Какие химические свойства можно предположить у этана запишите
Этан, получение, свойства, химические реакции.
Этан, C2H6 – органическое вещество класса алканов. В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Образуется также при крекинге нефтепродуктов.
Этан, формула, газ, характеристики
Физические свойства этана
Химические свойства этана
Получение этана в промышленности и лаборатории
Химические реакции – уравнения получения этана
Применение и использование этана
Этан, формула, газ, характеристики:
Этан (лат. ethanum) – органическое вещество класса алканов, состоящий из двух атомов углерода и шести атомов водорода.
Химическая формула этана C2H6, рациональная формула H3CCH3. Изомеров не имеет.
Строение молекулы:
Этан – бесцветный газ, без вкуса и запаха.
В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Для выделения из природного и попутного нефтяного газа производят их очистку и сепарацию газа.
Образуется также при крекинге нефтепродуктов., в т.ч. сланцевой нефти.
Также содержится в сланцевом газе и сжиженном газе (сжиженном природном газе).
Пожаро- и взрывоопасен.
Не растворяется в воде и других полярных растворителях. Зато растворяется в некоторых неполярных органических веществах (метанол, ацетон, бензол, тетрахлорметан, диэтиловый эфир и другие).
Этан по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.
Физические свойства этана:
Наименование параметра: | Значение: |
Цвет | без цвета |
Запах | без запаха |
Вкус | без вкуса |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | газ |
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м3 | 1,2601 |
Плотность (при 0 °C и атмосферном давлении 1 атм.), кг/м3 | 1,342 |
Плотность (при температуре кипения и атмосферном давлении 1 атм.), кг/м3 | 544 |
Температура плавления, °C | -182,81 |
Температура кипения, °C | -88,63 |
Температура самовоспламенения, °C | 472 |
Критическая температура*, °C | 32,18 |
Критическое давление, МПа | 4,8714 |
Критический удельный объём, м3/кг | 4891·10-6 |
Взрывоопасные концентрации смеси газа с воздухом, % объёмных | от 3,2 до 12,5 |
Удельная теплота сгорания, МДж/кг | 47,5 |
Коэффициент теплопроводности (при 0 °C и атмосферном давлении 1 атм.), Вт/(м·К) | 0,018 |
Коэффициент теплопроводности (при 20 °C и атмосферном давлении 1 атм.), Вт/(м·К) | 0,0206 |
Молярная масса, г/моль | 30,07 |
* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.
Химические свойства этана:
Этан трудно вступает в химические реакции. В обычных условиях не реагирует с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.
Химические свойства этана аналогичны свойствам других представителей ряда алканов. Поэтому для него характерны следующие химические реакции:
- 1. каталитическое дегидрирование этана:
CH3-CH3 → CH2=CH2 + H2 (kat = Pt, Ni, Al2O3, Cr2O3, to = 400-600 °C).
- 2. галогенирование этана:
CH3-CH3 + Br2 → CH3-CH2Br + HBr (hv или повышенная to);
CH3-CH3 + I2 → CH3-CH2I + HI (hv или повышенная to).
Реакция носит цепной характер. Молекула брома или йода под действием света распадается на радикалы, затем они атакуют молекулы этана, отрывая у них атом водорода, в результате этого образуется свободный этил CH3-CH2·, который сталкиваются с молекулами брома (йода), разрушая их и образуя новые радикалы йода или брома:
Br2 → Br·+ Br· (hv); – инициирование реакции галогенирования;
CH3-CH3 + Br· → CH3-CH2· + HBr; – рост цепи реакции галогенирования;
CH3-CH2· + Br2 → CH3-CH2Br + Br·;
CH3-CH2· + Br· → CH3-CH2Br; – обрыв цепи реакции галогенирования.
Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование этана проходит поэтапно – за один этап замещается не более одного атома водорода.
CH3-CH3 + Br2 → CH3-CH2Br + HBr (hv или повышенная to);
CH3-CH2Br + Br2 → CH3-CHBr2 + HBr (hv или повышенная to);
и т.д.
Галогенирование будет происходить и далее, пока не будут замещены все атомы водорода.
- 3. нитрование этана:
CH3-CH3 + HONO2 (dilute) → CH3-C(NO2)H2 + H2O (повышенная to).
- 4. окисление (горение) этана:
При избытке кислорода:
2C2H6 + 7O2 → 4CO2 + 6H2O.
Горит бесцветным пламенем.
При нехватке кислорода вместо углекислого газа (СО2) получается оксид углерода (СО), при еще меньшем количестве кислорода выделяется мелкодисперсный углерод (в различном виде, в т.ч. в виде графена, фуллерена и пр.) либо их смесь.
