Какие химические элементы содержатся в клетке относят к макроэлементам
Организмы состоят из клеток. Клетки разных организмов обладают сходным химическим составом. В таблице 1 представлены основные химические элементы, обнаруженные в клетках живых организмов.
Таблица 1. Содержание химических элементов в клетке
Элемент | Количество, % | Элемент | Количество, % |
Кислород | 65-75 | Кальций | 0,04-2,00 |
Углерод | 15-18 | Магний | 0,02-0,03 |
Водород | 8-10 | Натрий | 0,02-0,03 |
Азот | 1,5-3,0 | Железо | 0,01-0,015 |
Фосфор | 0,2-1,0 | Цинк | 0,0003 |
Калий | 0,15-0,4 | Медь | 0,0002 |
Сера | 0,15-0,2 | Иод | 0,0001 |
Хлор | 0,05-0,10 | Фтор | 0,0001 |
По содержанию в клетке можно выделить три группы элементов. В первую группу входят кислород, углерод, водород и азот. На их долю приходится почти 98% всего состава клетки. Во вторую группу входят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента. Элементы этих двух групп относят к макроэлементам (от греч. макрос – большой).
Остальные элементы, представ ленные в клетке сотыми и тысячными долями процента, входят в третью группу. Это микроэлементы (от греч. микро – малый).
Каких-либо элементов, присущих только живой природе, в клетке не обнаружено. Все перечисленные химические элементы входят и в состав неживой природы. Это указывает на единство живой и неживой природы.
Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров – белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор – в состав нуклеиновых кислот, железо – в состав гемоглобина, а магний – в состав хлорофилла. Кальций играет важную роль в обмене веществ.
Часть химических элементов, содержащихся в клетке, входит в со став неорганических веществ – минеральных солей и воды.
Минеральные соли находятся в клетке, как правило, в виде катионов (К+, Na+, Ca2+, Mg2+) и анионов ( HPO2-/4, H2PO-/4, СI-, НСО3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды.
(У многих клеток среда слабощелочная и ее рН почти не изменяется, так как в ней постоянно поддерживается определенное соотношение катионов и анионов.)
Из неорганических веществ в живой природе огромную роль играет вода.
Без воды жизнь невозможна. Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани – всего 40.% К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.
Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды – потреблением большого количества энергии при нагревании. Чем же определяется высокая теплоемкость воды?
В молекуле воды атом кислорода ковалентно связан с двумя атомами водорода. Молекула воды полярна, так как атом кислорода имеет частично отрицательный заряд, а каждый из двух атомов водорода имеет
частично положительный заряд. Между атомом кислорода одной молекулы воды и атомом водорода другой молекулы образуется водородная связь. Водородные связи обеспечивают соединение большого числа молекул воды. При нагревании воды значительная часть энергии расходуется на разрыв водородных связей, что и определяет ее высокую теплоемкость.
Вода – хороший растворитель. Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.
Гидрофильными (от греч. гидро – вода и филео – люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые неионные соединения (например, сахара).
Гидрофобными (от греч. гидро – вода и фобос – страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.
Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость. Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.
Тела живой и неживой природы состоят из одинаковых химических элементов. В состав живых организмов входят неорганические вещества – вода и минеральные соли. Жизненно важные многочисленные функции воды в клетке обусловлены особенностями ее молекул: их полярностью, способностью образовывать водородные связи.
НЕОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ
В клетках живых организмов встречается около 90 элементов, причем примерно 25 из обнаружены практически во всех клетках. По содержанию в клетке химические элементы подразделяются на три большие группы: макроэлементы(99%), микроэлементы(1%), ультрамикроэлементы(менее 0,001%).
К макроэлементам относятся кислород, углерод, водород, фосфор, калий, сера, хлор, кальций, магний, натрий, железо.
К микроэлеметам относятся марганец, медь, цинк, йод, фтор.
