Какие химические соединения содержатся в живых организмах

Какие химические соединения содержатся в живых организмах thumbnail

Химические элементы в живых организмах образуют два класса соединений: органические и неорганические, а также находятся в свободном состоянии — в виде ионов. Все 94 элемента естественного происхождения имеют разное число протонов, расположение и количество электронов. Когда в XIX в. Дмитрий Менделеев выстроил их в таблицу согласно номерам, он открыл одну из величайших закономерностей естествознания: элементы демонстрируют химические свойства, которые по повторяемости можно объединить в 8 групп. Эта закономерная картина дала таблице своё название: Периодическая таблица химических элементов.

Периодическая таблица отображает химические элементы согласно атомному номеру и их свойству

Периодичность элементов, найденная Менделеевым, основана на взаимодействии электронов разных атомов на внешнем энергетическом уровне. Эти электроны называются валентными, и их контакты являются основой химических реакций. Для большинства атомов, важных для жизни, внешний энергетический уровень может содержать не более 8 электронов. Химическое поведение элемента зависит от того, сколько из его восьми позиций заполнено.

Таблица Менделеева фото

Элементы, обладающие всеми восьмью электронами внешнего энергетического уровня (у гелия 2) являются инертными, т. е. нереактивными. К ним относятся: гелий (He), неон (Ne), аргон (Ar) и другие благородные газы. Напротив, элементы с семью электронами внешнего энергетического уровня, такие как фтор (F), хлор (Cl) и бром (Br) реактивны. Как правило, они получают дополнительные электроны, необходимые для заполнения энергетического уровня.

Другие элементы с одним электроном в их внешнем энергетическом уровне: литий (Li), натрий (Na) и калий (K) имеют тенденцию к потере одного своего электрона.

Атом лития фотоСтроение атома лития
Автор: Ahazard.sciencewriter, CC BY-SA 4.0

Таким образом, Периодическая таблица Менделеева демонстрирует правило октета, или правило восьми (лат. Octo – «восемь»): атомы стремятся полностью восстановить свои внешние энергетические уровни, дополнить количество электронов на них до 8.

Химические элементы в составе живых организмов

Отгадайте,  о составе какого объекта идёт речь?

  • 43 кг кислорода,
  • 18 кг углерода,
  • 7 кг водорода,
  • 1,8 кг азота,
  • 0,780 кг фосфора,
  • 0,0042 кг железа
  • и ещё около 20 химических элементов.

Это состав человека среднего размера и веса. В отличие от неживой природы в живых существах химические элементы организованы в клетки.

Химический состав земной коры и живой природы фотоХимический состав:
1 — земной коры,
2 — живых организмов

В земной коре преобладают кислород, кремний, алюминий и железо. В основе живых организмов находятся 4 элемента: кислород, углерод, водород, азот. Все элементы кроме кислорода, преобладающие в живых организмах, составляют незначительную долю массы земной коры.

Основные химические элементы в живых организмах — это:

  • углерод – C,
  • водород – H,
  • кислород – O,
  • азот – N,
  • фосфор – P,
  • сера – S,
  • натрий – Na,
  • калий – K,
  • кальций – Ca,
  • магний – Mg,
  • железо – Fe,
  • хлор – Cl.

Их доля в живых организмах может составлять 0,01% и выше. Все они имеют атомные номера меньше 21, так как их атомная масса низка. Первые 4 элемента: углерод, водород, кислород и азот составляют 96,3% массы любого организма.

Таб. 1. Химические элементы в живых организмах
Органогенные (биоэлементы), или макронутриентыМакроэлементы Микроэлементы

(от 0,001 % до 0,000001 % массы тела)

Ультрамикроэлементы (менее 0,000001 %)
Кислород — 65 %;

Углерод — 18 %;

Водород — 10 %;

Азот — 3 %.

Кальций (Са) – 0,04-2,00

Фосфор (Р) – 0,2-1,0

Калий (К) – 0,15-0,4

Сера (S) – 0,15-0,2

Хлор (Cl) – 0,05-0,1

Натрий (Na) – 0,02-0,Ц03

Магний (Mg) – 0,02-0,03

Железо (Fe) – 0,01

Кремний (Ci) – 0,001(для растений – микроэлемент)

Цинк (Zn) – 0,0003

Медь (Cu) – 0,0002

Фтор (F) – 0,0001

Йод (I) – 0,0001

Марганец (Mn) – менее 0,0001

Кобальт (Co) – менее 0,0001

Молибден (Мо) – менее 0,0001

Золото

Серебро

Ртуть

Селен

Мышьяк

Платина

Цезий

Бериллий

Радий

Уран

Большинство молекул (кроме воды), из которых состоит наше тело, представляют собой соединения углерода, называемые органическими веществами. Органические вещества в основном и состоят из этих первых четырёх макроэлементов, чем и объясняется их распространённость в живых системах.

