Какие химические свойства можно предположить у этана

Какие химические свойства можно предположить у этана thumbnail

Этан C2H6 – это предельный углеводород, содержащий два атома углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, нерастворим в воде и не смешивается с ней.

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4. , или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алканаФормула алкана
МетанCH4
ЭтанC2H6
ПропанC3H8
БутанC4H10
ПентанC5H12
ГексанC6H14
ГептанC7H16
ОктанC8H18
НонанC9H20
ДеканC10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества. 

В молекулах алканов встречаются химические связи C–H и С–С.

Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах  образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp3:

При образовании связи  С–С происходит перекрывание sp3-гибридных орбиталей атомов углерода:

При образовании связи  С–H происходит перекрывание sp3-гибридной орбитали атома углерода и s-орбитали атома водорода:

Четыре sp3-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109о 28′  друг к другу:

Какие химические свойства можно предположить у этана

Это соответствует тетраэдрическому строению молекулы.

Например, в молекуле этана C2H6 атомы водорода располагаются в пространстве в вершинах двух тетраэдров, центрами которых являются атомы углерода

Для  этана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных. 

Этан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для метана характерны реакции:

  • разложения,
  • замещения,
  • окисления.

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для этана характерны радикальные реакции.

Этан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения

 В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование

Этан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании этана сначала образуется хлорэтан:

CH3-CH3 + Cl2 = CH3-CH2Cl + HCl

Хлорэтан может взаимодействовать с хлором и дальше с образованием дихлорэтана, трихлорэтана,  тетрахлорметана и т.д.

1.2. Нитрование этана

Этан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании  и под давлением.  Атом водорода в этане замещается на нитрогруппу NO2.

Например. При нитровании этана образуется преимущественно нитроэтан:

CH3-CH3 + HNO3 = CH3-CH2NO2 + H2O

2. Дегидрирование этана 

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, при дегидрировании этана образуются этилен или ацетилен:

3. Окисление этана

Этан – слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Этан горит с образованием углекислого газа и воды. Реакция горения этана сопровождается выделением большого количества теплоты.

C2H4 + 3O2  → 2CO2 + 2H2O + Q

Уравнение сгорания алканов в общем виде:

CnH2n+2 + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q

При горении этана в недостатке кислорода может образоваться угарный газ СО или сажа С.

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Это один из лабораторных способов получения этана из хлорметана или бромметана. При этом происходит удвоение углеродного скелета.

Например, хлорметан реагирует с натрием с образованием этана:

2. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH  R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe)  соли органической кислоты.

При взаимодействии пропионата натрия с гидроксидом натрия при сплавлении образуется этан и карбонат натрия:

CH3–CH2–COONa + NaOH  CH3–CH2–H + Na2CO3

3. Гидрирование алкенов и алкинов

Этан можно получить из этилена или ацетилена:

При гидрировании этилена образуется этан:

При полном гидрировании ацетилена также образуется этан:

4. Синтез Фишера-Тропша

 Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

nCO + (3n+1)H2 = CnH2n+2 + nH2O

Это промышленный процесс получения алканов.

Синтезом Фишера-Тропша можно получить этан:

Читайте также:  Какие свойства в арахисе

2CO + 5H2 = C2H6 + 2H2O

5. Получение этана в промышленности

В промышленности этан получают из нефти, каменного угля, природного и попутного газа. При переработке нефти используют ректификацию, крекинг и другие способы.

