Какие химические элементы содержаться в организме человека
Химические элементы в живых организмах образуют два класса соединений: органические и неорганические, а также находятся в свободном состоянии — в виде ионов. Все 94 элемента естественного происхождения имеют разное число протонов, расположение и количество электронов. Когда в XIX в. Дмитрий Менделеев выстроил их в таблицу согласно номерам, он открыл одну из величайших закономерностей естествознания: элементы демонстрируют химические свойства, которые по повторяемости можно объединить в 8 групп. Эта закономерная картина дала таблице своё название: Периодическая таблица химических элементов.
Периодическая таблица отображает химические элементы согласно атомному номеру и их свойству
Периодичность элементов, найденная Менделеевым, основана на взаимодействии электронов разных атомов на внешнем энергетическом уровне. Эти электроны называются валентными, и их контакты являются основой химических реакций. Для большинства атомов, важных для жизни, внешний энергетический уровень может содержать не более 8 электронов. Химическое поведение элемента зависит от того, сколько из его восьми позиций заполнено.
Элементы, обладающие всеми восьмью электронами внешнего энергетического уровня (у гелия 2) являются инертными, т. е. нереактивными. К ним относятся: гелий (He), неон (Ne), аргон (Ar) и другие благородные газы. Напротив, элементы с семью электронами внешнего энергетического уровня, такие как фтор (F), хлор (Cl) и бром (Br) реактивны. Как правило, они получают дополнительные электроны, необходимые для заполнения энергетического уровня.
Другие элементы с одним электроном в их внешнем энергетическом уровне: литий (Li), натрий (Na) и калий (K) имеют тенденцию к потере одного своего электрона.
Строение атома лития
Автор: Ahazard.sciencewriter, CC BY-SA 4.0
Таким образом, Периодическая таблица Менделеева демонстрирует правило октета, или правило восьми (лат. Octo – «восемь»): атомы стремятся полностью восстановить свои внешние энергетические уровни, дополнить количество электронов на них до 8.
Химические элементы в составе живых организмов
Отгадайте, о составе какого объекта идёт речь?
- 43 кг кислорода,
- 18 кг углерода,
- 7 кг водорода,
- 1,8 кг азота,
- 0,780 кг фосфора,
- 0,0042 кг железа
- и ещё около 20 химических элементов.
Это состав человека среднего размера и веса. В отличие от неживой природы в живых существах химические элементы организованы в клетки.
Химический состав:
1 — земной коры,
2 — живых организмов
В земной коре преобладают кислород, кремний, алюминий и железо. В основе живых организмов находятся 4 элемента: кислород, углерод, водород, азот. Все элементы кроме кислорода, преобладающие в живых организмах, составляют незначительную долю массы земной коры.
Основные химические элементы в живых организмах — это:
- углерод – C,
- водород – H,
- кислород – O,
- азот – N,
- фосфор – P,
- сера – S,
- натрий – Na,
- калий – K,
- кальций – Ca,
- магний – Mg,
- железо – Fe,
- хлор – Cl.
Их доля в живых организмах может составлять 0,01% и выше. Все они имеют атомные номера меньше 21, так как их атомная масса низка. Первые 4 элемента: углерод, водород, кислород и азот составляют 96,3% массы любого организма.
Таб. 1. Химические элементы в живых организмах | |||
Органогенные (биоэлементы), или макронутриенты | Макроэлементы | Микроэлементы (от 0,001 % до 0,000001 % массы тела) | Ультрамикроэлементы (менее 0,000001 %) |
Кислород — 65 %; Углерод — 18 %; Водород — 10 %; Азот — 3 %. | Кальций (Са) – 0,04-2,00 Фосфор (Р) – 0,2-1,0 Калий (К) – 0,15-0,4 Сера (S) – 0,15-0,2 Хлор (Cl) – 0,05-0,1 Натрий (Na) – 0,02-0,Ц03 Магний (Mg) – 0,02-0,03 Железо (Fe) – 0,01 | Кремний (Ci) – 0,001(для растений – микроэлемент) Цинк (Zn) – 0,0003 Медь (Cu) – 0,0002 Фтор (F) – 0,0001 Йод (I) – 0,0001 Марганец (Mn) – менее 0,0001 Кобальт (Co) – менее 0,0001 Молибден (Мо) – менее 0,0001 | Золото Серебро Ртуть Селен Мышьяк Платина Цезий Бериллий Радий Уран |
Большинство молекул (кроме воды), из которых состоит наше тело, представляют собой соединения углерода, называемые органическими веществами. Органические вещества в основном и состоят из этих первых четырёх макроэлементов, чем и объясняется их распространённость в живых системах.
