Какие именно электроны отвечают за свойства атомов

Какие именно электроны отвечают за свойства атомов thumbnail

Теперь установим более точно, в какой зависимости от строения электронных оболочек находятся химические свойства атомов. При этом необходимо учитывать не только число электронов в атомах и их распределение по слоям, но и относительные размеры атомов, о которых дает представление рис. 48. 

Рассмотрим вначале изменение свойств в периодах. В пределах каждого периода (кроме первого) металлические свойства, наиболее резко выраженные у первого члена периода, при переходе к последующим членам постепенно ослабевают и уступают место металлоидным свойствам: в начале периода стоит типичный металл, в конце—типичный металлоид и за ним инертный газ.

Закономерное изменение свойств элементов в периодах может быть объяснено следующим образом. Как уже указывалось, наиболее характерным свойством металлов с химической точки зрения является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, тогда как металлоиды, наоборот, характеризуются способностью присоединять электроны с образованием отрицательных ионов.

Относительные размеры атомовРис. 48. Относительные размеры атомов.

Для отрыва электрона от атома с превращением последнего в положительный ион нужно затратить некоторую энергию, которая называется энергией ионизации и выражается обычно в килограммкалориях на грамматом элемента.

Энергию ионизации определяют путем бомбардировки атомов, находящихся в электрическом поле, быстро летящими электронами. То наименьшее напряжение поля, при котором скорость электронов становится достаточной для ионизации атомов, называется потенциалом ионизации атомов данного элемента и выражается в вольтах.

Энергия ионизации связана с потенциалом ионизации простым соотношением, что позволяет выражать легкость потери электронов атомами как в килограммкалориях на грамматом, так и в вольтах.

Потенциал ионизации имеет наименьшее значение у элементов, начинающих период, т. е. у водорода и щелочных металлов, и наибольшее — у элементов, заканчивающих период, т. е. инертных газов. Величина его может служить мерой большей или меньшей «металличности» элемента: чем меньше потенциал ионизации, чем легче оторвать электрон от атома, тем сильнее должны быть выражены металлические свойства элемента.

Величина потенциала ионизации зависит от трех причин: от величины заряда ядра, от радиуса атома и от особого рода взаимодействия между электронами в электрическом поле ядра, вызванного их волновыми свойствами. Очевидно, что чем больше заряд ядра и чем меньше радиус атома, тем сильнее притягивается электрон к- ядру, тем больше потенциал ионизации.

У элементов одного и того же периода при переходе от щелочного металла к инертному газу заряд ядра постепенно возрастает, а радиус атома уменьшается. Следствием этого и является постепенное увеличение потенциала ионизации и ослабление металлических свойств. У инертных газов, хотя радиусы их атомов больше, чем радиусы атомов галогенов, стоящих в том же периоде, потенциалы ионизации больше, чем у галогенов. В этом случае сильно сказывается действие третьего из вышеупомянутых факторов — взаимодействия между электронами, вследствие чего внешняя электронная оболочка атома инертного газа имеет особую энергетическую устойчивость и удаление из нее электрона требует значительно большей затраты энергии.

Присоединение электрона к атому металлоида, превращающее его электронную оболочку в устойчивую оболочку атома инертного газа, сопровождается выделением энергии. Величина этой энергии при расчете на 1грамматом элемента служит мерой так называемого сродства к электрону. Чем больше сродство к электрону, тем легче атом присоединяет электрон. Сродство атомов металлов к электрону равно нулю, — атомы металлов неспособны присоединять электроны. У атомов же металлоидов сродство к электрону тем больше, чем ближе к инертному газу стоит металлоид в периодической системе. Поэтому в пределах периода металлоидные свойства усиливаются по мере приближения к концу периода.

Переход от металлических свойств к металлоидным у элементов малых периодов связан также с изменением числа наружных электронов в их атомах, которое равномерно растет, начиная с одного в первом члене периода и доходя до восьми в последнем. В то же время понижается способность атомов отдавать электроны (проявление металлических свойств) и появляется способность к присоединению электронов (металлоидные свойства).