Источник

1

H

1,008

1s1

2,1

Бесцветный газ

t°пл=-259°C

t°кип=-253°C

2

He

4,0026

1s2

4,5

Бесцветный газ

t°кип=-269°C

3

Li

6,941

2s1

0,99

Мягкий серебристо-белый металл

t°пл=180°C

t°кип=1317°C

4

Be

9,0122

2s2

1,57

Светло-серый металл

t°пл=1278°C

t°кип=2970°C

5

B

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

t°пл=2300°C

t°кип=2550°C

6

C

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

t°пл=3550°C

t°кип=4830°C

7

N

14,007

2s2 2p3

3,04

Бесцветный газ

t°пл=-210°C

t°кип=-196°C

8

O

15,999

2s2 2p4

3,44

Бесцветный газ

t°пл=-218°C

t°кип=-183°C

9

F

18,998

2s2 2p5

3,98

Бледно-желтый газ

t°пл=-220°C

t°кип=-188°C

10

Ne

20,180

2s2 2p6

4,4

Бесцветный газ

t°пл=-249°C

t°кип=-246°C

11

Na

22,990

3s1

0,98

Мягкий серебристо-белый металл

t°пл=98°C

t°кип=892°C

12

Mg

24,305

3s2

1,31

Серебристо-белый металл

t°пл=649°C

t°кип=1107°C

13

Al

26,982

3s2 3p1

1,61

Серебристо-белый металл

t°пл=660°C

t°кип=2467°C

14

Si

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

t°пл=1410°C

t°кип=2355°C

15

P

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

t°пл=44°C

t°кип=280°C

16

S

32,065

3s2 3p4

2,58

Светло-желтый порошок

t°пл=113°C

t°кип=445°C

17

Cl

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

t°пл=-101°C

t°кип=-35°C

18

Ar

39,948

3s2 3p6

4,3

Бесцветный газ

t°пл=-189°C

t°кип=-186°C

19

K

39,098

4s1

0,82

Мягкий серебристо-белый металл

t°пл=64°C

t°кип=774°C

20

Ca

40,078

4s2

1,0

Серебристо-белый металл

t°пл=839°C

t°кип=1487°C

21

Sc

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

t°пл=1539°C

t°кип=2832°C

22

Ti

47,867

3d2 4s2

1,54

Серебристо-белый металл

t°пл=1660°C

t°кип=3260°C

23

V

50,942

3d3 4s2

1,63

Серебристо-белый металл

t°пл=1890°C

t°кип=3380°C

24

Cr

51,996

3d5 4s1

1,66

Голубовато-белый металл

t°пл=1857°C

t°кип=2482°C

25

Mn

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

t°пл=1244°C

t°кип=2097°C

26

Fe

55,845

3d6 4s2

1,83

Серебристо-белый металл

t°пл=1535°C

t°кип=2750°C

27

Co

58,933

3d7 4s2

1,88

Серебристо-белый металл

t°пл=1495°C

t°кип=2870°C

28

Ni

58,693

3d8 4s2

1,91

Серебристо-белый металл

t°пл=1453°C

t°кип=2732°C

29

Cu

63,546

3d10 4s1

1,9

Золотисто-розовый металл

t°пл=1084°C

t°кип=2595°C

30

Zn

65,409

3d10 4s2

1,65

Голубовато-белый металл

t°пл=420°C

t°кип=907°C

31

Ga

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

t°пл=30°C

t°кип=2403°C

32

Ge

72,64

4s2 4p2

2,0

Светло-серый полуметалл

t°пл=937°C

t°кип=2830°C

33

As

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

t°субл=613°C

(сублимация)

