Какие газы содержатся в почвенном воздухе
Глава 8. ПОЧВЕННЫЙ ВОЗДУХ
Воздушная фаза почвы – важная и наиболее динамичная составная часть почвы, находящаяся в тесной взаимосвязи с остальными фазами. Почвенным воздухом называется смесь газов и летучих органических соединений, заполняющих почвенные поры, поэтому почвенный воздух является конкурентом почвенного раствора. Количество и состав почвенного воздуха оказывают большое влияние на развитие и жизнедеятельность растений и микроорганизмов, растворимость химических соединений и их миграцию в профиле, на интенсивность почвенных процессов.
§1. Состав почвенного воздуха
Количество воздуха в почве и его состав зависят от ее воздухоемкости и воздухопроницаемости, а также от пористости и влажности, так как почвенный воздух занимает все поры, в которых нет воды. При одной и той же влажности в структурных почвах, обладающих некапиллярной пористостью, воздуха больше, чем в бесструктурных. Дополнительное насыщение почвы водой влечет за собой вытеснение из нее воздуха. Воздушный режим наиболее благоприятен в структурных и рыхлых почвах.
Главными источниками газовой фазы являются атмосферный воздух и газы, образующиеся в самой почве. Химический состав почвенного воздуха тесно связан с атмосферным, так как идет постоянный газообмен, но количественный показатель составляющих газов отличается, что обусловлено и физическими свойствами самой почвы. Чем более пористая почва, тем ближе составы почвенного и атмосферного воздуха. В результате дыхания микроорганизмов и корней растений почвенный воздух обычно намного богаче углекислым газом и беднее кислородом (табл. 12).
Если состав атмосферного воздуха в целом постоянный, то содержание кислорода и углекислого газа в почвенном воздухе может сильно колебаться.
Таблица 12.
Состав атмосферного и почвенного воздуха
Воздух | Азот, % | Кислород, % | Углекислый газ, % |
Атмосферный | 78,8 | 20,95 | 0,03 |
Почвенный | 78,8 | 10 – 20 | 11 – 1 |
В пахотных хорошо аэрируемых почвах с благоприятными физическими свойствами содержание и СО2 в течение вегетации растений не превышает 1 – 2 %, а содержание О2 не бывает ниже 18 %. При переувлажнении в тяжелых пахотных почвах содержание СО2 может достигать 4 – 6 % и более, а О2 падать до 17 – 15 % и ниже. В заболоченных почвах наблюдаются еще более высокие концентрации СО2 и низкие О2. Оптимальное содержание О2 и СО2 в почвенном воздухе соответственно 20 % и 1 %. При такой обеспеченности кислородом в почве развиваются аэробные процессы и создаются благоприятные условия для произрастания растений. Для пропашных культур (овощные и др.) желательно минимальное содержание О2 не ниже 17 %, зерновых – не ниже 14 % (овес хорошо растет и при 10 % О2). Основными потребителями кислорода в почве являются корни растений, аэробные микроорганизмы и почвенная фауна и лишь незначительная часть его расходуется на химические процессы. Недостаток кислорода ослабляет дыхание, обмен веществ, а при отсутствии в почве свободного кислорода прекращается развитие растений. Влияние недостатка кислорода в почве связано с увеличением концентрации СО2,понижением окислительно-восстановительного потенциала, развитием анаэробных (восстановительных) процессов, образованием токсичных для растений соединений (СН4, Н2S, С2Н4), снижением доступных питательных веществ, ухудшением физических свойств почвы. Все это в конечном итоге снижает плодородие почвы и урожай растений. Таким образом, СО2 и О2 являются антагонистами в почве.
Второй важный компонент почвенного воздуха – углекислый газ, который обнаруживается в почве главным образом благодаря биологическим процессам. Частично он может поступать из грунтовых вод, а также в результате его десорбции из твердой и жидкой фаз почвы. Некоторое количество СО2 может возникать при превращении бикарбонатов в карбонаты во время испарения почвенных растворов и в процессе воздействия кислот на карбонаты почвы, а также химического окисления органического вещества. Высокое содержание его в почве (> 3 %) отрицательно действует на семена, угнетает развитие растений и снижает урожай. Однако СО2 необходим для фотосинтеза (установлено, что 38 – 72 % СО2 доставляется растению из почвенного воздуха). Есть мнение, что 90 % СО2 атмосферного воздуха имеет почвенное происхождение.
В почвенном воздухе, кроме макрогазов (N2, СО2, О2), часто встречаются Н2, Н2S, СН4, NH3, предельные и непредельные углеводороды, эфиры, фосфористый водород, образующиеся в результате анаэробного разложения органического вещества и их новообразования, трансформацией в почве удобрений, гербицидов, продуктов техногенного загрязнения. Их концентрации очень малы, но этого может быть достаточно для снижения биологической активности почв.
§2. Газообмен почвенного воздуха, воздушные свойства и воздушный режим почвы. Регулирование воздушного режима почв
Между почвенным и атмосферным воздухом происходит постоянный газообмен (аэрация). Если бы его не было, то состав почвенного воздуха мог бы настолько ухудшиться, что стал бы совершенно непригодным для развития растений. Поэтому чем быстрее и полнее обменивается почвенный воздух с атмосферным, тем благоприятнее создаются в почве условия для жизни культурных растений, а также для биохимических почвенных процессов. Газообмен имеет огромное значение и для развития надземных частей растений, так как органическую массу они строят благодаря ассимиляции углекислого газа воздуха. Содержание же его в воздухе иногда бывает недостаточным для интенсивного развития растений, поэтому чем лучше развит газообмен в почве, чем больше насыщается приземный слой воздуха СО2, тем благоприятнее условия для роста растений.
