Какие характеристики механических свойств определяются при испытании металлов на растяжение

Какие характеристики механических свойств определяются при испытании металлов на растяжение thumbnail

Испытание на растяжение металла заключаются в растяжении образца с построением графика зависимости удлинения образца (Δl) от прилагаемой нагрузки (P), с последующим перестроением этой диаграммы в диаграмму условных напряжений (σ – ε)

Испытания на растяжение проводятся по ГОСТ 1497, по этому же ГОСТу определяются и образцы на которых проводятся испытания.

Образцы для испытания на растяжениеКак уже говорилось выше, при испытаниях строится диаграмма растяжения металла. На ней есть несколько характерных участков:

Испытание на растяжение

  1. Участок ОА – участок пропорциональности между нагрузкой Р и удлинением ∆l. Это участок, на котором сохраняется закон Гука. Данная пропорциональность была открыта Робертом Гуком в 1670 г. и в дальнейшем получила название закона Гука.
  2. Участок ОВ – участок упругой деформации. Т.е., если к образцу приложить нагрузку, не превышающую Ру, а потом разгрузить, то при разгрузке деформации образца будут уменьшаться по тому же закону, по которому они увеличивались при нагружении

Выше точки В диаграмма растяжения отходит от прямой – деформация начинает расти быстрее нагрузки, и диаграмма принимает криволинейный вид. При нагрузке, соответствующей Рт (точка С ), диаграмма переходит в горизонтальный участок. В этой стадии образец получает значительное остаточное удлинение практически без увеличения нагрузки. Получение такого участка на диаграмме растяжения объясняется свойством материала деформироваться при постоянной нагрузке. Это свойство называется текучестью материала, а участок диаграммы растяжения, параллельный оси абсцисс, называется площадкой текучести.
Зуб текучести на диаграмме растяжения металлаИногда площадка текучести носит волнообразный характер. Это чаще касается растяжения пластичных материалов и объясняется тем, что вначале образуется местное утонение сечения, затем это утонение переходит на соседний объем материала и этот процесс развивается до тех пор, пока в результате распространения такой волны не возникает общее равномерное удлинение, отвечающее площадке текучести. Когда имеется зуб текучести, при определении механических свойств материала, вводят понятия о верхнем и нижнем пределах текучести.

После появления площадки текучести, материал снова приобретает способность сопротивляться растяжению и диаграмма поднимается вверх. В точке D усилие достигает максимального значения Pmax. При достижении усилия Pmax на образце появляется резкое местное сужение – шейка. Уменьшение площади сечения шейки вызывает падение нагрузки и в момент, соответствующий точке K диаграммы, происходит разрыв образца.

Прилагаемая нагрузка для растяжения образца зависит от геометрии этого образца. Чем больше площадь сечения, тем более высокая нагрузка необходима для растяжения образца. По этой причине, получаемая машинная диаграмма не дает качественной оценки механических свойств материала. Чтобы исключить влияние геометрии образца, машинную диаграмму перестраивают в координатах σ − ε путем деления ординат P на первоначальную площадь сечения образца A0 и абсцисс ∆l на lо. Перестроенная таким образом диаграмма называется диаграммой условных напряжений. Уже по этой, новой диаграмме, определяют механические характеристики материала.

Определяются следующие механические характеристики:

Предел пропорциональности σпц – наибольшее напряжение, после которого нарушается справедливость закона Гука σ = Еε , где Е – модуль продольной упругости, или модуль упругости первого рода. При этом Е =σ/ε = tgα , т. е. модуль E это тангенс угла наклона прямолинейной части диаграммы к оси абсциссФормула определения предела пропорциональности

Предел упругости σу — условное напряжение, соответствующее появлению остаточных деформаций определенной заданной вели­чины (0,05; 0,001; 0,003; 0,005%); допуск на остаточную деформа­цию указывается в индексе при σуФормула определения предела упругости

Предел текучести σт – напряжение, при котором происходит увеличение деформации без заметного увеличения растягивающей нагрузки