Опыт показывает, что, начиная с лития, атомы, имеющие в наружном слое небольшое число электронов (меньше четырех), могут только отдавать электроны, но никогда не присоединяют их. Таковы атомы элементов, которые мы называем металлами. Наоборот, атомы с большим числом наружных электронов, хотя и могут отдавать электроны, но гораздо легче присоединяют их, и тем легче, чем больше электронов уже имеется в наружном слое. Этим свойством обладают атомы металлоидов.

В больших периодах изменение свойств в общем происходит так же, как и в малых, только металлические свойства ослабевают гораздо медленнее. Причина этого лежит в неравномерном росте наружного электронного слоя, так как, начиная с третьего члена периода и вплоть до конца первой его половины, идет пополнение электронами предпоследнего недостроенного слоя, а в атомах редкоземельных элементов, находящихся в шестом периоде, заполняется даже не предпоследний, а третий снаружи слой. Поэтому все элементы первой половины периода имеют в наружной оболочке атома не больше двух электронов и характеризуются преобладанием металлических свойств (сродство к электрону равно нулю). Радиусы атомов этих элементов уменьшаются на небольшую величину, а потенциалы ионизации почти не возрастают, вследствие чего и ослабление металлических свойств происходит медленно. Только во второй половине периода число наружных электронов растет так же последовательно, как и в малых периодах, и металлические свойства постепенно сменяются металлоидными. Период заканчивается инертным газом.

Указанные выше соотношения между строением атомов и их химическими свойствами представляют глубокий интерес. Мы видим, что на химические свойства атома оказывают влияние главным образом электроны наружного слоя. Строение предпоследнего слоя влияет на химические свойства значительно меньше. Так, например, элементы больших периодов, в атомах которых идет достройка предпоследнего электронного слоя, сравнительно

мало отличаются друг от друга по своему химическому характеру (например, Cr, Mn, Fe, Со, Ni). Ho все же по мере заполнения электронами предпоследнего слоя свойства элементов изменяются в определенном направлении. Наконец, почти полное сходство свойств редкоземельных элементов показывает, что изменение числа электронов в третьем снаружи слое атома оказывает лишь ничтожное влияние на его химические свойства. Однако и здесь увеличение числа электронов вызывает постепенное, хотя и небольшое изменение свойств, проявляющееся, например, в понижении силы оснований от элемента № 58 (церия) к элементу № 71 (лютецию).

Как известно, все элементы расположены в таблице так, что они образуют девять вертикальных столбцов (групп). Номер группы соответствует наибольшей положительной валентности (или так называемой валентности по кислороду), которую могут проявлять элементы данной группы. Сопоставляя эту величину с расположением электронов в атомах, нетрудно убедиться, что у всех элементов, стоящих в малых периодах (кроме кислорода и фтора), наибольшая валентность как раз равна числу электронов в наружном слое атома.

Несколько иначе обстоит дело в больших периодах. В атомах элементов, находящихся в малых периодах, число электронов в предпоследнем слое равно двум или восьми. Отдавая наружные электроны, эти атомы превращаются в ионы с устойчивой структурой инертных газов и, естественно, не могут больше терять электроны. В больших же периодах только первые два члена имеют по восемь электронов в предпоследнем слое. В атомах следующих за ними элементов число электронов в предпоследнем слое постепенно растет, пока не достигнет 18 (у первого члена второй половины периода). Но слой из 18 электронов оказывается почти таким же устойчивым, как и слой из восьми электронов. Поэтому атомы, имеющие восемнадцать электронов в предпоследнем слое (например, Сu, Zn, Ga и др.), потеряв наружные электроны, тоже превращаются в ионы с устойчивой оболочкой. Таким образом, максимальная валентность атомов второй половины каждого большого периода, имеющих в предпоследнем слое 18 электронов (так же как и валентность атомов с двумя или восьмью электронами в предпоследнем слое), равна числу электронов наружного слоя .

Что же касается остальных элементов больших периодов, содержащих в предпоследнем слое больше восьми, но меньше 18 электронов, то они могут отдавать, кроме наружных электро-нов еще и часть электронов предыдущего слоя, а именно столько,

Исключение составляют медь, серебро и золото, максимальная валентность которых равна двум и трем, хотя наружный слой содержит только один электрон.