- 5. сульфохлорирование этана:
C2H6 + SO2 + Cl2 → C2H5-SO2Cl + … (hv).
- 6. сульфоокисление этана:
2C2H6 + 2SO2 + О2 → 2C2H5-SO2ОН (повышенная to).
Получение этана в промышленности и лаборатории. Химические реакции – уравнения получения этана:
Так как этан в достаточном количестве содержится в природном газе (до 30 % и более), попутном нефтяном газе и выделяется при крекинге нефтепродуктов, его не получают искусственно. Его выделяют при очистке и сепарации из природного газа, ПНГ и нефти при перегонке.
Этан в лабораторных условиях получается в результате следующих химических реакций:
- 1. гидрирования непредельных углеводородов, например, этилен (этен):
CH2=CH2 + H2 → CH3-CH3 (kat = Ni, Pt или Pd, повышенная to).
- 2. восстановления галогеналканов:
C2H5I + HI → C2H6 + I2 (повышенная to);
C2H5Br + H2 → C2H6 + HBr.
- 3. взаимодействия галогеналканов с металлическим щелочным металлом, например, натрием (реакция Вюрца):
2CH3Br + 2Na → CH3-CH3 + 2NaBr;
2CH3Cl + 2Na → CH3-CH3 + 2NaCl.
Суть данной реакции в том, что две молекулы галогеналкана связываются в одну, реагируя с щелочным металлом.
- 4. щелочного плавления солей одноосновных органических кислот
C2H5-COONa + NaOH → C2H6 + Na2CO3 (повышенная to).
Применение и использование этана:
– как сырье в химической промышленности для производства в основном этилена (этена).
Примечание: © Фото //www.pexels.com, //pixabay.com
карта сайта
как получить этан этилен реакция ацетилен этен 1 2 вещество хлорэтан этанол кислород водород связь является углекислый газ бромная вода
уравнение реакции масса объем полное сгорание моль молекула смесь превращение горение получение этана
напишите уравнение реакций этан
Коэффициент востребованности
9 419
Источник
Этан | |||
---|---|---|---|
Систематическое наименование | Этан | ||
Хим. формула | C2H6 | ||
Рац. формула | H3CCH3 | ||
Состояние | газ | ||
Молярная масса | 30,07 г/моль | ||
Плотность | 1,2601 кг/м³ в стандартных условиях по ГОСТ 2939—63; при н. у. (0С) 0,001342 г/см³ | ||
Температура | |||
• плавления | −182,8 °C | ||
• кипения | −88,6 °C | ||
• вспышки | 152 °C | ||
• воспламенения | 152 °C | ||
• самовоспламенения | 472 °C | ||
Мол. теплоёмк. | 52,65 Дж/(моль·К) | ||
Энтальпия | |||
• образования | -84,67 кДж/моль | ||
Давление пара | 2,379 МПа (0°С) | ||
Константа диссоциации кислоты | 42 (вода, 20°С) | ||
Рег. номер CAS | 74-84-0 | ||
PubChem | 6324 | ||
Рег. номер EINECS | 200-814-8 | ||
SMILES | CC | ||
InChI | InChI=1S/C2H6/c1-2/h1-2H3 OTMSDBZUPAUEDD-UHFFFAOYSA-N | ||
RTECS | KH3800000 | ||
ChEBI | 42266 | ||
Номер ООН | 1035 | ||
ChemSpider | 6084 | ||
Токсичность | Малотоксичен. Обладает слабым наркотическим действием | ||
Краткие характер. опасности (H) | H220, H280[1] | ||
Меры предостор. (P) | P210, P377, P381, P410+P403 | ||
Сигнальное слово | Опасно | ||
Пиктограммы СГС | |||
NFPA 704 | 4 1 SA | ||
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. | |||
Медиафайлы на Викискладе |
Эта́н (лат. ethanum), C2H6 — органическое соединение, второй член гомологического ряда алканов. Газ без цвета и запаха. В промышленности этан получают из природного газа и нефти и расходуют преимущественно для производства этилена.
Физические свойства[править | править код]
Этан при н. у. — бесцветный газ, без запаха и вкуса. Молярная масса — 30,07. Температура плавления −183,23 °C, температура кипения −88,63 °C. Плотность ρгаз.=0,001342 г/см³ или 1,342 кг/м³ (н. у.), ρжидк.=0,561 г/см³ (T=-100 °C). Давление паров при 0 °C — 2,379 МПа. Растворимость в воде — 4,7 мл в 100 мл (при 20 °C), в этаноле — 46 мл в 100 мл (при 0 °C), хорошо растворяется в углеводородах. Точка вспышки у этана равна –187,8 °C, температура самовоспламенения — 595 °C. Этан образует с воздухом взрывоопасные смеси при содержании 5–15 об. % (при 20 °C). Октановое число —120,3[2][3][4].