Формула расчета предела текучестиТакже выделяют условный предел текучести — это условное напряжение, при котором остаточная деформация достигает определенной величины (обычно 0,2% от рабочей длины образца; тогда условный предел текучести обозначают как σ0,2). Величину σ0,2 определяют, как правило, для материалов, у которых на диаграмме отсутствует площадка или зуб текучести

Предел прочности (временное сопротивление разрыву) σв – напряжение, соответствующее наибольшей нагрузке Pmax , предшествующей разрыву образца

Формула расчета предела прочности

Кроме характеристик прочности материала, при испытании на растяжение определяют также характеристики пластичности – относительное удлинение δ и относительное сужение ψ

Формула расчета относительного удлинения

где lо – первоначальная расчетная длина образца, а lк – конечная расчетная длина образца

Формула расчета относительного сужения образца

Площади поперечного сечения образца

Изопропиловый спирт цена за тонну оптом – https://www.dcpt.ru

Источник

Механические свойства металлов (прочность, упругость, пластичность, вязкость), как и другие свойства, являются исходными данными при проектировании и создании различных машин, механизмов и сооружений.

Методы определения механических свойств металлов делятся на следующие группы:

· статические, когда нагрузка возрастает медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, твердость);

· динамические, когда нагрузка возрастает с большой скоростью (испытания на ударный изгиб);

· циклические, когда нагрузка многократно изменяется (испытание на усталость);

· технологические — для оценки поведения металла при обработке давлением (испытания на изгиб, перегиб, выдавливание).

Испытания на растяжение (ГОСТ 1497-84) проводятся на стандартных образцах круглого или прямоугольного сечения. При растяжении под действием плавно возрастающей нагрузки образец деформируется до момента разрыва. Во время испытания образца снимают диаграмму растяжения (рис. 1.36, а), фиксирующую зависимость между действующей на образец силой Р, и вызванной ею деформацией Δl (Δl — абсолютное удлинение).

Рис. 1.36. Диаграмма растяжения низкоуглеродистой стали (а) и зависимость между напряжением и относительным удлинением (б)

Вязкость (внутреннее трение) — способность металла поглощать энергию внешних сил при пластической деформации и разрушении (определяется величиной касательной силы, приложенной к единице площади слоя металла, подлежащего сдвигу).

Пластичность — способность твердых тел необратимо деформироваться под действием внешних сил.

При испытании на растяжение определяют:

· σв — границу прочности, МН/м2 (кг/мм2):

где Рb — наибольшая нагрузка; F0 — начальная площадь сечения образца;

· σпц — границу пропорциональности, МН/м2 (кг/мм2):

где Pпц — нагрузка, соответствующая границе пропорциональности;

· σпр — границу упругости, МН/м2 (кг/мм2):

где Рпр — нагрузка, соответствующая границе упругости (при σпр остаточная деформация соответствует 0,05-0,005 % начальной длины);

· σт — границу текучести, МН/м2 (кг/мм2):

где Рт — нагрузка, соответствующая границе текучести, Н;

· δ — относительное удлинение, %:

где l0 — длина образца до разрыва, м; l1 — длина образца после разрыва, м;

· ψ — относительное сужение, %:

где F0 — площадь сечения до разрыва, м2; F — площадь сечения после разрыва, м2.

Испытания на твердость

Твердость — это сопротивление материала проникновению в него другого, более твердого тела. Из всех видов механического испытания определение твердости является самым распространенным.

Испытания по Бринеллю (ГОСТ 9012-83) проводятся путем вдавливания в металл стального шарика. В результате на поверхности металла образуется сферический отпечаток (рис. 1.37, а).

Твердость по Бринеллю определяется по формуле:

где P — нагрузка на металл, Н; D — диаметр шарика, м; d — диаметр отпечатка, м.

Чем тверже металл, тем меньше площадь отпечатка.