К ультрамикроэлементам относятся серебро, золото, бром, селен.
ЭЛЕМЕНТЫ | СОДЕРЖАНИЕ В ОРГАНИЗМЕ (%) | БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ |
Макроэлементы: | ||
O.C.H.N | 62-3 | Входят в состав всех органических веществ клетки, воды |
Фосфор Р | 1,0 | Входят в состав нуклеиновых кислот, АТФ (образует макроэргические связи), ферментов, костной ткани и эмали зубов |
Кальций Са+2 | 2,5 | У растений входит в состав оболочки клетки, у животных – в состав костей и зубов, активизирует свертываемость крови |
Микроэлементы: | 1-0,01 | |
Сера S | 0,25 | Входит в состав белков, витаминов и ферментов |
Калий К+ | 0,25 | Обуславливает проведение нервных импульсов; активатор ферментов белкового синтеза, процессов фотосинтеза, роста растений |
Хлор CI- | 0,2 | Является компонентом желудочного сока в виде соляной кислоты, активизирует ферменты |
Натрий Na+ | 0,1 | Обеспечивает проведение нервных импульсов, поддерживает осмотическое давление в клетке, стимулирует синтез гормонов |
Магний Мg+2 | 0,07 | Входит в состав молекулы хлорофилла, содержится в костях и зубах, активизирует синтез ДНК, энергетический обмен |
Йод I- | 0,1 | Входит в состав гормона щитовидной железы – тироксина, влияет на обмен веществ |
Железо Fе+3 | 0,01 | Входит в состав гемоглобина, миоглобина, хрусталика и роговицы глаза, активатор ферментов, участвует в синтезе хлорофилла. Обеспечивает транспорт кислорода к тканям и органам |
Ультрамикроэлементы: | менее 0,01, следовые количества | |
Медь Си+2 | Участвует в процессах кроветворения, фотосинтеза, катализирует внутриклеточные окислительные процессы | |
Марганец Мn | Повышает урожайность растений, активизирует процесс фотосинтеза, влияет на процессы кроветворения | |
Бор В | Влияет на ростовые процессы растений | |
Фтор F | Входит в состав эмали зубов, при недостатке развивается кариес, при избытке – флюороз | |
Вещества : | ||
Н20 | 60-98 | Составляет внутреннюю среду организма, участвует в процессах гидролиза, структурирует клетку. Универсальный растворитель, катализатор, участник химических реакций |
ОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ
ВЕЩЕСТВА | СТРОЕНИЕ И СВОЙСТВА | ФУНКЦИИ |
Липиды | ||
Сложные эфиры высших жирных кислот и глицерина. В состав фосфолипидов входит дополнительно остаток Н3РО4.Обладают гидрофобными или гидрофильно-гидрофобными свойствами, высокой энергоемкостью | Строительная – образует билипидный слой всех мембранных. Энергетическая. Терморегуляторная. Защитная. Гормональная (кортикостероиды, половые гормоны). Компоненты витаминов D,E. Источник воды в организме.Запасное питательное вещество | |
Углеводы | ||
Моносахариды: глюкоза, фруктоза, рибоза, дезоксирибоза | Хорошо растворимы в воде | Энергетическая |
Дисахариды: сахароза, мальтоза (солодовый сахар) | Растворимы в воде | Компоненты ДНК, РНК, АТФ |
Полисахариды: крахмал, гликоген, целлюлоза | Плохо растворимы или нерастворимы в воде | Запасное питательное вещество. Строительная – оболочка растительной клетки |
Белки | Полимеры. Мономеры – 20 аминокислот. | Ферменты – биокатализаторы. |
I структура – последовательность аминокислот в полипептидной цепи. Связь – пептидная – СО- NH- | Строительная – входят в состав мембранных структур, рибосом. | |
II структура – a -спираль, связь – водородная | Двигательная (сократительные белки мышц). | |
III структура – пространственная конфигурация a -спирали (глобула). Связи – ионные, ковалентные, гидрофобные, водородные | Транспортная (гемоглобин). Защитная (антитела).Регуляторная (гормоны, инсулин) | |