Строение[править | править код]
Молекула этана имеет тетраэдрическое строение: атомы углерода являются sp3-гибридными. Связь C–C образована перекрыванием sp3-гибридных орбиталей, а связь C–H — перекрыванием sp3-гибридной орбитали углерода и s-орбитали водорода. Длина связи C–C равна 1,54 Å, а длина связи C–H равна 1,095 Å[5].
Поскольку С–С-связь в этане одинарная, вокруг неё возможно свободное вращение метильных групп. При вращении возникают различные пространственные формы молекулы этана, которые называются конформациями. Конформации принято изображать в виде перспективного изображения (такие изображения иногда называют «лесопильными козлами») либо в виде проекций Ньюмена[5].
Число конформаций для этана бесконечно, однако принято рассматривать две крайние конформации:
- заслонённую, в которой атомы водорода максимально сближены в пространстве;
- и заторможенную, в которой атомы водорода максимально удалены[5].
Заслонённая конформация имеет наибольшую энергию из всех конформаций, а заторможенная — наименьшую, то есть является наиболее энергетически выгодной и, следовательно, более устойчивой. Разница энергии между этими конформациями равна 2,9 ккал/моль. Считается, что это число отражает торсионное напряжение в менее выгодной заслонённой конформации. Если разделить эту энергию на три взаимодействия между парами атомов водорода, то энергия торсионного взаимодействия двух атомов водорода составит примерно 1 ккал/моль[5].
По значению 2,9 ккал/моль из уравнения Гиббса можно вычислить константу равновесия между двумя конформациями этана. При температуре 25 °С значительно преобладает заторможенная конформация: 99 % молекул этана находятся в этой конформации и лишь 1 % — в заслонённой[5].
Энергии крайних и промежуточных конформаций принято представлять в виде циклических графиков, где по оси абсцисс отложен торсионный угол, а по оси ординат — энергия.
Получение[править | править код]
В промышленности[править | править код]
В промышленности получают из нефтяных и природных газов, где он составляет до 10 % по объёму. В России содержание этана в нефтяных газах очень низкое. В США и Канаде (где его содержание в нефтяных и природных газах высоко) служит основным сырьём для получения этилена[6]. Также этан получают при гидрокрекинге углеводородов и ожижении углей[7].
В лабораторных условиях[править | править код]
В 1848 году Кольбе и Франкленд впервые синтетически получили этан, обработав пропионитрил металлическим калием. В 1849 году они получили этот газ электролизом ацетата калия и действием цинка и воды на иодэтан[8].
В лаборатории этан можно получить несколькими способами:
- из иодметана по реакции Вюрца;
- из ацетата натрия по реакции Кольбе;
- взаимодействием пропионата натрия с щёлочью;
- из этилбромида гидролизом соответствующего реактива Гриньяра;
- гидрированием этилена (над Pd) или ацетилена (в присутствии никеля Ренея)[3].
Химические свойства[править | править код]
Этан вступает в типичные реакции алканов, прежде всего реакции замещения, проходящие по свободнорадикальному механизму. Среди химических свойства этана можно выделить:
- термическое дегидрирование при 550-650 °C с образованием этилена;
- дальнейшее дегидрирование выше 800 °C, приводящее к ацетилену (в этой реакции также получаются бензол и сажа);
- хлорирование при 300-450 °C с образованием этилхлорида;
- нитрование в газовой фазе с образованием смеси нитроэтана и нитрометана (3:1)[3].
Применение[править | править код]
Основное использование этана в промышленности — получение этилена методом парового крекинга. Именно из этилена далее получают важные промышленные продукты, однако в целях экономии разрабатываются методы превращения в них самого этана. Однако ни один из проектов пока не прошёл пилотную стадию. Проблемы в этой области связаны с низкой селективностью реакций. Одним из перспективных направлений является синтез винилхлорида напрямую из этана. Также применяется превращение этана в уксусную кислоту. Термическим хлорированием этана в различных условиях получают хлорэтан, 1,1-дихлорэтан и 1,1,1-трихлорэтан[7].