Некоторые микроэлементы, такие как цинк (Zn) и йод (I), хотя и присутствуют в крошечных количествах, играют важнейшую роль в процессах жизнедеятельности. Дефицит йода, например, может привести к увеличению щитовидной железы, образованию так называемого зоба.
Таб.2. Роль химических элементов в клетке
Название химического элемента | Описание роли элемента в клетке | |
1 | Кислород (О) | Входит в состав органических молекул и воды, обеспечивает реакцию окисления, в процессе которой выделяется нужная организму энергия |
2 | Углерод (С) | Составляет основу всех органических соединений |
3 | Водород (Н) | Является составной частью всех органических веществ и молекул воды |
4 | Азот (N) | Входит в молекулы белков, нуклеиновых кислот, АТФ |
5 | Кальций (Са) | Является составной частью клеточной стенки растений. У животных входит в состав костной ткани, эмали зубов, участвует в свёртывании крови и сокращении мышц |
6 | Фосфор (Р) | Нужен для формирования зубной эмали и костной ткани. Входит в состав органических молекул, таких как ДНК, РНК, АТФ |
7 | Калий (К) | В качестве катиона участвует в создании биоэлектрического потенциала, регулируя работу клеточной мембраны. Влияет на работу сердца, участвует в процессе фотосинтеза |
8 | Сера (S) | Есть в составе некоторых белков и аминокислот |
9 | Хлор (Cl) | Является основным анионом организма животных. Находится в составе соляной кислоты желудка |
10 | Натрий (Na) | В качестве иона (катиона) участвует в создании биоэлектрического потенциала мембран клеток, в синтезе гормонов и регуляции сердечного ритма |
11 | Магний (Mg) | Входит в состав зубной эмали, костной ткани, некоторых ферментов и хлорофилла |
12 | Железо (Fe) | Необходимый компонент гемоглобина и миоглобина, входит в состав некоторых ферментов, участвует в процессах фотосинтеза и клеточного дыхания |
13 | Кремний (Si) | Компонент клеточной оболочки растений. Принимает участие в образовании коллагена, костной ткани |
14 | Цинк (Zn) | Участвует в синтезе гормонов у растений, находится в составе инсулина и некоторых ферментов |
15 | Медь (Cu) | Принимает участие в процессах синтеза гемоглобина, фотосинтеза, клеточного дыхания. Входит в состав дыхательных пигментов крови (гемоцианинов) и гемолимфы некоторых беспозвоночных |
16 | Фтор (F) | Необходим для формирования костной ткани и зубной эмали |
17 | Йод (I) | Необходимый компонент гормонов щитовидной железы |
18 | Марганец (Mn) | Делает более активными некоторые ферменты, входит в их состав, принимает участие в формировании костной ткани и в процессе фотосинтеза |
19 | Кобальт (Со) | Принимает участие в процессе образования клеток крови, находится в составе витамина B12 |
20 | Молибден (Mo) | Помогает клубеньковым бактериям связывать атмосферный азот |
Таб. 3. Основные ионы в клетках
№ | Название | |||
Описание объекта | Изображение | Роль в клетке | ||
1 | Катионы | Положительно заряженные ионы. | ||
2 | Катионы калия и натрия | К+ Na+ | Основные катионы в организме животных. Они создают электрический потенциал клеточной мембраны, регулируют ритм сердечной деятельности. | |
3 | Катионы кальция | Ca2+ | Принимает участие в свёртывании крови, отвечает за сократимость мышц, входит в состав клеточной стенки растений. | |
4 | Катион магния | Mg2+ | Нужен растениям для осуществления фотосинтеза, так как он входит в состав хлорофилла. Является компонентом некоторых ферментов, есть в костной ткани и эмали зубов. | |
5 | Катионы водорода | Н+ | Отвечают за кислотность и основность внутренней среды организма (pH). | |
6 | Анионы | Отрицательно заряженные ионы | ||
7 | Анионы хлора | Сl— | Хлор – основной анион клетки животных, принимает участие в создании электрического потенциала клеточной мембраны. Присутствует в составе соляной кислоты желудочного сока. | |
8 | ОН— | Выполняет ту же роль что и катион водорода |
Как соединяются химические элементы в живых организмах?