Химические элементы в живых организмах фото

Некоторые микроэлементы, такие как цинк (Zn) и йод (I), хотя и присутствуют в крошечных количествах, играют важнейшую роль в процессах жизнедеятельности. Дефицит йода, например, может привести к увеличению щитовидной железы, образованию так называемого зоба.

Таб.2. Роль химических элементов в клетке

Название химического элементаОписание роли элемента в клетке
1Кислород (О)Входит в состав органических молекул и воды, обеспечивает реакцию окисления, в процессе которой выделяется нужная организму энергия
2Углерод (С)Составляет основу всех органических соединений
3Водород (Н)Является составной частью всех органических веществ и молекул воды
4Азот (N)Входит в молекулы белков, нуклеиновых кислот, АТФ
5Кальций (Са)Является составной частью клеточной стенки растений. У животных входит в состав костной ткани, эмали зубов, участвует в свёртывании крови и сокращении мышц
6Фосфор (Р)Нужен для формирования зубной эмали и костной ткани. Входит в состав органических молекул, таких как ДНК, РНК, АТФ
7Калий (К)В качестве катиона участвует в создании биоэлектрического потенциала, регулируя работу клеточной мембраны. Влияет на работу сердца, участвует в процессе фотосинтеза
8Сера (S)Есть в составе некоторых белков и аминокислот
9Хлор (Cl)Является основным анионом организма животных. Находится в составе соляной кислоты желудка
10Натрий (Na)В качестве иона (катиона) участвует в создании биоэлектрического потенциала мембран клеток, в синтезе гормонов и регуляции сердечного ритма
11Магний (Mg)Входит в состав зубной эмали, костной ткани, некоторых ферментов и хлорофилла
12Железо (Fe)Необходимый компонент гемоглобина и миоглобина, входит в состав некоторых ферментов, участвует в процессах фотосинтеза и клеточного дыхания
13Кремний (Si)Компонент клеточной оболочки растений. Принимает участие в образовании коллагена, костной ткани
14Цинк (Zn)Участвует в синтезе гормонов у растений, находится в составе инсулина и некоторых ферментов
15Медь (Cu)Принимает участие в процессах синтеза гемоглобина, фотосинтеза, клеточного дыхания. Входит в состав дыхательных пигментов крови (гемоцианинов) и гемолимфы некоторых беспозвоночных
16Фтор (F)Необходим для формирования костной ткани и зубной эмали
17Йод (I)Необходимый компонент гормонов щитовидной железы
18Марганец (Mn)Делает более активными некоторые ферменты, входит в их состав, принимает участие в формировании костной ткани и в процессе фотосинтеза
19Кобальт (Со)Принимает участие в процессе образования клеток крови, находится в составе витамина B12
20Молибден (Mo)Помогает клубеньковым бактериям связывать атмосферный азот

Таб. 3. Основные ионы в клетках

Название
Описание объектаИзображение Роль в клетке
1КатионыПоложительно заряженные ионы.
2Катионы калия и натрия К+

Na+

Основные катионы в организме животных. Они создают электрический потенциал клеточной мембраны, регулируют ритм сердечной деятельности.
3Катионы кальция Ca2+Принимает участие в свёртывании крови, отвечает за сократимость мышц, входит в состав клеточной стенки растений.
4Катион магнияMg2+Нужен растениям для осуществления фотосинтеза, так как он входит в состав хлорофилла. Является компонентом некоторых ферментов, есть в костной ткани и эмали зубов.
5Катионы водородаН+Отвечают за кислотность и основность внутренней среды организма (pH).
6Анионы Отрицательно заряженные ионы
7Анионы хлора СlХлор – основной анион клетки животных, принимает участие в создании электрического потенциала клеточной мембраны. Присутствует в составе соляной кислоты желудочного сока.
8ОН— Выполняет ту же роль что и катион водорода
Читайте также:  Какие витамины содержится в шоколаде

Как соединяются химические элементы в живых организмах?