чтобы остающиеся электроны образовали устойчивую восьми-электронную оболочку. Например, элемент скандий (№ 21)может отдать всего три электрона, титан — четыре, ванадий — пять и т. д. Общее число отдаваемых электронов и определяет максимальную валентность этих элементов, указываемую номером соответствующей группы .

Еще задолго до возникновения учения о строении атома было установлено, что между максимальной валентностью элемента по кислороду и его валентностью по водороду существует определенная зависимость: сумма валентностей по кислороду и по водороду всегда оказывается равной восьми.

Эта зависимость очень просто объясняется с точки зрения электронны представлений о валентности. Так как в соединениях с кислородом атомы всех элементов (за исключением фтора) заряжены положительно, а в соединениях с водородом — отрицательно, то валентность по кислороду есть не что иное, как положительная валентность, обусловленная потерей или смеще; нием валентных электронов; наоборот, валентность по водороду есть отрицательная валентность, которую атом проявляет, присоединяя к наружному слою недостающее до восьми число электронов. Понятно, что сумма этих двух валентностей должна равняться восьми.

Нужно, однако, заметить, что это правило распространяется только на металлоиды, образующие газообразные соединения с водородом.

Некоторые металлы тоже образуют соединения с водородом, но не газообразные, а твердые. Всоединениях такого типа металл заряжен положительно, а водород отрицательно. Вэтом случае валентность по водороду является положительной валентностью и, конечно, одинакова с валентностью того же металла по кисло-

Как уже указывалось , элементы каждой, группы периодической системы, начиная с четвертого горизонтального ряда, делятся на две подгруппы: четную, составленную из элементов, у которых преобладают металлические свойства, и нечетную, образованную элементами, у которых металлические свойства ослаблены или преобладают металлоидные свойства.

Различие в свойствах элементов четных и нечетных подгрупп непосредственно вытекает из строения их атомов. Вто время как в наружном слое атомов элементов четных подгрупп никогда не бывает больше двух электронов, в атомах элементов нечетных подгрупп число наружных электронов может доходить до семи. Поэтому элементы четных подгрупп не присоединяют электроны, что характеризует их как металлы.

Нечетные подгруппы тоже содержат металлы, но главным образом состоят из элементов, легко присоединяющих электроны, т. е. металлоидов.

Усиление металлических свойств с увеличением порядкового номера у элементов главных подгрупп тоже легко объясняется строением их атомов. Хотя с увеличением порядкового номера заряд ядра и увеличивается, но одновременно возрастает число электронных слоев в атоме и их отталкивающее действие на наружные электроны. Значительно увеличиваются также радиусы атомов, вследствие чего потенциалы ионизации, а следовательно, и металлоидные свойства элементов уменьшаются.

55 56 57

Вы читаете, статья на тему Свойства элементов от строения атомов

Источник

Темы кодификатора ЕГЭ: Строение электронных оболочек атомов элементов первых четырех периодов: s-, p- и d-элементы. Электронная конфигурация атомов и ионов. Основное и возбужденное состояние атомов.

Тренировочные тесты в формате ЕГЭ по теме «Строение атома» (задание 1 ЕГЭ по химии) ( с ответами)

Одну из первых моделей строения атома — «пудинговую модель» — разработал Д.Д. Томсон в 1904 году. Томсон открыл существование электронов, за что и получил Нобелевскую премию. Однако наука на тот момент не могла объяснить существование этих самых электронов в пространстве. Томсон предположил, что атом состоит из отрицательных электронов, помещенных в равномерно заряженный положительно «суп», который компенсирует заряд электронов (еще одна аналогия — изюм в пудинге). Модель, конечно, оригинальная, но неверная. Зато модель Томсона стала отличным стартом для дальнейших работ в этой области.

Какие именно электроны отвечают за свойства атомов

И дальнейшая работа оказалась эффективной. Ученик Томсона, Эрнест Резерфорд, на основании опытов по рассеянию альфа-частиц на золотой фольге предложил новую, планетарную модель строения атома.

Согласно модели Резерфорда, атом состоит из массивного, положительно заряженного ядра и частиц с небольшой массой — электронов, которые, как планеты вокруг Солнца, летают вокруг ядра, и на него не падают.