IV структура характерна не для всех белков. Соединение нескольких полипептидных цепей в единую суперструктуруВ воде плохо растворимы. Действие высоких температур, концентрированных кислот и щелочей, солей тяжелых металлов вызывает денатурацию | ||
Нуклеиновые кислоты: | Биополимеры. Состоят из нуклеотидов | |
ДНК – дезокси-рибонуклеино-вая кислота. | Состав нуклеотида: дезоксирибоза, азотистые основания – аденин, гуанин, цитозин, тимин, остаток Н3РО4. Комплементарность азотистых оснований А = Т, Г = Ц. Двойная спираль. Способна к самоудвоению | Образуют хромосомы. Хранение и передача наследственной информации, генетического кода. Биосинтез РНК, белков. Кодирует первичную структуру белка. Содержится в ядре, митохондриях, пластидах |
РНК – рибонуклеиновая кислота. | Состав нуклеотида: рибоза, азотистые основания – аденин, гуанин, цитозин, урацил, остаток Н3РО4 Комплементарность азотистых оснований А = У, Г = Ц. Одна цепь | |
Информационная РНК | Передача информации о первичной структуре белка, участвует в биосинтезе белка | |
Рибосомальная РНК | Строит тело рибосомы | |
Транспортная РНК | Кодирует и переносит аминокислоты к месту синтеза белка – рибосомам | |
Вирусная РНК и ДНК | Генетический аппарат вирусов |
Ферменты.
Важнейшая функция белков – каталитическая. Белковые молекулы, увеличивающие на несколько порядков скорость химических реакции в клетке, называют ферментами. Ни один биохимический процесс в организме не происходит без участия ферментов.
В настоящее время обнаружено свыше 2000 ферментов. Их эффективность во много раз выше, чем эффективность неорганических катализаторов, используемых в производстве. Так, 1 мг железа в составе фермента каталазы заменяет 10 т неорганического железа. Каталаза увеличивает скорость разложения пероксида водорода (Н2О2) в 1011 раз. Фермент, катализирующий реакцию образования угольной кислоты (СО2+Н2О = Н2СО3), ускоряет реакцию в 107 раз.
Важным свойством ферментов является специфичность их действия, каждый фермент катализирует только одну или небольшую группу сходных реакций.
Вещество, на которое воздействует фермент, называют субстратом. Структуры молекулы фермента и субстрата должны точно соответствовать друг другу. Этим объясняется специфичность действия ферментов. При соединении субстрата с ферментом пространственная структура фермента изменяется.
Последовательность взаимодействия фермента и субстрата можно изобразить схематично:
Субстрат+Фермент – Фермент-субстратный комплекс – Фермент+Продукт.
Из схемы видно, что субстрат соединяется с ферментом с образованием фермент-субстратного комплекса. При этом субстрат превращается в новое вещество – продукт. На конечном этапе фермент освобождается от продукта и вновь вступает во взаимодействие с очередной молекулой субстрата.
Ферменты функционируют лишь при определенной температуре, концентрации веществ, кислотности среды. Изменение условий приводит к изменению третичной и четвертичной структуры белковой молекулы, а, следовательно, и к подавлению активности фермента. Как это происходит? Каталитической активностью обладает лишь определенный участок молекулы фермента, называемый активным центром. Активный центр содержит от 3 до 12 аминокислотных остатков и формируется в результате изгиба полипептидной цепи.
Под влиянием разных факторов изменяется структура молекулы фермента. При этом нарушается пространственная конфигурация активного центра, и фермент теряет свою активность.
Ферменты – это белки, играющие роль биологических катализаторов. Благодаря ферментам на несколько порядков возрастает скорость химических реакций в клетках. Важное свойство ферментов – специфичность действия в определенных условиях.