Группа атомов, удерживаемых энергией в устойчивой ассоциации, называется молекулой или кристаллом. При изучении веществ в живых организмах нам будут встречаться следующие типы химических связей:

  • ионные – когда притягиваются атомы с противоположными зарядами;
  • ковалентные – характеризующиеся обобщением (перекрытием) в облако пары валентных электронов от разных атомов;
  • водородные – связи между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом.

Ионные связи образуют кристаллы

В обычной поваренной соли – хлориде натрия (NaCl) – атомы удерживаются ионными связями, образуя решётку. Натрий имеет 11 электронов: 2 во внутреннем энергетическом уровне (К), 8 на уровне L и 1 на внешнем уровне М (валентность). Одиночный неспаренный валентный электрон имеет тенденцию к соединению с другим непарным электроном в другом атоме.

Стабильная конфигурация достигается за счёт потери электрона одним атомом и приобретения его другим. Натрий, теряя электрон, становится положительно заряженным ионом – катионом (Na+).

Кристаллы минеральных солей в клетках микрофотографияМинеральные соли в клетке накапливаются в виде кристаллов.

У атома хлора 17 электронов: 2 в уровне К, 8 в уровне L и 7 на М-уровне. Одна из орбиталей на внешнем энергетическом уровне содержит неспаренный электрон. Добавление электрона от другого атома превращает атом хлора в отрицательно заряженный хлорид-ион (Cl-). Так как противоположные заряды притягиваются, натрий и хлор остаются связанными нейтральным ионным соединением.

Решётка хлорида натрия фотоКристаллическая решётка хлорида натрия. Голубой цвет = Na+ Зелёный цвет = Cl−
Автор: H Padleckas

Если кристаллическую решётку соли поместить в воду, электрическое притяжение молекул воды разрушает силы, удерживающие ионные связи. Раствор соли в воде представляет собой смесь свободных катионов натрия (Na+) и анионов хлора (Cl-).

Так как живые системы всегда содержат воду, то ионы для них важнее кристаллов. Многие химические элементы в живых организмах находятся в виде ионов. Необходимые в клеточных системах ионы – это:

  • Ca2+, обеспечивающий передачу клеточных сигналов;
  • K + и Na +, участвующие в проведении нервных импульсов.

Если совместить металлический натрий и газообразный хлор, реакция образования хлорида натрия будет экзотермической – быстрой и с выделением тепла.

Ковалентные связи соединяют химические элементы в живых организмах и создают стабильные молекулы

Ковалентные связи образуются, когда два атома делят одну или несколько пар валентных электронов. В качестве примера рассмотрим газообразный водород (H2). Каждый атом водорода имеет неспаренный электрон, а значит и незаполненный внешний уровень. По этой причине атом водорода нестабилен. Когда два атома водорода образуют тесную связь, оба валентных электрона притягиваются к их ядрам. Они как бы делят между собой электроны, в результате чего получается двухатомная молекула газообразного водорода.

Ковалентная связь двух атомов водорода фотоКовалентная связь, формирующая молекулу водорода H2 (справа), где два атома водорода перекрывают два электрона
Автор: Jacek FH, CC BY-SA 3.0

Молекула, образованная двумя атомами водорода, стабильна по трём причинам:

  1. Она нейтральна, так как содержит 2 протона и 2 электрона.
  2. Правило октета в ней выполнено. Каждый общий электрон атомов вращается вокруг обоих ядер.
  3. У них нет неспаренных электронов.

Многие химические элементы в живых организмах образуют ковалентные связи.

Прочность ковалентных связей

Прочность ковалентных связей зависит от количества их общих электронов. В прошлом пункте мы рассматривали одинарную связь, двойная же связь объединяет 2 пары электронов, она более крепкая. Чтобы разорвать её, требуется больше энергии. Самые сильные ковалентные связи – тройные, такие которые объединяют два атома  в молекулу газообразного азота (N2).

Ковалентные связи в химических формулах показывают линиями. Каждая линия между атомами представляет собой совместное использование одной пары электронов. Структурная формула газообразного водорода H–H, кислорода O=O, а их молекулярные формулы H2 и O2. Структурный характер формулы для N2 N ≡ N.

Молекулы с несколькими ковалентными связями

Огромное количество биологических соединений состоит более чем из двух атомов. Атом, который требует двух, трёх или четырёх дополнительных электронов для заполнения внешнего уровня, может приобрести их путём обмена с двумя и более атомами.