Группа атомов, удерживаемых энергией в устойчивой ассоциации, называется молекулой или кристаллом. При изучении веществ в живых организмах нам будут встречаться следующие типы химических связей:
- ионные – когда притягиваются атомы с противоположными зарядами;
- ковалентные – характеризующиеся обобщением (перекрытием) в облако пары валентных электронов от разных атомов;
- водородные – связи между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом.
Ионные связи образуют кристаллы
В обычной поваренной соли – хлориде натрия (NaCl) – атомы удерживаются ионными связями, образуя решётку. Натрий имеет 11 электронов: 2 во внутреннем энергетическом уровне (К), 8 на уровне L и 1 на внешнем уровне М (валентность). Одиночный неспаренный валентный электрон имеет тенденцию к соединению с другим непарным электроном в другом атоме.
Стабильная конфигурация достигается за счёт потери электрона одним атомом и приобретения его другим. Натрий, теряя электрон, становится положительно заряженным ионом – катионом (Na+).
Минеральные соли в клетке накапливаются в виде кристаллов.
У атома хлора 17 электронов: 2 в уровне К, 8 в уровне L и 7 на М-уровне. Одна из орбиталей на внешнем энергетическом уровне содержит неспаренный электрон. Добавление электрона от другого атома превращает атом хлора в отрицательно заряженный хлорид-ион (Cl-). Так как противоположные заряды притягиваются, натрий и хлор остаются связанными нейтральным ионным соединением.
Кристаллическая решётка хлорида натрия. Голубой цвет = Na+ Зелёный цвет = Cl−
Автор: H Padleckas
Если кристаллическую решётку соли поместить в воду, электрическое притяжение молекул воды разрушает силы, удерживающие ионные связи. Раствор соли в воде представляет собой смесь свободных катионов натрия (Na+) и анионов хлора (Cl-).
Так как живые системы всегда содержат воду, то ионы для них важнее кристаллов. Многие химические элементы в живых организмах находятся в виде ионов. Необходимые в клеточных системах ионы – это:
- Ca2+, обеспечивающий передачу клеточных сигналов;
- K + и Na +, участвующие в проведении нервных импульсов.
Если совместить металлический натрий и газообразный хлор, реакция образования хлорида натрия будет экзотермической – быстрой и с выделением тепла.
Ковалентные связи соединяют химические элементы в живых организмах и создают стабильные молекулы
Ковалентные связи образуются, когда два атома делят одну или несколько пар валентных электронов. В качестве примера рассмотрим газообразный водород (H2). Каждый атом водорода имеет неспаренный электрон, а значит и незаполненный внешний уровень. По этой причине атом водорода нестабилен. Когда два атома водорода образуют тесную связь, оба валентных электрона притягиваются к их ядрам. Они как бы делят между собой электроны, в результате чего получается двухатомная молекула газообразного водорода.
Ковалентная связь, формирующая молекулу водорода H2 (справа), где два атома водорода перекрывают два электрона
Автор: Jacek FH, CC BY-SA 3.0
Молекула, образованная двумя атомами водорода, стабильна по трём причинам:
- Она нейтральна, так как содержит 2 протона и 2 электрона.
- Правило октета в ней выполнено. Каждый общий электрон атомов вращается вокруг обоих ядер.
- У них нет неспаренных электронов.