Какие именно электроны отвечают за свойства атомов

Модель Резерфорда оказалась следующим шагом в изучении строения атома. Однако современная наука использует более совершенную модель, предложенную Нильсом Бором в 1913 году. На ней мы и остановимся подробнее.

Атом — это мельчайшая, электронейтральная, химически неделимая частица вещества, состоящая из положительно заряженного ядра и отрицательно заряженной электронной оболочки.

При этом электроны двигаются не по определенной орбите, как предполагал Резерфорд, а довольно хаотично. Совокупность электронов, которые двигаются вокруг ядра, называется электронной оболочкой.

Атомное ядро, как доказал Резерфорд — массивное и положительно заряженное, расположено в центральной части атома. Структура ядра довольно сложна, и изучается в ядерной физике. Основные частицы, из которых оно состоит — протоны и нейтроны. Они связаны ядерными силами (сильное взаимодействие).

Рассмотрим основные характеристики протонов, нейтронов и электронов:

ПротонНейтронЭлектрон
Масса1,00728 а.е.м.1,00867 а.е.м.1/1960 а.е.м.
Заряд+ 1 элементарный заряд0— 1 элементарный заряд

1 а.е.м. (атомная единица массы) = 1,66054·10-27 кг

1 элементарный заряд = 1,60219·10-19 Кл

И — самое главное. Периодическая система химических элементов, структурированная Дмитрием Ивановичем Менделеевым, подчиняется простой и понятной логике: номер атома — это число протонов в ядре этого атома. Причем ни о каких протонах Дмитрий Иванович в XIX веке не слышал. Тем гениальнее его открытие и способности, и научное чутье, которое позволило перешагнуть на полтора столетия вперёд  в науке.

Следовательно, заряд ядра Z равен числу протонов, т.е. номеру атома в Периодической системе химических элементов. 

Атом — это на заряженная частица, следовательно, число протонов равно числу электронов: Ne = Np = Z.

Масса атома (массовое число A) равна суммарной массе крупных частиц, которе входят в состав атома — протонов и нейтронов. Поскольку масса протона и нетрона примерно равна 1 атомной единице массы, можно использовать формулу: M = Np + Nn

Массовое число указано в Периодической системе химических элементов в ячейке каждого элемента.

Какие именно электроны отвечают за свойства атомов

Обратите внимание! При решении задач ЕГЭ массовое число всех атомов, кроме хлора, округляется до целого по правилам математики. Массовое число атома хлора в ЕГЭ принято считать равным 35,5.

Таким образом, рассчитать число нейтронов в атоме можно, вычтя из массового числа номер атома: Nn = M – Z.

В Периодической системе собраны химические элементы — атомы с одинаковым зарядом ядра. Однако, может ли меняться у этих атомов число остальных частиц? Вполне. Например, атомы с разным числом нейтронов называют изотопами данного химического элемента. У одного и того же элемента может быть несколько изотопов.

Попробуйте ответить на вопросы. Ответы на них — в конце статьи:

  1. У изотопов одного элемента массовое число одинаковое или разное?
  2. У изотопов одно элемента число протонов одинаковое или разное?

Химические свойства атомов определяются строением электронной оболочки и зарядом ядра. Таким образом, химические свойства изотопов одного элемента практически не отличаются.

Поскольку атомы одного элемента могут существовать в форме разных изотопов, в названии часто указывается массовое число, например, хлор-35, и принята такая форма записи атомов:

Какие именно электроны отвечают за свойства атомов

Еще немного вопросов:

3. Определите количество нейтронов, протонов и электронов в изотопе брома-81.

4. Определите число нейтронов в изотопе хлора-37.

Строение  электронной оболочки

Согласно квантовой модели строение атома Нильса Бора, электроны в атоме могут двигаться только по определенным (стационарным) орбитам, удаленным от ядра на определенное расстояние и характеризующиеся определенной энергией. Другое название стационарны орбит — электронные слои или энергетические уровни.

Электронные уровни можно обозначать цифрами — 1, 2, 3, …, n. Номер слоя увеличивается мере удаления его от ядра. Номер уровня соответствует главному квантовому числу n.