34

Se

78,96

4s2 4p4

2,55

Хрупкий черный минерал

t°пл=217°C

t°кип=685°C

35

Br

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

t°пл=-7°C

t°кип=59°C

36

Kr

83,798

4s2 4p6

3,0

Бесцветный газ

t°пл=-157°C

t°кип=-152°C

37

Rb

85,468

5s1

0,82

Серебристо-белый металл

t°пл=39°C

t°кип=688°C

38

Sr

87,62

5s2

0,95

Серебристо-белый металл

t°пл=769°C

t°кип=1384°C

39

Y

88,906

4d1 5s2

1,22

Серебристо-белый металл

t°пл=1523°C

t°кип=3337°C

40

Zr

91,224

4d2 5s2

1,33

Серебристо-белый металл

t°пл=1852°C

t°кип=4377°C

41

Nb

92,906

4d4 5s1

1,6

Блестящий серебристый металл

t°пл=2468°C

t°кип=4927°C

42

Mo

95,94

4d5 5s1

2,16

Блестящий серебристый металл

t°пл=2617°C

t°кип=5560°C

43

Tc

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

t°пл=2172°C

t°кип=5030°C

44

Ru

101,07

4d7 5s1

2,2

Серебристо-белый металл

t°пл=2310°C

t°кип=3900°C

45

Rh

102,91

4d8 5s1

2,28

Серебристо-белый металл

t°пл=1966°C

t°кип=3727°C

46

Pd

106,42

4d10

2,2

Мягкий серебристо-белый металл

t°пл=1552°C

t°кип=3140°C

47

Ag

107,87

4d10 5s1

1,93

Серебристо-белый металл

t°пл=962°C

t°кип=2212°C

48

Cd

112,41

4d10 5s2

1,69

Серебристо-серый металл

t°пл=321°C

t°кип=765°C

49

In

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

t°пл=156°C

t°кип=2080°C

50

Sn

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

t°пл=232°C

t°кип=2270°C

51

Sb

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

t°пл=631°C

t°кип=1750°C

52

Te

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

t°пл=450°C

t°кип=990°C

53

I

126,90

5s2 5p5

2,66

Черно-серые кристаллы

t°пл=114°C

t°кип=184°C

54

Xe

131,29

5s2 5p6

2,6

Бесцветный газ

t°пл=-112°C

t°кип=-107°C

55

Cs

132,91

6s1

0,79

Мягкий серебристо-желтый металл

t°пл=28°C

t°кип=690°C

56

Ba

137,33

6s2

0,89

Серебристо-белый металл

t°пл=725°C

t°кип=1640°C

57

La

138,91

5d1 6s2

1,1

Серебристый металл

t°пл=920°C

t°кип=3454°C

58

Ce

140,12

f-элемент

Серебристый металл

t°пл=798°C

t°кип=3257°C

59

Pr

140,91

f-элемент

Серебристый металл

t°пл=931°C

t°кип=3212°C

60

Nd

144,24

f-элемент

Серебристый металл

t°пл=1010°C

t°кип=3127°C

61

Pm

146,92

f-элемент

Светло-серый радиоактивный металл

t°пл=1080°C

t°кип=2730°C

62

Sm

150,36

f-элемент

Серебристый металл

t°пл=1072°C

t°кип=1778°C

63

Eu

151,96

f-элемент

Серебристый металл

t°пл=822°C

t°кип=1597°C

64

Gd

157,25

f-элемент

Серебристый металл

t°пл=1311°C

t°кип=3233°C

66

Dy

162,50

f-элемент

Серебристый металл

t°пл=1409°C

t°кип=2335°C

67

Ho

164,93

f-элемент

Серебристый металл

t°пл=1470°C

t°кип=2720°C

68

Er

167,26

f-элемент

Серебристый металл

t°пл=1522°C

t°кип=2510°C

69

Tm

168,93

f-элемент

Серебристый металл

t°пл=1545°C

t°кип=1727°C

70

Yb

173,04

f-элемент

Серебристый металл

t°пл=824°C

t°кип=1193°C

71

Lu

174,96

f-элемент

Серебристый металл

t°пл=1656°C

t°кип=3315°C

72

Hf

178,49

5d2 6s2

Серебристый металл

t°пл=2150°C

t°кип=5400°C

73

Ta

180,95

5d3 6s2

Серый металл

t°пл=2996°C

t°кип=5425°C

74

W

183,84

5d4 6s2

2,36

Серый металл

t°пл=3407°C

t°кип=5927°C

75

Re

186,21

5d5 6s2

Серебристо-белый металл

t°пл=3180°C

t°кип=5873°C

76

Os

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

t°пл=3045°C

t°кип=5027°C

77

Ir

192,22

5d7 6s2

Серебристый металл

t°пл=2410°C

t°кип=4130°C

78

Pt

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

t°пл=1772°C

t°кип=3827°C

79

Au

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

t°пл=1064°C

t°кип=2940°C

80

Hg

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

t°пл=-39°C

t°кип=357°C

81

Tl

204,38

6s2 6p1

Серебристый металл

t°пл=304°C

t°кип=1457°C

82

Pb

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

t°пл=328°C