Многие химические элементы в живых организмах образуют ковалентные связи.
Прочность ковалентных связей
Прочность ковалентных связей зависит от количества их общих электронов. В прошлом пункте мы рассматривали одинарную связь, двойная же связь объединяет 2 пары электронов, она более крепкая. Чтобы разорвать её, требуется больше энергии. Самые сильные ковалентные связи – тройные, такие которые объединяют два атома в молекулу газообразного азота (N2).
Ковалентные связи в химических формулах показывают линиями. Каждая линия между атомами представляет собой совместное использование одной пары электронов. Структурная формула газообразного водорода H–H, кислорода O=O, а их молекулярные формулы H2 и O2. Структурный характер формулы для N2 N ≡ N.
Молекулы с несколькими ковалентными связями
Огромное количество биологических соединений состоит более чем из двух атомов. Атом, который требует двух, трёх или четырёх дополнительных электронов для заполнения внешнего уровня, может приобрести их путём обмена с двумя и более атомами.
Например, атом углерода (С) содержит шесть электронов, четыре из них находятся на его внешнем энергетическом уровне и не имеют пары. Чтобы удовлетворить правилу октета, атом углерода должен образовать 4 ковалентных связи. Так как эти 4 скрепления могут производиться разными путями, углерод образует множество молекул, например: СО2 (углекислый газ), СН4 (метан), С2Н5ОН (этанол).
Модель атома углерода
Автор: Ahazard.sciencewriter, CC BY-SA 4.0
Полярные и неполярные ковалентные связи
Атомы отличаются количеством электронов, это свойство называется электроотрицательностью. В строке Периодической таблицы она увеличивается вправо и уменьшается книзу колонки, то есть элементы в правом верхнем углу имеют наиболее высокую электроотрицательность.
Для связи между двумя идентичными атомами, например между двумя атомами водорода или кислорода, электроны делятся поровну. Области их соединения называются неполярными. Таковы, например, молекулы Н2, О2.
При соединении значительно отличающихся по электроотрицательности атомов электроны не делятся поровну. Общие электроны, скорее всего, будут ближе к атому с большей отрицательностью, и хотя получившаяся молекула будет электрически нейтральной, заряд в ней распределится неравномерно. Неравномерность заряда приводит к областям частичной отрицательности (в районе наиболее отрицательного атома) и положительного заряда вблизи наименее отрицательного атома. Такие связи называются полярными ковалентными, а молекулы – полярными.
На схемах с изображением полярных молекул эти частичные заряды обозначаются греческой буквой Дельта (δ). Интересно, что хотя С и Н немного отличаются по электроотрицательности, связь между ними неполярна. Н2О – полярная молекула, электроны в ней концентрируются около ядра атома кислорода. О воде мы будем говорить более подробно в следующем уроке.
Химические реакции взаимосвязаны и обратимы
Процессы образования и разрыва связей между атомами называются химическими реакциями. Все химические реакции обозначают перенос атома от одной молекулы в другое соединение, без каких-либо изменений в количестве или идентичности атомов. Для удобства оригинал молекул до начала реакции называют реагентом, а молекулы, образующиеся в результате реакции – продуктами. Например:
6H2O + 6CO2 → C6H12O6 + 6O2, где 6H2O + 6CO2 – реагент, а C6H12O6 + 6O2– продукт. Это упрощённая формула реакции фотосинтеза, где вода и углекислый газ, вступая в реакцию, образуют молекулы глюкозы и кислорода.
Все химические реакции происходят под влиянием трёх факторов.
- Температура. Нагрев реагентов увеличивает скорость реакции, потому что атомы при этом двигаются быстрее и сталкиваются друг с другом чаще. Но необходимо позаботиться о том, чтобы температура не поднялась слишком высоко и не разрушила молекулы.
- Концентрация реагентов и продуктов. Реакции проходят быстрее, когда из-за более частых столкновений доступно больше реагентов. Накопление продуктов замедляет реакцию, а в обратимой реакции может привести к возвращению к исходным веществам.