В одном слое электроны могут двигаться по разным траекториям. Траекторию орбиты характеризует электронный подуровень. Тип подуровня характеризует орбитальное квантовое число l = 0,1, 2, 3 …, либо соответствующие буквы — s, p, d, g и др.

Какие именно электроны отвечают за свойства атомов

В рамках одного подуровня (электронных орбиталей одного типа) возможны варианты расположения орбиталей в пространстве. Чем сложнее геометрия орбиталей данного подуровня, тем больше вариантов их расположения в пространстве. Общее число орбиталей подуровня данного типа l можно определить по формуле: 2l+1. На каждой орбитали может находиться не более двух электронов.

Тип орбиталиspdfg
Значение орбитального квантового числа l01234
Число атомных орбиталей данного типа 2l+113579
Максимальное количество электронов на орбиталях данного типа26101418

Получаем сводную таблицу:

Заполнение электронами энергетических орбиталей происходит согласно некоторым основным правилам. Давайте остановимся на них подробно.

Принцип Паули (запрет Паули): на одной атомной орбитали могут находиться не более двух электронов с противоположными спинами (спин — это квантовомеханическая характеристика движения электрона).

Правило Хунда. На атомных орбиталях с одинаковой энергией электроны располагаются по одному с параллельными спинами. Т.е. орбитали одного подуровня заполняются так: сначала на каждую орбиталь распределяется по одному электрону. Только когда во всех орбиталях данного подуровня распределено по одному электрону, занимаем орбитали вторыми электронами, с противоположными спинами.

Таким образом, сумма спиновых квантовых чисел таких электронов на одном энергетическом подуровне (оболочке) будет максимальной.

Например, заполнение 2р-орбитали тремя электронами будет происходить так: Какие именно электроны отвечают за свойства атомов, а не так: Какие именно электроны отвечают за свойства атомов

Принцип минимума энергии. Электроны заполняют сначала орбитали с наименьшей энергией. Энергия атомной орбитали эквивалентна сумме главного и орбитального квантовых чисел: n + l. Если сумма одинаковая, то заполняется первой та орбиталь, у которой меньше главное квантовое число n.

АО1s2s2p3s3p3d4s4p4d4f5s5p5d5f 5g
n122333444455555
l001012012301234
n + l123345456756789

Таким образом, энергетический ряд орбиталей выглядит так:

1s < 2s < 2 p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f~5d < 6p < 7s <5f~6

Электронную структуру атома можно представлять в разных формах — энергетическая диаграмма, электронная формула и др. Разберем основные.

Энергетическая диаграмма атома — это схематическое изображение орбиталей с учетом их энергии. Диаграмма показывает расположение электронов на энергетических уровнях и подуровнях. Заполнение орбиталей происходит согласно квантовым принципам.

Например, энергетическая диаграмма для атома углерода:

Какие именно электроны отвечают за свойства атомов

Электронная формула — это запись распределения электронов по орбиталям атома или иона. Сначала указывается номер уровня, затем тип орбитали. Верхний индекс справа от буквы показывает число электронов на орбитали. Орбитали указываются в порядке заполнения. Запись 1s2 означает, что на 1 уровне s-подуровне расположено 2 электрона.

Например, электронная формула углерода выглядит так: 1s22s22p2.

Для краткости записи, вместо энергетических орбиталей, полностью заполненных электронами, иногда используют символ ближайшего благородного газа (элемента VIIIА группы), имеющего соответствующую  электронную конфигурацию.

Например, электронную формулу азота можно записать так: 1s22s22p3 или так: [He]2s22p3.

1s2 = [He]

1s22s22p6 = [Ne]

1s22s22p63s23p6 = [Ar] и так далее.