Физиологическое действие[править | править код]
Этан обладает слабым наркотическим действием (ослаблено за счёт низкой растворимости в жидкостях организма). Класс опасности — четвёртый[9]. В концентрациях 2-5 об. % он вызывает одышку, в умеренных концентрациях — головные боли, сонливость, головокружение, повышенное слюноотделение, рвоту и потерю сознания из-за недостатка кислорода. В высоких концентрациях этан может вызвать сердечную аритмию, остановку сердца и остановку дыхания. При постоянном контакте может возникнуть дерматит. Сообщается, что при 15-19 об. % этан вызывает повышение чувствительности миокарда к катехоламинам[10].
Интересные факты[править | править код]
Предположительно, на поверхности Титана (спутник Сатурна) в условиях низких температур (−180 °C) существуют целые озёра и реки из жидкой метано-этановой смеси[11].
Примечания[править | править код]
- ↑ Ethane. Sigma-Aldrich. Дата обращения 6 апреля 2019.
- ↑ Ullmann, 2014, p. 3–5.
- ↑ 1 2 3 Химическая энциклопедия.
- ↑ Рабинович В. А., Хавин З. Я. Краткий химический справочник. — Изд. 2-е. — Химия, 1978. — С. 199.
- ↑ 1 2 3 4 5 Реутов О. А., Курц А. Л., Бутин К. П. Органическая химия : в 4 т.. — 5-е изд. — БИНОМ. Лаборатория знаний, 2014. — Т. 1. — С. 321—326. — ISBN 978-5-9963-1535-2.
- ↑ Химическая энциклопедия, 1998.
- ↑ 1 2 Ullmann, 2014, p. 13.
- ↑ ЭСБЕ.
- ↑ Газохроматографическое измерение массовых концентраций углеводородов: метана, этана, этилена, пропана, пропилена, нбутана, альфа-бутилена, изопентана в воздухе рабочей зоны. Методические указания. МУК 4.1.1306-03 (недоступная ссылка)
- ↑ Ullmann, 2014, p. 61.
- ↑ Mousis O., Schmitt B. Sequestration of Ethane in the Cryovolcanic Subsurface of Titan (англ.) // The Astrophysical Journal : journal. — IOP Publishing, 2008. — April (vol. 677). — doi:10.1086/587141.
Литература[править | править код]
- Братков А. А. Этан // Химическая энциклопедия : в 5 т. / Гл. ред. Н. С. Зефиров. — М.: Большая Российская энциклопедия, 1998. — Т. 5: Триптофан—Ятрохимия. — С. 491. — 783 с. — 10 000 экз. — ISBN 5-85270-310-9.
- Schmidt R., Griesbaum K., Behr A., Biedenkapp D., Voges H.-W., Garbe D., Paetz C., Collin G., Mayer D., Höke H. Hydrocarbons (англ.) // Ullmann’s Encyclopedia of Industrial Chemistry. — Wiley, 2014. — doi:10.1002/14356007.a13_227.pub3.
- The chemistry of alkanes and cycloalkanes / Ed. Saul Patai and Zvi Rappoport. — John Wiley & Sons, 1992. — ISBN 0-471-92498-9.
- Тутурин Н. Н. Этан // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
Источник
Предельные, углеводороды ряда метана (алканы)
Алканы, или парафины — алифатические
предельные углеводороды, в молекулах которых атомы углерода связаны между собой
простой s-связью.
Оставшиеся валентности углеродного атома, не затраченные на связь с другими
атомами углерода, полностью насыщены водородом. Поэтому предельные углеводороды
содержат в молекуле максимальное число водородных атомов.
Углеводороды ряда алканов имеют общую
формулу CnH2n+2. В таблице представлены некоторые
представители ряда алканов и их некоторые физические свойства.
Формула | Название | Название | Т | Т |
CH4 | метан | метил | -184 | -162 |
C2H6 | этан | этил | -172 | -88 |
C3H8 | пропан | пропил | -190 | -42 |
C4H10 | бутан | бутил | -135 | -0,5 |
C4H10 | изобутан | изобутил | -140 | -10 |
C5H12 | пентан | пентил | -132 | 36 |
C5H12 | изопентан | изопентил | -161 | 28 |
C5H12 | неопентан | неопентил | -20 | 10 |
C6H14 | гексан | гексил | -94 | 69 |
C7H16 | гептан | гептил | -90 | 98 |
C10H22 | декан | децил | -30 | 174 |
C15H32 | пентадекан | 10 | 271 | |
C20H42 | эйкозан | 37 | 348 |
Из таблицы видно, что эти углеводороды
отличаются друг от друга количеством групп – СН2-.Такой ряд сходных
по строению, обладающих близкими химическими свойствами и отличающихся друг от
друга числом данных групп называется гомологическим рядом. А вещества,
составляющие его, называются гомологами.