- Катализаторы. Катализатор – это вещество, которое увеличивает скорость реакции. Он не изменяет соотношения между реагентом и продуктом, а сокращает время их изменения. В живых системах почти во всех реакциях катализаторами служат белки энзимы (ферменты).
Многие реакции в природе обратимы. Это значит, что продукты могут снова стать реагентами, а реагенты – продуктами. Соответственно, мы можем записать предыдущую формулу в обратном порядке:
C6H12O6 + 6O2→ 6H2O + 6CO2
Эта упрощённый вариант окисления глюкозы, протекающего во время клеточного дыхания, когда глюкоза расщепляется на воду и углекислый газ в присутствии кислорода. Почти все живые организмы осуществляют разные формы окисления глюкозы.
Организмы – накопители химических элементов
Организмы, способные накапливать в своём теле один или несколько химических элементов называют концентраторами. Если элемент составляет 10% от веса их тела или от атомной массы, тогда они относятся к данной группе.
Организмы-концентраторы | Химические элементы, которые они накапливают |
Подсолнечник, картофель | Калий (К) |
Бобовые, фораминиферы, моллюски, кораллы | Кальций (Са) |
Злаки, хвощи, радиолярии, губки, диатомовые водоросли | Кремний (Si) |
Плауны, чай | Алюминий (Al) |
Растения засолённых почв (галофиты) | Натрий (Na) хлор (Cl) |
Мхи, железобактерии | Железо (Fe) |
Водоросли | Йод (I) |
Пауки, раки | Медь (Сu) |
Серобактерии | Сера (S) |
Морепродукты | кальций (Ca) калий (K) натрий (Na) магний (Mg) медь (Сu) |
Наземные растения | Марганец (Mn) |
Наземные животные | Фосфор (P) азот (N) |
Источник
Авторы: Кукушкин Ю.Н.
Введение
Многим химикам известны крылатые слова,сказанные в 40-х годах текущего столетия немецкими учеными Вальтером и Идой Ноддак, что в каждом булыжнике на мостовой присутствуют все элементы Периодической системы. Вначале эти слова были встречены далеко не с единодушным одобрением. Однако, по мере того как разрабатывались всё более точные методы аналитического определения химических элементов, учёные всё больше убеждались в справедливости этих слов.
Химический элемент | Суточное поступление, мг | |
---|---|---|
взрослые | дети | |
K Na Ca Mg Zn Fe Mn Cu Mo Cr Co Cl PO43– SO42– I Se F | 2000-5500 1100–3300 800–1200 300–400 15 10–15 2,0–5,0 1,5–3,0 0,075–0,250 0,05–0,2 Около 0,2 (витамин В12 ) 3200 800-1200 10 0,15 0,05–0,07 1,5–4,0 | 530 260 420 60 5 7,0 1,3 1,0 0,06 0,04 0,001 470 210 – 0,07 – 0,6 |
Если согласиться с тем, что в каждом булыжнике содержатся все элементы, то это должно быть справедливо и для живого организма. Все живые организмы на Земле, в том числе и человек, находятся в тесном контакте с окружающей средой. Жизнь требует постоянного обмена веществ в организме. Поступлению в организм химических элементов способствуют питание и потребляемая вода. В соответствии с рекомендацией диетологической комиссии Национальной академии США ежедневное поступление химических элементов с пищей должно находиться на определённом уровне (табл. 1). Столько же химических элементов должно ежесуточно выводиться из организма, поскольку их содержания находятся в относительном постоянстве.
Предположения некоторых учёных идут дальше.Они считают, что в живом организме не только присутствуют все химические элементы, но каждый из них выполняет определённую биологическую функцию. Вполне возможно, что эта гипотеза не подтвердится. Однако, по мере того как развиваются исследования в данном направлении, выявляется биологическая роль всё большего числа химических элементов.