Электронные формулы элементов первых четырех периодов

Рассмотрим заполнение электронами оболочки элементов первых четырех периодов. У водорода заполняется самый первый энергетический уровень, s-подуровень, на нем расположен 1 электрон:

+1H 1s1      1s Какие именно электроны отвечают за свойства атомов

У гелия 1s-орбиталь полностью заполнена:

+2He 1s2      1sКакие именно электроны отвечают за свойства атомов

Поскольку первый энергетический уровень вмещает максимально 2 электрона, у лития начинается заполнение второго энергетического уровня, начиная с орбитали с минимальной энергией — 2s. При этом сначала заполняется первый энергетический уровень:

+3Li 1s22s1      1s Какие именно электроны отвечают за свойства атомов   2s Какие именно электроны отвечают за свойства атомов

У бериллия 2s-подуровень заполнен:

+4Be 1s22s2      1s Какие именно электроны отвечают за свойства атомов   2s Какие именно электроны отвечают за свойства атомов

Далее, у бора заполняется p-подуровень второго уровня:

+5B 1s22s22p1      1s Какие именно электроны отвечают за свойства атомов   2s Какие именно электроны отвечают за свойства атомов    2p Какие именно электроны отвечают за свойства атомов

У следующего элемента, углерода, очередной электрон, согласно правилу Хунда, заполняет вакантную орбиталь, а не заполняет частично занятую:

+6C 1s22s22p2      1s Какие именно электроны отвечают за свойства атомов   2s Какие именно электроны отвечают за свойства атомов    2p Какие именно электроны отвечают за свойства атомов

Попробуйте составить электронную и электронно-графическую формулы для следующих элементов, а затем можете проверить себя  по ответам конце статьи:

5. Азот

6. Кислород

7. Фтор

У неона завершено заполнение второго энергетического уровня: 

+10Ne 1s22s22p6      1s Какие именно электроны отвечают за свойства атомов   2s Какие именно электроны отвечают за свойства атомов    2p Какие именно электроны отвечают за свойства атомов

У натрия начинается заполнение третьего энергетического уровня:

+11Na 1s22s22p63s1      1s Какие именно электроны отвечают за свойства атомов   2s Какие именно электроны отвечают за свойства атомов    2p Какие именно электроны отвечают за свойства атомов     3s Какие именно электроны отвечают за свойства атомов

От натрия до аргона заполнение 3-го уровня происходит в том же порядке, что и заполнение 2-го энергетического уровня. Предлагаю составить электронные формулы элементов от магния до аргона самостоятельно, проверить по ответам.

8. Магний

9. Алюминий

10. Кремний

11. Фосфор

12. Сера

13. Хлор

14. Аргон

А вот начиная с 19-го элемента, калия, иногда начинается путаница — заполняется не 3d-орбиталь, а 4s. Ранее мы упоминали в этой статье, что заполнение энергетических уровней и подуровней электронами происходит по энергетическому ряду орбиталей, а не по порядку. Рекомендую повторить его еще раз. Таким образом, формула калия:

+19K 1s22s22p63s23p64s11sКакие именно электроны отвечают за свойства атомов 2sКакие именно электроны отвечают за свойства атомов 2pКакие именно электроны отвечают за свойства атомов3sКакие именно электроны отвечают за свойства атомов 3pКакие именно электроны отвечают за свойства атомов4sКакие именно электроны отвечают за свойства атомов

Для записи дальнейших электронных формул в статье будем использовать сокращенную форму:

 +19K   [Ar]4s1    [Ar] 4s Какие именно электроны отвечают за свойства атомов

У кальция 4s-подуровень заполнен:

+20Ca   [Ar]4s2    [Ar] 4s Какие именно электроны отвечают за свойства атомов

У элемента 21, скандия, согласно энергетическому ряду орбиталей, начинается заполнение 3d-подуровня:

+21Sc   [Ar]3d14s2    [Ar] 4s Какие именно электроны отвечают за свойства атомов   3d Какие именно электроны отвечают за свойства атомов

Дальнейшее заполнение 3d-подуровня происходит согласно квантовым правилам, от титана до ванадия:

+22Ti   [Ar]3d24s2    [Ar] 4s Какие именно электроны отвечают за свойства атомов   3d Какие именно электроны отвечают за свойства атомов

+23V   [Ar]3d34s2      [Ar] 4s Какие именно электроны отвечают за свойства атомов   3d Какие именно электроны отвечают за свойства атомов

Однако, у следующего элемента порядок заполнения орбиталей нарушается. Электронная конфигурация хрома такая:

+24Cr   [Ar]3d54s1      [Ar] 4s Какие именно электроны отвечают за свойства атомов   3d Какие именно электроны отвечают за свойства атомов