Например, атом углерода (С) содержит шесть электронов, четыре из них находятся на его внешнем энергетическом уровне и не имеют пары. Чтобы удовлетворить правилу октета, атом углерода должен образовать 4 ковалентных связи. Так как эти 4 скрепления могут производиться разными путями, углерод образует множество молекул, например: СО2 (углекислый газ), СН4 (метан), С2Н5ОН (этанол).

Химические элементы в живых организмах - строение атома углерода фотоМодель атома углерода
Автор: Ahazard.sciencewriter, CC BY-SA 4.0

Полярные и неполярные ковалентные связи

Атомы отличаются количеством электронов, это свойство называется электроотрицательностью. В строке Периодической таблицы она увеличивается вправо и уменьшается книзу колонки, то есть элементы в правом верхнем углу имеют наиболее высокую электроотрицательность.

Для связи между двумя идентичными атомами, например между двумя атомами водорода или кислорода, электроны делятся поровну. Области их соединения называются неполярными. Таковы, например, молекулы Н2, О2.

При соединении значительно отличающихся по электроотрицательности атомов электроны не делятся поровну. Общие электроны, скорее всего, будут ближе к атому с большей отрицательностью, и хотя получившаяся молекула будет электрически нейтральной, заряд в ней распределится неравномерно. Неравномерность заряда приводит к областям частичной отрицательности (в районе наиболее отрицательного атома) и положительного заряда вблизи наименее отрицательного атома. Такие связи называются полярными ковалентными, а молекулы – полярными.

На схемах с изображением полярных молекул эти частичные заряды обозначаются греческой буквой Дельта (δ). Интересно, что хотя С и Н немного отличаются по электроотрицательности, связь между ними неполярна. Н2О – полярная молекула, электроны в ней концентрируются около ядра атома кислорода. О воде мы будем говорить более подробно в следующем уроке.

Химические реакции взаимосвязаны и обратимы

Процессы образования и разрыва связей между атомами называются химическими реакциями. Все химические реакции обозначают перенос атома от одной молекулы в другое соединение, без каких-либо изменений в количестве или идентичности атомов. Для удобства оригинал молекул до начала реакции называют реагентом, а молекулы, образующиеся в результате реакции – продуктами. Например:

6H2O + 6CO2 → C6H12O6 + 6O2, где 6H2O + 6CO2 – реагент, а C6H12O6 + 6O2– продукт. Это упрощённая формула реакции фотосинтеза, где вода и углекислый газ, вступая в реакцию, образуют молекулы глюкозы и кислорода.

Все химические реакции происходят под влиянием трёх факторов.

  1. Температура. Нагрев реагентов увеличивает скорость реакции, потому что атомы при этом двигаются быстрее и сталкиваются друг с другом чаще. Но необходимо позаботиться о том, чтобы температура не поднялась слишком высоко и не разрушила молекулы.
  2. Концентрация реагентов и продуктов. Реакции проходят быстрее, когда из-за более частых столкновений доступно больше реагентов. Накопление продуктов замедляет реакцию, а в обратимой реакции может привести к возвращению к исходным веществам.
  3. Катализаторы. Катализатор – это вещество, которое увеличивает скорость реакции. Он не изменяет соотношения между реагентом и продуктом, а сокращает время их изменения. В живых системах почти во всех реакциях катализаторами служат белки энзимы (ферменты).
Читайте также:  В каких овощах содержаться аминокислоты

Многие реакции в природе обратимы. Это значит, что продукты могут снова стать реагентами, а реагенты – продуктами. Соответственно, мы можем записать предыдущую формулу в обратном порядке:

C6H12O6 + 6O2→ 6H2O + 6CO2                     

Эта упрощённый вариант окисления глюкозы, протекающего во время клеточного дыхания, когда глюкоза расщепляется на воду и углекислый газ в присутствии кислорода. Почти все живые организмы осуществляют разные формы окисления глюкозы.

Организмы – накопители химических элементов

Организмы, способные накапливать в своём теле один или несколько химических элементов называют концентраторами. Если элемент составляет 10% от веса их тела или от атомной массы, тогда они относятся к данной группе.

