работа

Источник

План урока:

Неорганические вещества, их роль в клетке

Органические вещества, их роль в клетке

Строение и функции белков

Нуклеиновые кислоты. АТФ

Неорганические вещества, их роль в клетке

Всякий организм содержит определенный набор химических элементов, количество которых неодинаково. Познакомимся на схеме с классификацией элементов.

1 himicheskij sostav kletki

Из схемы видно, что самое большое количество в клетке приходится на макроэлементы. Все они имеют огромное значение для нормальной работы организма. Макроэлементы представлены следующими химическими элементами: кислородом (75%), углеродом (15%), водородом (8%), азотом (3%). Они являются основой жизни на всей планете.

Микроэлементы в организме представлены в небольшом количестве. Однако, они также выполняют свою роль в организме. Микроэлементы входят в состав ферментов и гормонов, содержатся в тканях, принимают участие в процессах обмена веществ.

2 himicheskij sostav kletki

Все химические элементы составляют вещества, которые представлены двумя группами. Познакомимся с ними на схеме.

3 himicheskij sostav kletki

Остановимся подробнее на неорганических веществах.

В численном отношении первое место среди неорганических веществ клетки принадлежит воде. Ее содержание колеблется в зависимости от вида организма, условий его местообитания, типа клеток и их функционального состояния. В общем содержание воды в клетке составляет от 40% до 95%.

4 himicheskij sostav kletki

Причем с возрастом количество воды в клетках любого организма заметно снижается. Соответственно, чем выше функциональная активность клеток и организма в целом, тем больше содержание в них воды, и наоборот.

5 himicheskij sostav kletki
Источник

Наличие воды – обязательное условие жизненной активности клетки. Она составляет основную часть цитоплазмы, поддерживает ее структуру. Роль воды определяется ее физическими и химическими свойствами.

Рассмотрим основные свойства воды:

  1. Данное вещество считается хорошим растворителем. По отношению к воде все вещества делятся на две группы: гидрофильные и гидрофобные.

6 himicheskij sostav kletki
Источник

Гидрофильные вещества имеют хорошую растворимость, так как состоят из частиц, способных при растворении отделяться друг от друга. С такими соединениями вы знакомились в курсе химии 9 класса, их называют ионные.

К ним относят такие классы неорганических соединений как соли, щелочи, кислоты и некоторые другие вещества.

В растворе молекулы или ионы данных соединений имеют возможность быстро передвигаться, что обеспечивает их высокую реакционную способность. При этом вода выполняет в клетке роль среды, в которой осуществляются химические реакции.

Гидрофобные вещества плохо либо вообще не растворимы в воде. К ним относят липиды, нуклеиновые кислоты, кое-какие углеводы, а также белки.

  1. Вода как вещество, обладает физическими свойствами. Для нее характерна высокая теплоемкость, при существенном увеличении тепловой энергии происходит небольшое повышение ее температуры. Данное свойство воды способствует защите тканей живых организмов от перегревания или переохлаждения. Это проявляется, к примеру, в потоотделении у животных, при испарении у растений.

7 himicheskij sostav kletki
Источник

  1. Немаловажным свойством воды является ее высокая теплопроводность. Благодаря этому тепло равномерно распределяется по всему организму, а не сосредоточивается в одном месте. Таким образом, основной функцией воды в клетке считается поддержание оптимального теплового режима.
  1. Вода является основным источником кислорода и водорода, необходимых для протекания процессов фотосинтеза у растений.
  1. Еще одним свойством воды является поверхностное натяжение. Молекулы воды сцепляются между собой с определенной силой и создают на поверхности пленку. Данное свойство обеспечивает движение крови в организме человека и животных, а также минеральных веществ у растений. Как же это происходит? Вот представьте себе, что два человека тянут канат. Каждый тянет его в свою сторону. Так и здесь. Силы, которыми связаны молекулы воды, тянут поверхность в разные стороны. Благодаря этому и происходит транспорт веществ в живом организме.

8 himicheskij sostav kletki

Значительную роль в организме играет и еще одна группа неорганических веществ – минеральные соли.

Все минеральные вещества могут быть в виде ионов или твердом состоянии. К примеру, цитоплазма содержит соли кальция, фосфора, кремния. Эти элементы используются для формирования опорных структур клетки – раковины моллюсков, хитиновый покров членистоногих.