Организм человека состоит на 60% из воды, 34% приходится на органические вещества и 6% — на неорганические. Основными компонентами органических веществ являются углерод, водород, кислород, в их состав входят также азот, фосфор и сера. В неорганических веществах организма человека обязательно присутствуют 22 химических элемента: Ca, P, O, Na, Mg, S, B, Cl, K, V, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cr, Si, I, F, Se. Например, если вес человека составляет 70 кг, то в нём содержится (в граммах): кальция — 1700, калия — 250, натрия — 70, магния — 42, железа — 5, цинка — 3. Учёные договорились, что если массовая доля элемента в организме превышает 10 –2%, то его следует считать макроэлементом. Доля микроэлементов в организме составляет 10 –3 –10 –5 % Если содержание элемента ниже 10 –5 %,, его считают ультрамикроэлементом. Конечно, такая градация условна. По ней магний попадает в промежуточную область между макро- и микроэлементами.
Жизненно необходимые элементы
Несомненно, время внесёт коррективы в современные представления о числе и биологической роли определённых химических элементов в организме человека. В данной статье мы будем исходить изтого, что уже достоверно известно. Роль макроэлементов, входящих в состав неорганических веществ, очевидна. Например, основное количество кальция и фосфора входит в кости (гидроксофосфат кальция Ca10(PO4)6(OH)22), а хлор в виде соляной кислоты содержится в желудочном соке.
Рис. 1. Зависимость ответной реакции (R) от дозы (n) для жизненно необходимых элементов.
Микроэлементы вошли в отмеченный выше ряд 22 элементов, обязательно присутствующих в организме человека. Заметим, что большинство из них — металлы, а из металлов больше половины являются d-элементами. Последние в организме образуют координационные соединения со сложными органическими молекулами. Так, установлено, что многие биологические катализаторы — ферменты содержат ионы переходных металлов (d-элементов). Например, известно, что марганец входит в состав 12 различных ферментов, железо — в 70, медь — в 30, а цинк — более чем в 100. Микроэлементы называют жизненно необходимыми, если при их отсутствии или недостатке нарушается нормальная жизнедеятельность организма. Характерным признаком необходимого элемента является колоколообразный вид кривой доза (n) — ответная реакция (R, эффект) (рис. 1).
При малом поступлении данного элемента организму наносится существенный ущерб. Он функционирует на грани выживания. В основном это объясняется снижением активности ферментов, в состав которых входит данный элемент. При повышении дозы элемента ответная реакция возрастаети достигает нормы (плато). При дальнейшем увеличении дозы проявляется токсическое действие избытка данного элемента, в результате чего не исключается и летальный исход. Кривую на рис. 1 можно трактовать так: всё должно быть в меру и очень мало и очень много вредно. Например, недостаток в организме железа приводит к анемии, так как оно входит в состав гемоглобина крови, а точнее, его составной части — гема. У взрослого человека в крови содержится около 2,6 г железа. В процессе жизнедеятельности в организме происходят постоянный распад и синтез гемоглобина. Для восполнения железа, потерянного с распадом гемоглобина, человеку необходимо суточное поступление в организм с пищей в среднем около 12 мг этого элемента. Связь анемии с недостатком железа была известна врачам давно, так как ещё в XVII веке в некоторых европейских странах при малокровии прописывали настой железных опилок в красном вине. Однако избыток железа в организме тоже вреден. С ним связан сидероз глаз и лёгких — заболевания, вызываемые отложением соединений железа в тканях этих органов. Главный регулятор содержания железа в крови — печень.
Недостаток в организме меди приводит к деструкции кровеносных сосудов, патологическому росту костей, дефектам в соединительных тканях. Кроме того, считают, что дефицит меди служит одной из причин раковых заболеваний. В некоторых случаях поражение лёгких раком у людей пожилого возраста врачи связывают с возрастным снижением содержания меди в организме. Однако избыток меди в организме приводит к нарушению психики и параличу некоторых органов (болезнь Вильсона). Человеку причиняют вред лишь относительно большие количества соединений меди. В малых дозах их используют в медицине как вяжущее и бактериостазное (задерживающее рост и размножение бактерий) средство. Так, например, сульфат меди (II) применяют при лечении конъюктивитов в виде глазных капель (25%-ный раствор), а также для прижиганий при трахоме в виде глазных карандашей (сплав сульфата меди(II), нитрата калия, квасцов и камфоры). При ожогах кожи фосфором проводят её обильное смачивание 5%-ным раствором сульфата меди (II).