Нуклеиновые кислоты.
Нуклеиновые кислоты были от крыты во второй половине XIX в. швейцарским биохимиком Ф. Мишером, который выделил из ядер клеток вещество с высоким содержанием азота и фосфора и назвал его “нуклеином” (от лат. нуклеус – ядро).
В нуклеиновых кислотах хранится наследственная информация о строении и функционировании каждой клетки и всех живых существ на Земле. Существует два типа нуклеиновых кислот – ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты, как и белки, обладают видовой специфичностью, то есть организмам каждого вида присущ свой тип ДНК. Чтобы выяснить причины видовой специфичности, рассмотрим строение нуклеиновых кислот.
Молекулы нуклеиновых кислот представляют собой очень длинные цепи, состоящие из многих сотен и даже миллионов нуклеотидов. Любая нуклеиновая кислота содержит всего четыре типа нуклеотидов. Функции молекул нуклеиновых кислот зависят от их строения, входящих в их состав нуклеотидов, их числа в цепи и последовательности соединения в молекуле.
Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин – А, тимин – Т, гуанин – Г или цитозин – Ц), а также угле вод дезоксирибоза и остаток фосфорной кислоты.
Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания.
Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.
Молекулы ДНК очень длинные. Например, для буквенной записи последовательности нуклеотидов в молекулах ДНК из одной клетки человека (46 хромосом) потребовалась бы книга объемом около 820000 страниц. Чередование четырех типов нуклеотидов может образовать бесконечное множество вариантов молекул ДНК. Указанные особенности строения молекул ДНК позволяют им хранить огромный объем информации обо всех признаках организмов.
В 1953 г. американским биологом Дж. Уотсоном и английским физиком Ф. Криком была создана модель строения молекулы ДНК. Ученые установили, что каждая молекула ДНК состоит из двух цепей, связанных между собой и спирально закрученных. Она имеет вид двойной спирали. В каждой цепи четыре типа нуклеотидов чередуются в определенной последовательности.
Нуклеотидный состав ДНК различается у разных видов бактерий, грибов, растений, животных. Но он не меняется с возрастом, мало зависит от изменений окружающей среды. Нуклеотиды парные, то есть число адениновых нуклеотидов в любой молекуле ДНК равно числу тимидиновых нуклеотидов (А-Т), а число цитозиновых нуклеотидов равно числу гуаниновых нуклеотидов (Ц-Г). Это связано с тем, что соединение двух цепей между собой в молекуле ДНК подчиняется определенному правилу, а именно: аденин одной цепи всегда связан двумя водородными связями только с Тимином другой цепи, а гуанин – тремя водородными связями с цитозином, то есть нуклеотидные цепи одной молекулы ДНК комплементарны, дополняют друг друга.
ДНК содержат все бактерии, подавляющее большинство вирусов. Она обнаружена в ядрах клеток животных, грибов и растений, а также в митохондриях и хлоропластах. В ядре каждой клетки человеческого организма содержится 6,6 х 10-12 г ДНК, а в ядре половых клеток – в два раза меньше – 3,3 х 10-12 г.
Молекулы нуклеиновых кислот – ДНК и РНК состоят из нуклеотидов. В состав нуклеотидов ДНК входит азотистое основание (А, Т, Г, Ц), углевод дезоксирибоза и остаток молекулы фосфорной кислоты. Молекула ДНК представляет собой двойную спираль, состоящую из двух цепей, соединенных водородными связями по принципу комплементарности. Функция ДНК – хранение наследственной информации.
АТФ.
В клетках всех организмов имеются молекулы АТФ – аденозинтрифосфорной кислоты. АТФ – универсальное вещество клетки, молекула которого имеет богатые энергией связи. Молекула АТФ – это один своеобразный нуклеотид, который, как и другие нуклеотиды, состоит из трех компонентов: азотистого основания – аденина, углевода – рибозы, но вместо одного содержит три остатка молекул фосфорной кислоты (рис. 12). Связи, обозначенные на рисунке значком, – богаты энергией и называются макроэргическими. Каждая молекула АТФ содержит две макроэргические связи.