9 himicheskij sostav kletki
Хитиновый покров жука носорога Источник

Минеральные вещества в организме распадаются на ионы: катионы и анионы. Они поддерживают кислотно-щелочной баланс цитоплазмы, обеспечивают тургор[1] клеточных оболочек, оказывают влияние на возбудимость нервной и мышечной ткани, активируют ферменты.

10 himicheskij sostav kletki

Органические вещества, их роль в клетке

Основу жизни на планете составляют органические вещества. Они представлены белками, жирами, углеводами, а также нуклеиновыми кислотами.

11 himicheskij sostav kletki

Первостепенной группой органических веществ организма считаются углеводы. Клетка животных содержит углеводов 1,5-2%, в клетке растений их количество достигает 86-91%.

Познакомимся с группами углеводов на рисунке.

12 himicheskij sostav kletki

Состав моносахаридов представлен тремя или более атомами углерода. Примером этой группы могут считаться глюкоза, фруктоза, рибоза, а также дезоксирибоза. Все моносахариды – это бесцветные кристаллические вещества со сладким вкусом, имеют хорошую растворимость.

13 himicheskij sostav kletki

Как большинство углеводов, моносахариды снабжают организм энергией, а также принимают участие в синтезе веществ. Рибоза и дезоксирибоза являются составными компонентами нуклеиновых кислот и АТФ.

Моносахаридом является и глюкоза, которая считается составной частью полисахаридов – крахмала, целлюлозы, гликогена. Фруктоза же входит в состав олигосахаридов, к примеру, сахарозы.

Соответственно, углеводы, образованные двумя и более моносахаридами получили название олигосахаридов, примерами которых считаются сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар).

Свойствами олигосахариды схожи с моносахаридами. К примеру, они имеют хорошую растворимость, а также сладкий вкус. С ростом числа мономеров в составе, растворимость олигосахаридов снижается, теряется сладкий вкус.

14 himicheskij sostav kletki

Полисахариды образуются большим количеством моносахаридов, соединенных ковалентными связями. Полисахаридами являются крахмал, гликоген, целлюлоза, хитин. Полисахариды как вещества обладают сладким вкусом, а также отличной растворимостью. Однако, с возрастанием числа мономеров эти свойства ослабевают.

15 himicheskij sostav kletki

В живых организмах углеводы выполняют следующие функции:

  1. Энергетическая функция – углеводы снабжают клетку энергией, которая образуется при их распаде.
  2. Запасающая функция – избыточное содержание углеводов приводит к их накоплению в клетке. Данный запас может быть использован организмом для получения энергии, в случае ее нехватки.
  3. Строительная функция – углеводы составляют основу оболочек клетки. К примеру, целлюлоза считается составной частью клеточных стенок растений. Хитин же составляет клеточные оболочки грибов и наружный скелет некоторых животных.

Липиды включают в себя большую группу жиров и подобных им веществ. По физическим свойствам они являются гидрофобными веществами, то есть не растворяются в воде.

Содержание этих веществ различается, посмотрим на рисунке.

16 himicheskij sostav kletki

Строение липидов отличается, поэтому чаще всего различают две группы: простые и сложные.

Простыми липидами считаются нейтральные жиры, состав которых представлен остатками жирных кислот, молекулой глицерина. Данные соединения при комнатной температуре бывают твердыми и жидкими. Твердые нейтральные жиры чаще всего характерны для животных и встречаются у обитателей северных широт. Жидкие липиды или масла содержатся в клетках растений, например, у подсолнечника, облепихи, оливок.

17 himicheskij sostav kletki

К простым липидам, помимо нейтральных жиров, принадлежат также и воска.

Представляют они собой сложные эфиры, состоящие из жирных кислот, а также многоатомных спиртов. Данная группа липидов выполняет в организме защитную функцию, предохраняя от внешнего воздействия различные органы. Восковой слой встречается у животных на коже, шерсти, перьях, а у растений – на листьях, стебле, плодах.

18 himicheskij sostav kletki
Пчелиный воск Источник

Сложные липиды образованы простыми жирами, которые формируют комплексы с иными веществами. К примеру, в фосфолипидах содержатся простые липиды, а также остаток фосфорной кислоты.