Дефицит элемента | Типичный симптом |
---|---|
Ca Mg Fe Zn Cu Mn Co Se | Замедление роста скелета Мускульные судороги Анемия, нарушение иммунной системы Повреждение кожи, замедление роста, замедление сексуального созревания Слабость артерий, нарушение деятельности печени, вторичная анемия Бесплодность, ухудшение роста скелета Замедление клеточного роста, склонность к кариесу Злокачественная анемия Учащение депрессий, дерматиты Симптомы диабета Нарушение роста скелета Кариес зубов Нарушение работы щитовидной железы, замедление метаболизма Мускульная (в частности, сердечная) слабость |
Жизненно необходимые элементы натрий и калий функционируют в паре. Надёжно установлено, что всем живым организмам присуще явление ионной асимметрии — неравномерное распределение ионов внутри и вне клетки. Например, внутри клеток мышечных волокон, сердца, печени, почек имеется повышенное содержание ионов калия по сравнению с внеклеточным. Концентрация ионов натрия, наоборот, выше вне клетки, чем внутри её. Наличие градиента концентраций калия и натрия — экспериментально установленный факт. Теперь исследователей волнует вопрос о природе калий-натриевого насоса и его функционировании (см. статьи В.А. Опритова Электричество в жизни животных и растений: Соросовский Образовательный Журнал.1996. № 9. С. 40–46; В.Ф. Антонова Биофизикамембран: Там же. 1997. № 6. С. 14–20). Интересно, что по мере старения организма градиент концентраций ионов калия и натрия на границе клеток падает. При наступлении смерти концентрации калия и натрия внутри и вне клетки сразу же выравниваются.
Биологическая функция других щелочных металлов в здоровом организме пока неясна. Однако имеются указания, что введением в организм ионов лития удаётся лечить одну из форм маниакально-депрессивного психоза. Приведём табл. 2, из которой видна важная роль других жизненно необходимых элементов.
Примесные элементы
Имеется большое число химических элементов, особенно среди тяжёлых, являющихся ядами для живых организмов, — они оказывают неблагоприятное биологическое воздействие. В табл. 3 приведены эти элементы в соответствии с Периодической системой Д.И. Менделеева.
Период | Группа | ||||||
---|---|---|---|---|---|---|---|
VIII | I | II | III | IV | V | VI | |
II | — | — | Be | — | — | — | — |
IV | Ni | — | — | As | Se | ||
V | Pd | Ag | Cd | — | Sb | Te | |
VI | Pt | Au | Ba Hg | Tl | Pb | Bi | — |
За исключением бериллия и бария, эти элементы образуют прочные сульфидные соединения. Существует мнение, что причина действия ядов связана с блокированием определённых функциональныхгрупп (в частности, сульфгидрильных) протеина или же с вытеснением из некоторых ферментов ионов металлов, например меди и цинка. Элементы, представленные в табл. 3, называют примесными. Их диаграмма доза — эффект имеет другую форму по сравнению с жизненно необходимыми (рис. 2). До определённого содержания этих элементов организм не испытывает вредного воздействия, но при значительном увеличении концентрации они становятся ядовитыми.
Встречаются элементы, которые в относительно больших количествах являются ядами, а в низких концентрациях оказывают полезное влияние. Например, мышьяк — сильный яд, нарушающий сердечно-сосудистую систему и поражающий почки и печень, в небольших дозах полезен, и врачи прописывают его для улучшения аппетита. Кислород, необходимый человеку для дыхания, в высокой концентрации (особенно под давлением) оказывает ядовитое действие.
Рис. 2. Зависимость ответной реакции (R) от дозы (n) для примесных химических элементов.