t°кип=1740°C

83

Bi

208,98

6s2 6p3

Блестящий серебристый металл

t°пл=271°C

t°кип=1560°C

84

Po

208,98

6s2 6p4

Мягкий серебристо-белый металл

t°пл=254°C

t°кип=962°C

85

At

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

t°пл=302°C

t°кип=337°C

86

Rn

222,02

6s2 6p6

2,2

Радиоактивный газ

t°пл=-71°C

t°кип=-62°C

87

Fr

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

t°пл=27°C

t°кип=677°C

88

Ra

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

t°пл=700°C

t°кип=1140°C

89

Ac

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

t°пл=1047°C

t°кип=3197°C

90

Th

232,04

f-элемент

Серый мягкий металл

91

Pa

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

238,03

f-элемент

1,38

Серебристо-белый металл

t°пл=1132°C

t°кип=3818°C

93

Np

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Источник

Алканы – это предельные углеводороды, содержащие только одинарные связи между атомами С–С в молекуле, т.е. содержащие максимальное количество водорода.

Строение алканов

Гомологический ряд

Получение алканов

Химические свойства алканов

Алканы – предельные углеводороды, поэтому они не могут вступать в реакции присоединения.

Для предельных углеводородов характерны реакции:

  • разложения,
  • замещения,
  • окисления.

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для алканов характерны только радикальные реакции.

Алканы устойчивы к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагируют с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения.

 В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование.

Алканы реагируют с хлором и бромом на свету или при нагревании.

При хлорировании метана сначала образуется хлорметан:

Хлорметан может взаимодействовать с хлором и дальше с образованием дихлорметана, трихлорметана и тетрахлорметана:

Химическая активность хлора  выше, чем активность брома, поэтому хлорирование протекает быстро и неизбирательно.

При хлорировании алканов с углеродным скелетом, содержащим более 3 атомов углерода, образуется смесь хлорпроизводных.

Например, при хлорировании пропана образуются 1-хлорпропан и 2-хлопропан:

Бромирование протекает более медленно и избирательно.

Избирательность бромирования:  сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.

С третичный–Н > С вторичный–Н > С первичный–Н

Например, при бромировании 2-метилпропана преимущественно образуется 2-бром-2-метилпропан:

Реакции замещения в алканах протекают по свободнорадикальному механизму.

Читайте также:  Какие свойства имеет углекислый газ

 Свободные радикалы R∙ – это атомы или группы связанных между собой атомов, которые содержат неспаренный электрон.

Первая стадия. Инициирование цепи.

Под действием кванта света или при нагревании молекула галогена разрывается на два радикала:

Свободные радикалы – очень активные частицы, которые стремятся образовать связь с каким-либо другим атомом.

Вторая стадия. Развитие цепи.

Радикал галогена взаимодействует с молекулой алкана и отрывает от него водород.

При этом образуется промежуточная частица – алкильный радикал, который в свою очередь взаимодействует с новой нераспавшейся молекулой хлора:

Третья стадия. Обрыв цепи.

При протекании цепного процесса рано или поздно радикалы сталкиваются с радикалами, образуя молекулы, радикальный процесс обрывается.

Могут столкнуться как одинаковые, так и разные радикалы, в том числе два метильных радикала:

1.2. Нитрование алканов.

Алканы взаимодействуют с разбавленной азотной кислотой по радикальному механизму, при нагревании до 140оС и под давлением.  Атом водорода в алкане замещается на нитрогруппу NO2.

При этом процесс протекает также избирательно.

С третичный–Н > С вторичный–Н > С первичный–Н

Например. При нитровании пропана образуется преимущественно 2-нитропропан:

2. Реакции разложения.