Организмы-концентраторыХимические элементы, которые они накапливают
Подсолнечник,

картофель

Калий (К)
Бобовые,

фораминиферы,

моллюски,

кораллы

Кальций (Са)
Злаки,

хвощи,

радиолярии,

губки,

диатомовые водоросли

Кремний (Si)
Плауны,

чай

Алюминий (Al)
Растения засолённых почв (галофиты)Натрий (Na)

хлор (Cl)

Мхи,

железобактерии

Железо (Fe)
ВодорослиЙод (I)
Пауки,

раки

Медь (Сu)
СеробактерииСера (S)
Морепродуктыкальций (Ca)

калий (K)

натрий (Na)

магний (Mg)

медь (Сu)

Наземные растенияМарганец (Mn)
Наземные животныеФосфор (P)

азот (N)

Источник

Организмы состоят из клеток. Клетки разных организмов обладают сходным химическим составом. В таблице 1 представлены основные химические элементы, обнаруженные в клетках живых организмов.

Таблица 1. Содержание химических элементов в клетке

ЭлементКоличество, %ЭлементКоличество, %
Кислород65-75Кальций0,04-2,00
Углерод15-18Магний0,02-0,03
Водород8-10Натрий0,02-0,03
Азот1,5-3,0Железо0,01-0,015
Фосфор0,2-1,0Цинк0,0003
Калий0,15-0,4Медь0,0002
Сера0,15-0,2Иод0,0001
Хлор0,05-0,10Фтор0,0001

По содержанию в клетке можно выделить три группы элементов. В первую группу входят кислород, углерод, водород и азот. На их долю приходится почти 98% всего состава клетки. Во вторую группу входят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента. Элементы этих двух групп относят к макроэлементам (от греч. макрос – большой).

Остальные элементы, представ ленные в клетке сотыми и тысячными долями процента, входят в третью группу. Это микроэлементы (от греч. микро – малый).

Каких-либо элементов, присущих только живой природе, в клетке не обнаружено. Все перечисленные химические элементы входят и в состав неживой природы. Это указывает на единство живой и неживой природы.

Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров – белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор – в состав нуклеиновых кислот, железо – в состав гемоглобина, а магний – в состав хлорофилла. Кальций играет важную роль в обмене веществ.

Часть химических элементов, содержащихся в клетке, входит в со став неорганических веществ – минеральных солей и воды.

Минеральные соли находятся в клетке, как правило, в виде катионов (К+, Na+, Ca2+, Mg2+) и анионов ( HPO2-/4, H2PO-/4, СI-, НСО3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды.

(У многих клеток среда слабощелочная и ее рН почти не изменяется, так как в ней постоянно поддерживается определенное соотношение катионов и анионов.)

Из неорганических веществ в живой природе огромную роль играет вода.

Без воды жизнь невозможна. Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани – всего 40.% К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.

Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды – потреблением большого количества энергии при нагревании. Чем же определяется высокая теплоемкость воды?

В молекуле воды атом кислорода ковалентно связан с двумя атомами водорода. Молекула воды полярна, так как атом кислорода имеет частично отрицательный заряд, а каждый из двух атомов водорода имеет

частично положительный заряд. Между атомом кислорода одной молекулы воды и атомом водорода другой молекулы образуется водородная связь. Водородные связи обеспечивают соединение большого числа молекул воды. При нагревании воды значительная часть энергии расходуется на разрыв водородных связей, что и определяет ее высокую теплоемкость.

Вода – хороший растворитель. Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.

Гидрофильными (от греч. гидро – вода и филео – люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые неионные соединения (например, сахара).

Гидрофобными (от греч. гидро – вода и фобос – страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.

Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость. Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.

Тела живой и неживой природы состоят из одинаковых химических элементов. В состав живых организмов входят неорганические вещества – вода и минеральные соли. Жизненно важные многочисленные функции воды в клетке обусловлены особенностями ее молекул: их полярностью, способностью образовывать водородные связи.

НЕОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

В клетках живых организмов встречается около 90 элементов, причем примерно 25 из обнаружены практически во всех клетках. По содержанию в клетке химические элементы подразделяются на три большие группы: макроэлементы(99%), микроэлементы(1%), ультрамикроэлементы(менее 0,001%).

К макроэлементам относятся кислород, углерод, водород, фосфор, калий, сера, хлор, кальций, магний, натрий, железо.
К микроэлеметам относятся марганец, медь, цинк, йод, фтор.
К ультрамикроэлементам относятся серебро, золото, бром, селен.