При разрыве макроэргической связи и отщеплении с помощью ферментов одной молекулы фосфорной кислоты освобождается 40 кДж/моль энергии, а АТФ при этом превращается в АДФ – аденозиндифосфорную кислоту. При отщеплении еще одной молекулы фосфорной кислоты освобождается еще 40 кДж/моль; образуется АМФ – аденозинмонофосфорная кислота. Эти реакции обратимы, то есть АМФ может пре вращаться в АДФ, АДФ – в АТФ.
Молекулы АТФ не только расщепляются, но и синтезируются, по этому их содержание в клетке относительно постоянно. Значение АТФ в жизни клетки огромно. Эти молекулы играют ведущую роль в энергетическом обмене, необходимом для обеспечения жизнедеятельности клетки и организма в целом.
Рис. 12. Схема строения АТФ.
аденин – |
Молекула РНК, как правило, одиночная цепь, состоящая из четырех типов нуклеотидов – А, У, Г, Ц. Известны три основных вида РНК: иРНК, рРНК, тРНК. Содержание молекул РНК в клетке непостоянно, они участвуют в биосинтезе белка. АТФ – универсальное энергетическое вещество клетки, в котором имеются богатые энергией связи. АТФ играет центральную роль в обмене энергии в клетке. РНК и АТФ содержатся как в ядре, так и в цитоплазме клетки.
Источник
Еще со школьных уроков химии, многие из нас помнят, что в клетках всех живых организмов (в том числе и человека), нет каких либо особых элементов, характерных только лишь для живой природы, т.е. на атомном уровне различий между живой и неживой природой нет. В составе веществ, образующих клетки человека, обнаружено более 70 химических элементов, которые принято разделять на две большие группы: макроэлементы и микроэлементы.
Макроэлементы – это элементы, которые содержатся в организме человека в очень больших количествах. К макроэлементам относятся углерод, водород, кислород и азот (на долю которых приходится 98% всего содержимого клетки), как правило недостатка их в организме не наблюдается, хотя бы потому, что мы получаем их с воздухом которым дышим, с водой и почти с любой пищей. Однако, к макроэлементам так же относят калий, натрий, магний, кальций, фосфор, серу и хлор (суммарное содержание их в клетки составляет 1.9%) – дефицит данных элементов уже может наблюдаться в организме.
В свою очередь, микроэлементы, совсем другое дело.
Микроэлементы – это химические элементы, присутствующие в организме в очень низких концентрациях. Суммарное содержание их в клетки составляет около 0.1%. К микроэлементам относят марганец, цинк, железо, медь, кобальт, бор, фтор, бром, йод и т.д.
Обычно люди и животные получают необходимые им для нормальной жизнедеятельности элементы с пищей. Например, многие знают, что в коровьем молоке обнаружено 23 необходимых для человека элемента, такие как: литий, рубидий, медь, серебро, барий, стронций, титан, мышьяк, ванадий, хром, молибден, йод, фтор, марганец, железо, кобальт, никель и другие. Однако, чтобы организм был здоров и крепок, недостаточно употреблять в своем рационе всю пищу без разбора. Ежедневный рацион человека должен быть грамотно составлен, для того что бы сохранялся баланс поступающих в организм химических элементов.
Ниже, я расскажу о некоторых наиболее важных для человека элементах, их роли в организме, а так же о продуктах богатых ими:
Кальций (Ca). Является основным элементом костей и зубов, необходим для мышечного сокращения, а так же является компонентом процесса свертывания крови. Выступает в качестве посредника в механизмах гормональной деятельности. Кальцием богаты такие продукты, как молоко, йогурты, сыры, орехи, бобовые и капуста.