2.1. Дегидрирование и дегидроциклизация.

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

Уравнение дегидрирования алканов в общем виде:

CnH2n+2 → CnH2n-х  + (х+1)H2

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, при дегидрировании этана образуются этилен или ацетилен:

При дегидрировании бутана под действием металлических катализаторов образуется смесь продуктов. Преимущественно образуется бутен-2:

Если бутан нагревать в присутствии оксида хрома (III), преимущественно образуется бутадиен-1,3:

Алканы с более длинным углеродным скелетом, содержащие  5 и более атомов углерода в главной цепи, при дегидрировании образуют циклические соединения.

При этом протекает дегидроциклизация – процесс  отщепления водорода с образованием замкнутого цикла.

Пентан и его гомологи, содержащие пять атомов углерода в главной цепи, при нагревании над платиновым катализатором образуют циклопентан и его гомологи:

Алканы с углеродной цепью, содержащей 6 и более атомов углерода в главной цепи, при дегидрировании образуют устойчивые шестиатомные циклы, т. е. циклогексан и его гомологи, которые далее превращаются в ароматические углеводороды.

Гексан при нагревании в присутствии оксида хрома (III) в зависимости от условий может образовать циклогексан и потом бензол:

Гептан при дегидрировании в присутствии катализатора образует метилциклогексан и далее толуол:

Какие химические свойства можно предположить у этана

2.2. Пиролиз (дегидрирование) метана.

При медленном и длительном нагревании до 1500оС метан разлагается до простых веществ:

Если процесс нагревания метана проводить очень быстро (примерно 0,01 с), то происходит межмолекулярное дегидрирование и образуется ацетилен:

Пиролиз метана – промышленный способ получения ацетилена.

2.3. Крекинг.

Крекинг – это реакция разложения алкана с длинной углеродной цепью на алканы и алкены с более короткой углеродной цепью.

Крекинг бывает термический и каталитический.

Термический крекинг протекает при сильном нагревании без доступа воздуха.

При этом получается смесь алканов и алкенов с различной длиной углеродной цепи и различной молекулярной массой.

Например, при крекинге н-пентана образуется смесь, в состав которой входят этилен, пропан, метан, бутилен, пропилен, этан и другие углеводороды.

Каталитический крекинг проводят при более низкой температуре в присутствии катализаторов. Процесс сопровождается реакциями изомеризации и дегидрирования. Катализаторы каталитического крекинга – цеолиты (алюмосиликаты кальция, натрия).

3. Реакции окисления алканов.

Алканы – малополярные соединения, поэтому при обычных условиях они не окисляются даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение.

Алканы горят с образованием углекислого газа и воды. Реакция горения алканов сопровождается выделением большого количества теплоты.

CH4 + 2O2  → CO2 + 2H2O + Q

Уравнение сгорания алканов в общем виде:

CnH2n+2 + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q

При горении алканов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Например, горение пропана в недостатке кислорода:

2C3H8 + 7O2 → 6CO + 8H2O

Промышленное значение имеет реакция окисления метана кислородом до простого вещества – углерода:

CH4 + O2 → C + 2H2O

Эта реакция используется для получения сажи.

3.2. Каталитическое окисление.

  • Каталитическое окисление бутана – промышленный способ получения уксусной кислоты:
  • При каталитическом окислении метана кислородом возможно образование различных продуктов в зависимости от условий проведения процесса и катализатора. Возможно образование метанола, муравьиного альдегида или муравьиной кислоты:

Какие химические свойства можно предположить у этана

  • Важное значение в промышленности имеет паровая конверсия метана: окисление метана водяным паром при высокой температуре.

Продукт реакции – так называемый  «синтез-газ».

4. Изомеризация алканов.

Под действием катализатора и при нагревании неразветвленные алканы, содержащие не менее четырех атомов углерода в основной цепи, могут превращаться в более разветвленные алканы.

Например, н-бутан под действием катализатора хлорида алюминия и при нагревании превращается в изобутан:

Источник