Диаметр шарика и нагрузку устанавливают в зависимости от исследуемого металла, его твердости и толщины. При испытании стали и чугуна выбирают D = 10 мм и P = 30 кН (3000 кгс), при испытании меди и ее сплавов D = 10 мм и P = 10 кН (1000 кгс), а при испытании очень мягких металлов (алюминия, баббитов и др.) D = 10 мм и P = 2,5 кН (250 кгс). При испытании образцов толщиной менее 6 мм выбирают шарики с меньшим диаметром — 5 и 2,5 мм. На практике пользуются таблицей перевода площади отпечатка в число твердости.

Метод Бринелля не рекомендуется применять для металлов твердостью более НВ 450 (4500 МПа), поскольку шарик может деформироваться, что исказит результаты испытаний.

Испытания по Роквеллу (ГОСТ 9013-83). Проводятся путем вдавливания в металл алмазного конуса (α = 120°) или стального шарика (D = 1,588 мм или 1/16″, рис. 1.37, б). Прибор Роквелла имеет три шкалы — В, С и А. Алмазный конус применяют для испытания твердых материалов (шкалы С и А), а шарик — для испытания мягких материалов (шкала В). Конус и шарик вдавливают двумя последовательными нагрузками: предварительной Р0 и общей Р:

Р = Р0 + Р1,

где Р1 — основная нагрузка.

Предварительная нагрузка Р0 = 100 Н (10 кгс). Основная нагрузка составляет 900 Н (90 кгс) для шкалы В; 1400 Н (140 кгс) для шкалы С и 500 Н (50 кгс) для шкалы А.

Рис. 1.37. Схема определения твердости: а — по Бринеллю; б — по Рoквеллу; в — по Виккерсу

Твердость по Роквеллу измеряют в условных единицах. За единицу твердости принимают величину, которая соответствует осевому перемещению наконечника на расстояние 0,002 мм.

Твердость по Роквеллу вычисляют следующим способом:

НR = 100 – e (шкалы А и С); НR = 130 – e (шкала В).

Величину e определяют по формуле:

,

где h — глубина проникновения наконечника в металл под действием общей нагрузки Р (Р =Р0+ Р1); h0 — глубина проникновения наконечника под действием предварительной нагрузки Р0.

В зависимости от шкалы твердость по Роквеллу обозначают НRВ, НRС, НRА.

Испытания по Виккерсу (ГОСТ 2999-83). В основе метода — вдавливание в испытываемую поверхность (шлифованную или даже полированную) четырехгранной алмазной пирамиды (α = 136°) (рис. 1.37, в). Метод используется для определения твердости деталей малой толщины и тонких поверхностных слоев, имеющих высокую твердость.

Твердость по Виккерсу:

где Р — нагрузка на пирамиду, Н; d — среднее арифметическое двух диагоналей отпечатка, измеренных после снятия нагрузки, м.

Число твердости по Виккерсу определяют по специальным таблицам по диагонали отпечатка d. При измерении твердости применяют нагрузку от 10 до 500 Н.

Микротвердость (ГОСТ 9450-84). Принцип определения микротвердости такой же, как и по Виккерсу, согласно соотношению:

Метод применяется для определения микротвердости изделий мелких размеров и отдельных составляющих сплавов. Прибор для измерения микротвердости — это механизм вдавливания алмазной пирамиды и металлографический микроскоп. Образцы для измерений должны быть подготовлены так же тщательно, как микрошлифы.

Испытание на ударную вязкость

Для испытания на удар изготавливают специальные образцы с надрезом, которые затем разрушают на маятниковом копре (рис. 1.39). Общий запас энергии маятника будет расходоваться на разрушение образца и на подъем маятника после его разрушения. Поэтому если из общего запаса энергии маятника отнять часть, которая тратится на подъем (взлет) после разрушения образца, получим работу разрушения образца:

K = Р(h1 – h2)

или

K = Рl(соs β – соs α), Дж (кг·м),

де P — масса маятника, Н (кг); h1 — высота подъема центра масс маятника до удара, м; h2 — высота взлета маятника после удара, м; l — длина маятника, м; α, β — углы подъема маятника соответственно до разрушения образца и после него.