Калий (K). Влияет на процессы нервной проводимости в тканях человеческого организма, участвует в процессах возбуждения и торможения, участвует в поддержание осмотического давления в клетках, обеспечивает кислотно-щелочное равновесие в организме. Калием богаты такие продукты, как томаты, чеснок, картофель, абрикосы, виноград, дыни, бананы, какао, черный чай и т.д.
Натрий (Na). Вместе с калием формирует электрический потенциал клеток, за счет которого осуществляется передача нервных импульсов. Участвует в транспорте органических и неорганических веществ в организме. Активирует ферменты слюны и поджелудочного сока. Натрием богаты такие продукты, как икра, кетчуп, колбасы, кукурузные хлопья, соленая рыба и т.д.
Магний (Mg). Снижает риск сердечно-сосудистых заболеваний, поддерживает функции нервной и мышечной системы, повышает прочность костей. Магнием богаты фасоль, шпинат, спаржа, зеленые яблоки, орехи, семечки и т.д.
Железо (Fe). Структурный элемент гемоглобина крови. Участвует в обеспечение кислородом органов, тканей и систем организма. Железом богаты мясо животных и птиц, печень, семена тыквы, фасоль, яблоки и т.д.
Кобальт (Co). Входит в состав витамина B12. Участвует в некоторых ферментативных процессов в организме. Кобальтом в необходимой для организма форме, богаты такие продукты, как фасоль, зеленый горошек, рыба, кальмары, картофель, свекла и т.д.
Марганец (Mn). Входит в состав многих ферментов, катализирует некоторые процессы в организме, участвует в синтезе белков и нуклеиновых кислот. Регулирует функционирование скелетно-мышечного аппарата. Марганцем богаты молоко, мясо, рыба, мед, горчица, лимоны, грибы, перец, мука, какао, различные сорта чаев и т.д.
Цинк (Zn). Является компонентом многих ферментов в организме, влияет на рост клеток, особенно в период их репродукции и дифференциации. Так же участвует в кроветворение и поддерживает функции репродуктивной системы. Цинком богаты такие продукты, как гречка, рис, горох, фасоль, некоторые цитрусовые, яблоки, томаты, чеснок, имбирь и т.д.
Медь (Cu). Участвует в формирование соединительных тканей, способствует росту костей. Поддерживает эластичность стенок кровеносных сосудов, участвует в образование гемоглобина и созревание эритроцитов. Является действующим компонентом многих ферментов, обладающих окислительно – восстановительным потенциалом. Медью богаты печень, устрицы, кунжут, какао, шоколад, орехи, кальмары, семечки, шампиньоны и т.д.
Сера (S). Обязательный элемент для здоровья кожи, ногтей и волос. Является компонентом многих ферментов, гормонов и серосодержащих аминокислот. Серой богаты свинина, говядина, рыба, молочные продукты, яйца, бобовые, крупы и т.д.
Фосфор (P). Просто необходим для нормального функционирования мозга, сердца, печени и почек. Принимает участие в регуляции гормонов, входит в состав костной ткани и нуклеиновых кислот. Обеспечивает организм энергией. Фосфором богаты бобовые, кукуруза, молочные продукты, сыр, желток яйца, рыба и т.д.
Таким образом, все пищевые продукты богаты тем или иным химическим элементом или совокупностью элементов, необходимых для нормального функционирования организма. Вот почему для нормальной жизнедеятельности человека, в его рационе должна быть разнообразная пища. «Не хлебом единым жив человек».
Однако, организм каждого человека индивидуален и поэтому в определенные периоды жизни каждому из нас лучше придерживаться своей личной диеты. Такую диету может подобрать профессиональный диетолог, который на основе данных диагностики организма делает профессиональное заключение о том, каких элементов не хватает именно вам.
Если вам понравилась данная статья ставьте лайки и подписывайтесь на мой канал. Напишите в комментариях, хотели бы вы продолжение данной статьи?
До новых встреч!
Источник