Данная группа жиров имеет большое значение в организме. Фосфолипиды считаются основной составляющей клеточных мембран, осуществляя защитную функцию. В организме они не вырабатываются, поступают только с пищей, поэтому фосфолипиды являются незаменимыми соединениями.

19 himicheskij sostav kletki

Липиды выполняют важные функции в организме. Рассмотрим их.

  1. Энергетическая функция считается первостепенной у липидов. Их распад сопровождается освобождением энергии, в количественном отношении в 2 раза большей, чем выделяется при распаде углеводов, а также белков. Соответственно, 30% всей энергии, необходимой организму, поставляется именно жирами.
  1. Липиды откладываются у живых организмов как запасающее вещество. В течении жизни они могут расходоваться при недостатке энергии или воды. Распад 100г жира освобождает 105г воды. Эта жидкость необходима для некоторых жителей пустыни, например верблюдам. Многие знают, что это животное способно обходиться без воды10-12 дней. Источником воды как раз является жир, который накапливается в горбу верблюда.

20 himicheskij sostav kletki
Верблюды Источник

  1. Липиды обладают невысокой теплопроводностью, поэтому исполняют защитную функцию в клетке.Благодаря жировой прослойке некоторые виды животных приспособились к холодному климату. Этот слой жира препятствует охлаждению организма.

21 himicheskij sostav kletki
Морж Источник

  1. Также липиды осуществляют строительную функцию. К примеру, фосфолипиды являются компонентами клеточных мембран.

Строение и функции белков

Белки считаются сложными органическими соединениями, в составе которых преобладают аминокислоты. В жизни всех организмов эти вещества имеют первостепенное значение, поэтому их содержание составляет 50-80%.

Структурными единицами белков считаются аминокислоты, соединяющиеся в цепочки. Молекулы данных соединений представляет длинную цепь, состоящую из 50-1500 аминокислот скрепленных пептидной связью.

22 himicheskij sostav kletki

Аминокислоты выстраиваются в определенной последовательности, образуя полипептидную цепочку белка. Причем не всегда это просто цепочка, часто белки образуют различные конфигурации в пространстве. Поэтому принято выделять несколько уровней организации белковой молекулы.

23 himicheskij sostav kletki

Последовательная линейная цепочка аминокислот белковой молекулы является простейшим уровнем организации, названная первичной структурой. Она специфична для каждого белка, определяет его свойства, а также функции.

  1. Вторичный уровень организации представлен спирально закрученной цепочкой белковой молекулы. Витки спирали скрепляются водородными связями.
  2. Вследствие дальнейшей укладки спирали образуется специфичная для всякого белка конфигурация, называемая третичной структурой. Прочность обеспечивается водородными, ионными и гидрофобными взаимодействиями.
  3. Четвертичная структура образуется при объединении отдельных молекул белка в единую систему. Такой уровень организации структуры белковой молекулы можно наблюдать у гемоглобина. Причем только при таком сложном строении молекула этого белка способна реализовывать транспорт кислорода.

24 himicheskij sostav kletki

Под влиянием различных факторов происходит трансформация структуры белка вследствие разрыва связей. Такой процесс получил обозначение денатурация белка.

25 himicheskij sostav kletki

Денатурацию белка способны вызывать различные физические, а также химические факторы, к примеру, температура, облучение, влияние химических веществ. Причем денатурация структуры белка способна быть обратимой, а может, и нет.

26 himicheskij sostav kletki

По своему составу и строению белки различаются. Познакомимся с классификацией белков. Часто их делят на две группы: простые и сложные белки или протеины и протеиды.

В состав простых белков входят только аминокислоты. К ним относятся альбумины (сыворотка крови), глобулины (фибриноген крови), гистоны (составные компоненты гемоглобина).

В сложные белки помимо аминокислот входят и некоторые иные соединения – углеводы, липиды. Сложными белками являются фосфопротеины (казеин молока), гликопротеины (плазма крови).

Белки выполняют в клетке ряд значительных функций.

27 himicheskij sostav kletki

Остановимся на них подробнее.