Рис. 1.39. Испытание на ударную вязкость: 1 — маятник; 2 — нож маятника; 3 — опоры

Ударную вязкость, т. е. работу, затраченную на разрушение образца и отнесенную к поперечному сечению образца в месте надреза, определяют по формуле:

, МДж/м2 (кг·м/см2),

где F — площадь поперечного сечения в месте надреза образца, м2 (см2).

Для определения пользуются специальными таблицами, в которых для каждого угла β определена величина работы удара K. При этом F = 0,8 · 10–4 м2.

Для обозначения ударной вязкости добавляют и третью букву, указывающую на вид надреза на образце: U, V, Т. Запись KСU означает ударную вязкость образца с U-образным надрезом, KСV — с V-образным надрезом, а KСТ — с трещиной (рис. 1.40).

Рис. 1.40. Виды надрезов на образцах для испытания на ударную вязкость:
аU-образный надрез (KCU); бV-образный надрез (KСV); в — надрез с трещиной (KСТ)

Испытание на усталость (ГОСТ 2860-84). Разрушение металла под действием повторных или знакопеременных напряжений называется усталостью металла. При разрушении металла вследствие усталости на воздухе излом состоит из двух зон: первая зона имеет гладкую притертую поверхность (зона усталости), вторая — зона долома, в хрупких металлах она имеет грубокристаллическое строение, а в вязких — волокнистое.

При испытании на усталость определяют границу усталости (выносливости), т. е. то наибольшее напряжение, которое может выдержать металл (образец) без разрушения заданное число циклов. Самым распространенным методом испытания на усталость является испытание на изгиб при вращении (рис. 1.41).

Рис. 1.41. Схема испытания на изгиб при вращении:
1 — образец; Р — нагрузка; Мвиг — изгибающий момент

Применяют следующие основные виды технологических испытаний (проб).

Проба на изгиб (рис. 1.42) в холодном и горячем состоянии — для определения способности металла выдерживать заданный изгиб; размеры образцов — длина l = 5а + 150 мм, ширина b = 2а (но не менее 10 мм), где а — толщина материала.

Рис. 1.42. Технологическая проба на изгиб: а — образец до испытания; б — загиб до определенного угла; в — загиб до параллельности сторон; г — загиб до соприкосновения сторон

Проба на перегиб предусматривает оценку способности металла выдерживать повторный изгиб и применяется для проволоки и прутков диаметром 0,8—7 мм из полосового и листового материала толщиной до 55 мм. Образцы сгибают попеременно направо и налево на 90° с равномерной — около 60 перегибов в минуту — скоростью до разрушения образца.

Проба на выдавливание (рис. 1.43) — для определения способности металла к холодной штамповке и вытягиванию тонкого листового материала. Состоит в продавливании пуансоном листового материала, зажатого между матрицей и зажимом. Характеристикой пластичности металла является глубина выдавливания ямки, что соответствует появлению первой трещины.

Рис. 1.43. Испытание на выдавливание: 1 — лист; h — мера способности материала к вытяжке

Проба на навивку проволоки диаметром d ≤ 6 мм. Испытание состоит в навивке 5—6 плотно прилегающих по винтовой линии витков на цилиндр заданного диаметра. Выполняется только в холодном состоянии. Проволока после навивки не должна иметь повреждений.

Проба на искру используется при необходимости определения марки стали при отсутствии специального оборудования и маркировки.

Источник

Механических свойств

Механические испытания при кратковременных испытаниях применяются для оценки прочности деталей и конструкций, подвергающихся быстро нарастающим нагрузкам, и для определения механических свойств пластически деформируемых металлов и сплавов. Как правило, основные испытания материалов проводят в соответствии с ГОСТами, которые устанавливают методы испытаний, определяемые механические характеристики, требования к используемому оборудованию, типы и размеры испытываемых образцов и последовательность их нагружения, порядок обработки результатов испытания и оценки достоверности полученных результатов.