Тренажёр
№1 – Гомологи и изомеры
Тренажёр
№2. – Гомологический ряд предельных углеводородов
Физические
свойства
Первые четыре
члена гомологического ряда метана — газообразные вещества, начиная с пентана —
жидкости, а углеводороды с числом углеродных атомов 16 и выше — твердые
вещества (при обычной температуре). Алканы — неполярные соединения и трудно
поляризуемые. Они легче воды и в ней практически не растворяются. Не
растворяются также в других растворителях с высокой полярностью. Жидкие алканы
— хорошие растворители для многих органических веществ. Метан и этан, а также
высшие алканы не имеют запаха. Алканы — горючие вещества. Метан горит
бесцветным пламенем.
Получение
алканов
Для получения
алканов используют в основном природные источники.
Газообразные
алканы получают из природного и попутных нефтяных газов, а твердые алканы — из
нефти. Природной смесью твердых высокомолекулярных алканов является горный
воск —природный битум.
1. Из
простых веществ:
nC + 2nН2500 °С, кат → СnН2n+ 2
2. Действие
металлического натрия на галогенопроизводные алканов— реакция А.Вюрца:
2CH3-Cl + 2Na → CH3-CH3
+ 2NaCl
Химические свойства алканов
1. Реакции замещения – Галогенирование (стадийно)
CH4 + Cl2 hν → CH3Cl(хлорметан) + HCl (1 стадия)
;
метан
CH3Cl + Cl2 hν → CH2Cl2 (дихлорметан)+ HCl (2 стадия);
СH2Cl2 + Cl2 hν → CHCl3 (трихлорметан)+ HCl (3 стадия);
CHCl3 + Cl2 hν → CCl4 (хлорметан)+ HCl (4 стадия).
2. Реакции горения (горят светлым не коптящим пламенем)
CnH2n+2 + O2t→ nCO2 +
(n+1)H2O
Горение метана
Горение пропан-бутановой смеси
3. Реакции разложения
а) Крекинг при температуре 700-1000°С разрываются (-С-С-)
связи:
C10H22 → C5H12
+ C5H10
б) Пиролиз при температуре 1000°С разрываются все связи,
продукты – С (сажа) и Н2:
СH4 1000°С→
C + 2H2
Применение
·
Предельные
углеводороды находят широкое применение в самых разнообразных сферах жизни и
деятельности человека.
·
Использование
в качестве топлива – в котельных установках, бензин, дизельное топливо,
авиационное топливо, баллоны с пропан-бутановой смесью для бытовых плит
·
Вазелин
используется в медицине, парфюмерии, косметике, высшие алканы входят в состав
смазочных масел, соединения алканов применяются в качестве хладагентов в
домашних холодильниках
·
Смесь
изомерных пентанов и гексанов называется петролейным эфиром и применяется в
качестве растворителя. Циклогексан также широко применяется в качестве
растворителя и для синтеза полимеров.
·
Метан
используется для производства шин и краски
·
Значение
алканов в современном мире огромно. В нефтехимической промышленности предельные
улеводороды являются базой для получения разнообразных органических соединений,
важным сырьем в процессах получения полупродуктов для производства пластмасс,
каучуков, синтетических волокон, моющих средств и многих других веществ. Велико
значение в медицине, парфюмерии и косметике.
Задания для закрепления
№1.
Составьте уравнения реакций горения этана и бутана.
№2.
Составьте
уравнения реакций получения бутана из следующих галогеналканов:
CH3 – Cl (хлорметан) и C2H5 – I (йодэтан).
№3. Осуществите
превращения по схеме, назовите продукты:
C→ CH4 → CH3Cl → C2H6
→ CO2
№4. Реши кроссворд
По горизонтали:
1.
Алкан, имеющий молекулярную формулу С3Н8.
2. Простейший представитель предельных углеводородов.
3. Французский химик, имя которого носит реакция получения углеводородов с
более длинной углеродной цепью взаимодействием галогенопроизводных предельных
углеводородов с металлическим натрием.
4. Геометрическая фигура, которую напоминает пространственное строение молекулы
метана.
5. Трихлорметан.
6. Название радикала С2Н5–.
7. Наиболее характерный вид реакций для алканов.
8. Агрегатное состояние первых четырех представителей алканов при нормальных
условиях.
Если
вы правильно ответили на вопросы, то в выделенном столбце по вертикали получите
одно из названий предельных углеводородов. Назовите это слово?
Источник