Из этих примеров видно, что концентрация элемента в организме играет весьма существенную, а порой и катастрофическую роль. Среди примесных элементов имеются и такие, которые в малых дозах обладают эффективными лечащими свойствами. Так, давно было замечено бактерицидное (вызывающее гибель различных бактерий) свойство серебра и его солей. Например, в медицине раствор коллоидного серебра (колларгол) применяют для промывания гнойных ран, мочевого пузыря, при хронических циститах и уретитах, а также в виде глазных капель при гнойных конъюктивитах и бленнорее. Карандаши из нитрата серебра применяют для прижигания бородавок, грануляций. В разбавленных растворах (0,1–0,25%) нитрат серебра используют как вяжущее и противомикробное средство для примочек, а также в качестве глазных капель. Учёные считают, что прижигающее действие нитрата серебра связано с его взаимодействием с белками тканей, что приводит к образованию белковых солей серебра — альбуминатов. Серебро пока не относят к жизненно необходимым элементам, однако уже экспериментально установлено его повышенное содержание в мозгу человека, в железах внутренней секреции, печени. В организм серебро поступает с растительной пищей, например с огурцами и капустой.
В табл. 4 приведена Периодическая система, в которой охарактеризована биоактивность отдельных элементов [1]. Оценка основана на проявлении симптомов дефицита или избытка определённого элемента. Она учитывает следующие симптомы (в порядке возрастания эффекта): 1 — снижение аппетита; 2 — потребность в изменении диеты; 3 — значительные изменения состава тканей; 4 — повышенная повреждаемость одной или нескольких биохимических систем, проявляющаяся в специальных условиях; 5 — недееспособность этих систем в специальных условиях; 6 — субклинические признаки недееспособности; 7 — клинические симптомы недееспособности и повышенная повреждаемость; 8 — заторможенный рост; 9 — отсутствие репродуктивной функции. Крайней формой проявления дефицита или избытка элемента в организме является смертельный исход. Оценка биоактивности элемента сделана по девятибальной шкале в зависимости от характера симптома, для которого выявлена специфичность.
При такой оценке наиболее высоким баллом характеризуются жизненно необходимые элементы.
IA | IIA | IIIB | IVB | VB | VIB | VIIB | VIIIB | IB | IIB | IIIA | IVA | VA | VIA | VIIA | VIIIA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H 9 | He | ||||||||||||||||
Li 4 | Be | B | C 9 | N 9 | O 9 | F 6 | Ne | ||||||||||
Na 9 | Mg 9 | Al | Si 7 | P 9 | S 9 | Cl 9 | Ar | ||||||||||
K 9 | Ca 9 | Sc 3 | Ti 1 | V 8 | Cr 8 | Mn 9 | Fe 9 | Co 9 | Ni 8 | Cu 9 | Zn 9 | Ga 1 | Ge 1 | As 2 | Se 8 | Br | Kr |
Rb 2 | Sr 5 | Y 1 | Zr | Nb 3 | Mo 9 | Te | Ru | Rh | Pd | Ag 1 | Cd 1 | In | Sn 6 | Sb 1 | Te | I 9 | Xe |
Cs | Ba 2 | La 3 | Hf | Ta | W | Re | Os | Ir | Pt | Au 1 | Hg 1 | Tl 1 | Pb 1 | Bi | Po | At | Rn |
Fr | Ra | Ac | |||||||||||||||
Ce 1 | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy 1 | Ho 1 | Er | Tm | Yb | Lu | ||||
Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lo |
Заключение
Выявление биологической роли отдельных химических элементов в функционировании живых организмов (человека, животных, растений) — важная и увлекательная задача. Минеральные вещества, как и витамины, часто действуют как коферменты при катализе химических реакций, происходящих всё время в организме.
Усилия специалистов направлены на раскрытие механизмов проявления биоактивности отдельных элементов на молекулярном уровне (см. статьи Н.А. Улахновича Комплексы металлов в живых организмах: Соросовский Образовательный Журнал. 1997. № 8. С. 27–32; Д.А. Леменовского Соединения металлов в живой природе: Тамже. № 9. С. 48–53). Нет сомнения, что в живых организмах ионы металлов находятся в основном в виде координационных соединений с биологическими молекулами, которые выполняют роль лигандов. В статье из-