Статическое испытание на растяжение – наиболее распространенный метод механических испытаний конструкционных материалов. Это связано с простотой процедуры, наличием большого парка соответствующего оборудования и высокой практической ценностью получаемой при этом информации, используемой для оценки механического поведения материалов при разных видах нагружения. При испытаниях определяют характеристики прочности и характеристики пластичности. Для получения этих характеристик чаще всего используют универсальные испытательные машины, на которых испытывают на растяжение специально изготовленные образцы. Характер испытаний, применяемые образцы и т.д. стандартизированы. Например, испытания на растяжение при комнатной температуре соответствуют требованиям ГОСТ 1497-84.

При осевом растяжении образца реализуется одноосное напряженное состояние, при котором Ϭ1 = Ϭmax, Ϭ2 = Ϭ3 = 0, максимальное касательное напряжение τmax = Ϭmax /2 и действует в площадках, ориентированных под углом 45о к направлению Ϭ1. (Рис. ).

Обобщенной характеристикой сопротивления металлов деформированию является диаграмма деформирования, которая строится в координатах Ϭ – ε(Рис.11. ) и отражает этапы упругого и упругопластического деформирования до полного разрушения образца. При этом Ϭ определяется условно делением нагрузки Р в данный момент нагружения на начальную площадь сечения образца F0, а εделением текущего значения абсолютного удлинения образца ∆ℓна начальную его длину ℓ0. Большинство стандартных прочност-

 
 

ных характеристик рассчитывают по положению определенных точек на этой диаграмме в виде условных растягивающих напряжений.

На практике же в соответствии с требованиями стандарта при растяжении образца графически фиксируется зависимость между приложенным усилием и абсолютным удлинением образца, т.е. механические свойства обычно определяют по первичным кривым растяжения в координатах Р – ∆ℓ (Рис.11. ), которые автоматически записываются на диаграммной ленте или в памяти компьютера.

 
 

Если же нагрузку относить к действительному в данный момент сечению, то получают значения истинных напряжений. Диаграммы истинных напряжений определять сложнее, но они дают представление о физических процессах, протекающих в материале в процессе деформации и имеют особое значение для прочностных расчетов и технологии обработки металлов давлением. Например, истинные напряжения при разрушении различных материалов и разных структурных состояниях весьма значительно отличаются.

При испытаниях на растяжение можно определить несколько характеристик прочности и пластичности.

1. Предел пропорциональности σпц –отвечает напряжению, при котором отклонение от линейной зависимости между нагрузкой и удлинением достигает такой величины, что тангенс угла наклона, образованного касательной к кривой нагрузка – удлинение в точке Рпц с осью нагрузок увеличивается на 50% от своего значения на упругом участке. На рис.12.7 показано определение σпцграфическим способом. Из начала координат диаграммы деформации

2. Предел упругости Ϭ0.05 – напряжение, при котором остаточное удлинение достигает 0.05% длины участка образца, равного базе тензометра. Размер этого участка на стандартных (по ГОСТ 1497-84) образцах Ф10 мм равен пятикратному диаметру, т.е. 50 мм, и при изготовлении образца фиксируется кернами на боковой поверхности (Рис.12.7).

Предел упругости Ϭ0.05 можно определить графическим способом на диаграмме деформации в координатах Р – ∆ℓ. Для этого нужно знать масштаб оси деформаций диаграммы (М). На начальном участке диаграммы деформации (Рис.12.8) откладываем в мм размер, равный 50х0.05%хМ (отрезок ОЕ), и проводим линию ЕР, параллельную упругому участку ОА. Координата точки Р на оси ординат соответствует нагрузке Р0.05. Предел упругости Ϭ0.05 определяют по формуле:

Ϭ0.05 = Р0.05 /F0 ,,

где F0 – площадь первоначального сечения рабочей части образца. Масштаб М можно рассчитать по диаграмме. Для этого необходимо измерить на испытанном образце абсолютное удлинение ∆ℓ и определить на диаграмме длину участка, соответствующую ∆ℓ.Разделив эту длину на ∆ℓ получаем величину масштаба М.