В чём же дело? А дело в том, что при «традиционном» порядке заполнения орбиталей (соответственно, неверном в данном случае — 3d44s2) ровно одна ячейка в d-подуровне оставалась бы незаполненной. Оказалось, что такое заполнение энергетически менее выгодно. А более выгодно, когда d-орбиталь заполнена полностью, хотя бы единичными электронами. Этот лишний электрон переходит с 4s-подуровня. И небольшие затраты энергии на перескок электрона с 4s-подуровня с лихвой покрывает энергетический эффект от заполнения всех 3d-орбителей. Этот эффект так и называется — провал или проскок электрона. И наблюдается он, когда d-орбиталь недозаполнена на 1 электрон (по одному электрону в ячейке или по два).

У следующих элементов «традиционный» порядок заполнения орбиталей снова возвращается. Конфигурация марганца:

+25Mn   [Ar]3d54s2

 Аналогично у кобальта и никеля. А вот у меди мы снова наблюдаем провал (проскок) электрона — электрон опять проскакивает с 4s-подуровня на 3d-подуровень:

+29Cu   [Ar]3d104s1

На цинке завершается заполнение 3d-подуровня:

+30Zn   [Ar]3d104s2

У следующих элементов, от галлия до криптона, происходит заполнение 4p-подуровня по квантовым правилам. Например, электронная формула галлия:

+31Ga   [Ar]3d104s24p1

Формулы остальных элементов мы приводить не будем, можете составить их самостоятельно и проверить себя в Интернете.

Некоторые важные понятия:

Внешний энергетический уровень — это энергетический уровень в атоме с максимальным номером, на котором есть электроны. Например, у меди   ([Ar]3d104s1) внешний энергетический уровень — четвёртый.

Валентные электроны — электроны в атоме, которые могут участвоват ьв образовании химической связи. Например, у хрома (+24Cr   [Ar]3d54s1) валентными являются не только электроны внешнего энергетического уровня (4s1), но и неспаренные электроны на 3d-подуровне, т.к. они могут образовывать химические связи.

Основное и возбужденнео состояние атома

Электронные формулы, которые мы составляли до этого, соответствуют основному энергетическому состоянию атома. Это наиболее выгодное энергетически состояние атома.

Однако, чтобы образовывать химические связи, атому в большинстве ситуаций необходимо наличие неспаренных (одиночных) электронов.  А химические связи энергетически очень для атома выгодны. Следовательно, чем больше в атоме неспаренных электронов  — тем больше связей он может образовать, и, как следствие, перейдёт в более выгодное энергетическое состояние.

Поэтому при наличии свободных энергетических орбиталей на данном уровне спаренные пары  электронов могут распариваться, и один из электронов спаренной пары может переходить на вакантную орбиталь. Таким образом число неспаренных электронов увеличивается, и атом может образовать больше химических связей, что очень выгодно с точки зрения энергии. Такое состояние атома называют возбуждённым и обозначают звёздочкой.

Например, в основном состоянии бор имеет следующую конфигурацию энергетического уровня:

+5B 1s22s22p1      1s Какие именно электроны отвечают за свойства атомов   2s Какие именно электроны отвечают за свойства атомов    2p Какие именно электроны отвечают за свойства атомов

На втором уровне (внешнем) одна спаренная электронная пара, один одиночный электрон и пара свободных (вакантных) орбиталей. Следовательно, есть возможность для перехода электрона из пары на вакантную орбиталь, получаем возбуждённое состояние атома бора (обозначается звёздочкой):

+5B* 1s22s12p2      1s Какие именно электроны отвечают за свойства атомов   2s Какие именно электроны отвечают за свойства атомов    2p Какие именно электроны отвечают за свойства атомов

Попробуйте самостоятельно составить электронную формулу, соответствующую возбуждённому состоянию атомов. Не забываем проверять себя по ответам!

15. Углерода

16. Бериллия

17. Кислорода

Электронные формулы ионов

Атомы могут отдавать и принимать электроны. Отдавая или принимая электроны, они превращаются в ионы.

Ионы — это заряженные частицы. Избыточный заряд обозначае?