ЭЛЕМЕНТЫСОДЕРЖАНИЕ В ОРГАНИЗМЕ (%)БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ
Макроэлементы:
O.C.H.N62-3Входят в состав всех органических веществ клетки, воды
Фосфор Р1,0Входят в состав нуклеиновых кислот, АТФ (образует макроэргические связи), ферментов, костной ткани и эмали зубов
Кальций Са+22,5У растений входит в состав оболочки клетки, у животных – в состав костей и зубов, активизирует свертываемость крови
Микроэлементы:1-0,01
Сера S0,25Входит в состав белков, витаминов и ферментов
Калий К+0,25Обуславливает проведение нервных импульсов; активатор ферментов белкового синтеза, процессов фотосинтеза, роста растений
Хлор CI-0,2Является компонентом желудочного сока в виде соляной кислоты, активизирует ферменты
Натрий Na+0,1Обеспечивает проведение нервных импульсов, поддерживает осмотическое давление в клетке, стимулирует синтез гормонов
Магний Мg+20,07Входит в состав молекулы хлорофилла, содержится в костях и зубах, активизирует синтез ДНК, энергетический обмен
Йод I-0,1Входит в состав гормона щитовидной железы – тироксина, влияет на обмен веществ
Железо Fе+30,01Входит в состав гемоглобина, миоглобина, хрусталика и роговицы глаза, активатор ферментов, участвует в синтезе хлорофилла. Обеспечивает транспорт кислорода к тканям и органам
Ультрамикроэлементы:менее 0,01, следовые количества
Медь Си+2Участвует в процессах кроветворения, фотосинтеза, катализирует внутриклеточные окислительные процессы
Марганец МnПовышает урожайность растений, активизирует процесс фотосинтеза, влияет на процессы кроветворения
Бор ВВлияет на ростовые процессы растений
Фтор FВходит в состав эмали зубов, при недостатке развивается кариес, при избытке – флюороз
Вещества :
Н2060-98Составляет внутреннюю среду организма, участвует в процессах гидролиза, структурирует клетку. Универсальный растворитель, катализатор, участник химических реакций
Читайте также:  Какие углеводы содержится в рисе

ОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

ВЕЩЕСТВАСТРОЕНИЕ И СВОЙСТВАФУНКЦИИ
Липиды
Сложные эфиры высших жирных кислот и глицерина. В состав фосфолипидов входит дополнительно остаток Н3РО4.Обладают гидрофобными или гидрофильно-гидрофобными свойствами, высокой энергоемкостью Строительная – образует билипидный слой всех мембранных.
Энергетическая.
Терморегуляторная.
Защитная.
Гормональная (кортикостероиды, половые гормоны).
Компоненты витаминов D,E. Источник воды в организме.Запасное питательное вещество
Углеводы
Моносахариды:
глюкоза,
фруктоза,
рибоза,
дезоксирибоза
Хорошо растворимы в водеЭнергетическая
Дисахариды:
сахароза,
мальтоза (солодовый сахар)
Растворимы в водеКомпоненты ДНК, РНК, АТФ
Полисахариды:
крахмал,
гликоген,
целлюлоза
Плохо растворимы или нерастворимы в водеЗапасное питательное вещество. Строительная – оболочка растительной клетки
БелкиПолимеры. Мономеры – 20 аминокислот.Ферменты – биокатализаторы.
I структура – последовательность аминокислот в полипептидной цепи. Связь – пептидная – СО- NH-Строительная – входят в состав мембранных структур, рибосом.
II структура – a -спираль, связь – водороднаяДвигательная (сократительные белки мышц).
III структура – пространственная конфигурация  a -спирали (глобула). Связи – ионные, ковалентные, гидрофобные, водородныеТранспортная (гемоглобин). Защитная (антитела).Регуляторная (гормоны, инсулин)
IV структура характерна не для всех белков. Соединение нескольких полипептидных цепей в единую суперструктуруВ воде плохо растворимы. Действие высоких температур, концентрированных кислот и щелочей, солей тяжелых металлов вызывает денатурацию
Нуклеиновые кислоты:Биополимеры. Состоят из нуклеотидов
ДНК – дезокси-рибонуклеино-вая кислота.Состав нуклеотида: дезоксирибоза, азотистые основания – аденин, гуанин, цитозин, тимин, остаток Н3РО4. Комплементарность азотистых оснований А = Т, Г = Ц. Двойная спираль. Способна к самоудвоениюОбразуют хромосомы. Хранение и передача наследственной информации, генетического кода. Биосинтез РНК, белков. Кодирует первичную структуру белка. Содержится в ядре, митохондриях, пластидах
РНК – рибонуклеиновая кислота.Состав нуклеотида: рибоза, азотистые основания – аденин, гуанин, цитозин, урацил, остаток Н3РО4 Комплементарность азотистых оснований А = У, Г = Ц. Одна цепь
Информационная РНКПередача информации о первичной структуре белка, участвует в биосинтезе белка
Рибосомальная РНКСтроит тело рибосомы
Транспортная РНККодирует и переносит аминокислоты к месту синтеза белка – рибосомам
Вирусная РНК и ДНКГенетический аппарат вирусов