3. Предел текучести ϬТ. Различают физический и условный предел текучести. Физический предел текучести определяют на материалах, диаграммы растяжения которых имеют ярко выраженные зуб и площадку текучести (Кривые 2 и 3 на рис.12.9). На таких материалах определяют: Верхний предел текучести ϬТВ – напряжение, соответствующее верхнему пику нагрузки до начала текучести образца. Нижний предел текучести ϬТН – напряжение, при котором образец деформируется без заметного увеличения нагрузки.

Большинство диаграмм деформации конструкционных сталей и других технических материалов не имеют ярко выраженной площадки текучести. Для них определяют условный предел текучести Ϭ0.2 – напряжение, при котором остаточное удлинение достигает 0.2% длины рабочей части участка между кернами. Ϭ0.2можно определить графически (Рис.12.10) по той же методике, что и Ϭ0.05. При этом условный предел текучести определяется по формуле Ϭ0.2 = Р0.2 /F0.

4. Модуль упругости – физическое свойство материала, характеризующее его упругие свойства. Различают модуль упругости при растяженииЕ и модуль упругости при сдвиге G. Так как модуль упругости – это фактически приращение напряжения к соответствующему удлинению в пределах упругой области, то Модуль упругости при растяжении – Е можно определить графически на диаграмме деформации. При этом модуль упругости определяют по формуле:

Е = Рх ℓ0 /∆ℓср х F0,

где Р– приращение нагрузки на линейном участке диаграммы, ℓ0– начальная расчетная длина образца (50 мм), ∆ℓср– приращение удлинения (с учетом масштаба М), F0 – площадь первоначального сечения рабочей части образца.

5. Предел прочности (временное сопротивление) – ϬВ – напряжение, соответствующее наибольшей нагрузке Рmax, предшествующей разрыва образца. Временное сопротивление вычисляют по формуле ϬВ = Рmax / F0.

При испытаниях на растяжение можно определить не только характеристики прочности но и пластичность. Характеристиками пластичности являются относительное удлинение δ и относительное сужение ψ.

6. Относительное удлинение (после разрыва) δ – это характеристика пластичности материала, равная отношению удлинения в момент разрушения к начальной расчетной длине образца, выраженная в процентах. Относительное удлинение определяется по формуле:

δ = [(ℓк – ℓ0) / ℓ0]х 100 (%),

где ℓк – длина расчетной части образца (между кернами) в момент разрушения.

7. Относительное сужение (после разрыва) ψ –это отношение разницы между площадью первоначального сечения образца F0 и площадью его минимального сечения в момент разрушения (в шейке) к площади первоначального сечения образца F0, выраженная в процентах. Относительное удлинение определяется по формуле:

ψ = [(F0 – Fк) / F0]х 100 (%).

8. Истинное сопротивление разрушению – определяется путем деления нагрузки, действовавшей непосредственно перед разрывом образца Рк на площадь сечения в шейке . Истинное сопротивление разрушению характеризует максимальное напряжений в соответствии с диаграммой истинных напряжений.

9. Расчет энергии упругой и пластической деформации осуществляется путем подсчета площадей, расположенных под кривой растяжения (т.е. в координатах Р – ∆ℓ). Этот расчет можно провести для любого момента в процессе разрушения. Упругая энергия Аупр , накопленная в образце, определяется как площадь треугольника между вертикалью из заданной точки и линией, идущей из той же точки параллельно линии нагружения (Рис.11. ). Энергия, затраченная на пластическую деформацию в процессе растяжения Апл, располагается под кривой растяжения слева от этого треугольника.

Дата добавления: 2016-11-02; просмотров: 2259 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org – Контакты – Последнее добавление

Источник