  1. Эти соединения называют «кирпичиками» нашего организма. Они осуществляют строительную функцию. Белки входят в состав клеточных мембран, а также органоидов клетки. Стенки кровеносных сосудов, хрящи и сухожилия также состоят из них.
  1. Двигательная функция обеспечивается особыми сократительными белками, благодаря которым осуществляется движение ресничек, жгутиков, сокращение мускулатуры.
  1. Белки выполняют транспортную функцию благодаря своей способности связывать и переносить с током крови химические соединения. Здесь стоит упомянуть гемоглобин, с помощью которого происходит транспорт кислорода ко всем органам и тканям.
  1. Следует отметить и защитную функцию белков в клетке. При проникновении в клетку чужеродных веществ происходит выработка особых белков – иммуноглобулинов или антител, которые их нейтрализуют.
  2. Белкам, входящим в состав клеточной мембраны, присуща сигнальная функция. На оболочку оказывает воздействие какой-либо фактор и белок изменяет свою структуру, тем самым отправляя сигнал в клетку.
  3. Гормоны в нашем организме имеют белковую природу и выполняют регуляторную функцию. Их основная задача поддерживать постоянство внутренней среды организма. Каталитическую функцию выполняют многочисленные ферменты из числа протеинов и протеидов.
  4. Белки способны осуществлять энергетическую функцию – распад 1 г белка сопровождается выделением приблизительно 18 кДж энергии.

В природе существует значительное число белков, которые отличаются по строению и функциям. Между тем, роль белков огромна для организмов, они считаются основой жизни на планете.

Нуклеиновые кислоты. АТФ

Нуклеиновые кислоты – биополимеры, способствующие хранению и передаче наследственных данных.

Макромолекулы нуклеиновых кислот выявлены в 1869г швейцарским ученым Ф. Мишером в лейкоцитах, содержащихся в гное. Затем данные соединения найдены в клетках абсолютно всех существ.

Как и белки, нуклеиновые кислоты считаются биополимерами. Их мономером стал нуклеотид, строение его представлено на рисунке.

28 himicheskij sostav kletki

Мономеры соединяются и образуют полинуклеотидную цепь за счет ковалентных связей, появляющихся между углеводом одного нуклеотида и остатком фосфорной кислоты другого.

Имеется 2 типа нуклеиновых кислот – дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Отличия в наименованиях говорят о разном строении: молекула ДНК включает углевод дезоксирибозу, а молекула РНК – рибозу.

Познакомимся со строением ДНК и РНК на рисунке.

29 himicheskij sostav kletki

Наиболее сложное строение наблюдается у молекулы ДНК, представляющей конфигурацию из двух цепочек, скрученных спирально.

Выделяют 4 типа разнообразных нуклеотидов в молекуле ДНК, но из-за различной их очередности в цепи достигается колоссальное обилие нуклеиновых кислот.

Соединяются 2 полинуклеотидные цепи в одну молекулу при помощи водородных связей, возникающих между азотистыми основаниями. Рассмотрим принцип их объединения на рисунке.

30 himicheskij sostav kletki

Благодаря особенностям строения протяженность молекулы ДНК может достигать сотен тысяч нанометров, что намного больше самой крупной молекулы белка. В клетке ДНК содержится в ядре, где входит в состав хромосом, а также есть в митохондриях и пластидах. Основной функцией ДНК считается хранение наследственной информации.

Строение РНК более простое –молекула представлена одной цепью нуклеотидов, закрученной в спираль. Различают три типа РНК.

31 himicheskij sostav kletki

  • Информационной РНК насчитывается приблизительно 6%. Основной функцией информационной РНК является перенос информации к рибосомам, где она используется для образования белка.
  • Транспортная РНК образуется в ядрышках, затем перемещается в цитоплазму, где доставляет аминокислоты на рибосомы. Ее находится в клетке 10%. Всякой аминокислоте подходит своя молекула транспортной РНК.
  • Больше всего в клетке имеется рибосомных РНК – 85%. Они синтезируются в ядрышках, а затем связываются с белками, создавая рибосомы. Функция рибосомной РНК: запускать и прекращать процесс присоединения аминокислот при образовании белка.

В любой клетке содержатся такие органические соединения как аденозинтрифосфорная кислота (АТФ). Молекула АТФ снабжает энергией большинство реакций, с ее помощью клетка движется, осуществляется синтез веществ.

32 himicheskij sostav kletki

Любое вещество играет к