Ферменты.

Важнейшая функция белков – каталитическая. Белковые молекулы, увеличивающие на несколько порядков скорость химических реакции в клетке, называют ферментами. Ни один биохимический процесс в организме не происходит без участия ферментов.

В настоящее время обнаружено свыше 2000 ферментов. Их эффективность во много раз выше, чем эффективность неорганических катализаторов, используемых в производстве. Так, 1 мг железа в составе фермента каталазы заменяет 10 т неорганического железа. Каталаза увеличивает скорость разложения пероксида водорода (Н2О2) в 1011 раз. Фермент, катализирующий реакцию образования угольной кислоты (СО2+Н2О = Н2СО3), ускоряет реакцию в 107 раз.
Важным свойством ферментов является специфичность их действия, каждый фермент катализирует только одну или небольшую группу сходных реакций.

Вещество, на которое воздействует фермент, называют субстратом. Структуры молекулы фермента и субстрата должны точно соответствовать друг другу. Этим объясняется специфичность действия ферментов. При соединении субстрата с ферментом пространственная структура фермента изменяется.

Последовательность взаимодействия фермента и субстрата можно изобразить схематично:

Субстрат+Фермент – Фермент-субстратный комплекс – Фермент+Продукт.

Из схемы видно, что субстрат соединяется с ферментом с образованием фермент-субстратного комплекса. При этом субстрат превращается в новое вещество – продукт. На конечном этапе фермент освобождается от продукта и вновь вступает во взаимодействие с очередной молекулой субстрата.

Ферменты функционируют лишь при определенной температуре, концентрации веществ, кислотности среды. Изменение условий приводит к изменению третичной и четвертичной структуры белковой молекулы, а, следовательно, и к подавлению активности фермента. Как это происходит? Каталитической активностью обладает лишь определенный участок молекулы фермента, называемый активным центром. Активный центр содержит от 3 до 12 аминокислотных остатков и формируется в результате изгиба полипептидной цепи.

Под влиянием разных факторов изменяется структура молекулы фермента. При этом нарушается пространственная конфигурация активного центра, и фермент теряет свою активность.

Ферменты – это белки, играющие роль биологических катализаторов. Благодаря ферментам на несколько порядков возрастает скорость химических реакций в клетках. Важное свойство ферментов – специфичность действия в определенных условиях.

Нуклеиновые кислоты.

Нуклеиновые кислоты были от крыты во второй половине XIX в. швейцарским биохимиком Ф. Мишером, который выделил из ядер клеток вещество с высоким содержанием азота и фосфора и назвал его “нуклеином” (от лат. нуклеус – ядро).

В нуклеиновых кислотах хранится наследственная информация о строении и функционировании каждой клетки и всех живых существ на Земле. Существует два типа нуклеиновых кислот – ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты, как и белки, обладают видовой специфичностью, то есть организмам каждого вида присущ свой тип ДНК. Чтобы выяснить причины видовой специфичности, рассмотрим строение нуклеиновых кислот.

Молекулы нуклеиновых кислот представляют собой очень длинные цепи, состоящие из многих сотен и даже миллионов нуклеотидов. Любая нуклеиновая кислота содержит всего четыре типа нуклеотидов. Функции молекул нуклеиновых кислот зависят от их строения, входящих в их состав нуклеотидов, их числа в цепи и последовательности соединения в молекуле.

Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин – А, тимин – Т, гуанин – Г или цитозин – Ц), а также угле вод дезоксирибоза и остаток фосфорной кислоты.

Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания.

Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.

Молекулы ДНК очень длинные. Например, для буквенной записи последовательности нуклеотидов в молекулах ДНК из одной клетки человека (46 хромосом) потреб?