Газообмен почвенного воздуха с атмосферным происходит через систему воздухоносных (некапиллярных) пор под действием диффузии, изменения температуры почвы, атмосферного давления, уровня грунтовых вод, изменения количества влаги в почве (зависящее от атмосферных осадков, орошения и испарения), ветра. Глубина газообмена около 50 см.
Главная роль в газообмене принадлежит механизму диффузии – перемещению газов в соответствии с их парциальным давлением. Поскольку в почвенном воздухе О2 меньше, а СО2 больше, чем в атмосфере, то под влиянием диффузии создаются условия для непрерывного поступления О2 в почву и выделения СО2 в атмосферу.
Изменение температуры, барометрического давления и ветра вызывают объемные изменения воздуха (сжатие или расширение), а следовательно, и общий ток его из почвы или в почву. Изменение количества влаги в почве и уровня грунтовых вод способствует газообмену, так как влага осадков вытесняет почвенный воздух, а испарение воды из почвы вызывает поступление атмосферного воздуха на ее место.
Состояние газообмена определяется воздушными свойствами почв. К воздушным свойствам почв относятся воздухопроницаемость и воздухоемкость.
Воздухопроницаемость – способность почвы пропускать через себя воздух. Она измеряется количеством воздуха в мл, прошедшим под определенным давлением в единицу времени через площадь сечения почвы 1 см2 при толщине слоя 1 см. Чем полнее выражена воздухопроницаемость, тем лучше газообмен, тем больше в почвенном воздухе О2и меньше СО2.
Воздухопроницаемость зависит от механического состава почвы, ее плотности, структуры и некапиллярной порозности. Воздух в почве передвигается по порам, не заполненным водой и не изолированным друг от друга, чем они крупнее, тем лучше воздухопроницаемость. В структурных почвах, где наряду с капиллярными порами имеется достаточное количество крупных некапиллярных пор, создаются наиболее благоприятные условия для воздухопроницаемости, при одной лишь капиллярной пористости, свойственной бесструктурным почвам, диффузия воздуха тормозится. Снижает газообмен также образующаяся на поверхности почв корка.
Воздухоемкость – это способность почвы содержать в себе определенное количество воздуха, выражается в объемных процентах. Зависит от влажности и пористости почвы: чем выше пористость и меньше влажность, тем больше воздуха содержится в почве.
Максимальная воздухоемкость характерна для сухих почв и равна общей пористости. Однако в природных условиях почвы всегда содержат то или иное количество воды, поэтому величина воздухоемкости очень динамична.
В воздушно-сухом состоянии воздухоемкость (РВ) почвы представляет разность между общей пористостью и объемом гигроскопической воды:
где Робщ – общая порозность почвы (%), РГ – объем гигроскопической влаги (%).
В естественных условия количество пор, занятых воздухом (пористость аэрации, РАЭР), определяют по формуле:
где РW – объем пор, занятых водой (%), определяется по формуле:
где dV – объемная плотность в г/см3, W – влажность почвы (%).
Нормальная аэрация почв обеспечивается, если величина воздухоемкости превышает 15 % объема почвы. Оптимальные условия для газообмена создаются при содержании воздуха в минеральных почвах 20 – 25 %, а в торфяных – 30 – 40 %.
Воздушным режимом почв называют совокупность всех явлений поступления воздуха в почву, передвижения его в профиле почвы, изменения состава и физического состояния при взаимодействии с твердой, жидкой и живой фазами почвы, а также газообмен почвенного воздуха с атмосферным.
Воздушный режим почв подвержен суточной, сезонной, годовой изменчивости и находится в прямой зависимости от свойств почв (физических, химических, физико-химических, биологических), погодных условий, характера растительности, возделываемой культуры, агротехники.
Важным показателем воздушного режима почв является динамика СО2 и О2 в почвенном воздухе. Пахотные почвы основных типов почв поглощают при 20 °С от 0,5 до 5 мл и более О2 на 1 кг сухой почвы за 1 ч. Основные потребители кислорода и продуценты углекислого газа в почве – корни растений, микроорганизмы и почвенные животные. Потребление кислорода высшими и низшими растениями зависит от их биологических особенностей и возраста, а также от температуры и влажности среды и др. При увеличении температуры с 5 до 30 °С интенсивность поглощения О2 и выделения СО2 возрастает в 10 раз.
Выделение СО2 из почвы в приземный слой атмосферы принято называть «дыханием» почвы. Интенсивность дыхания почвы зависит от ее свойств, гидротермических условий, характера растительности, агротехнических мероприятий и является важной характеристикой газообмена и активности биологических процессов в почве. Выделение СО2 почвой усиливается при ее окультуривании в связи с активизацией биологических процессов и улучшением условий аэрации. Торфяно-глеевые почвы тундры выделяют СО2 в количестве 0,3 т/га в год, подзолистые почвы хвойных лесов – от 3,5 до 30, бурые и серые лесные почвы – от 20 до 60, степные черноземы – 40 – 70 т/га в год.
Динамика этих газов в почве сильно подвержена сезонным колебаниям, так как смена времен года сопровождается резким изменением температуры и влажности. Летом потребление кислорода и выделение углекислого газа в несколько раз больше, чем ранней весной и поздней осенью.
Наиболее благоприятно воздушный режим складывается в структурных почвах, обладающих рыхлым сложением, способных быстро проводить и перераспределять поступающие в них воду и воздух. В улучшении воздушного режима нуждаются многие почвы, особенно с постоянным или временным избыточным увлажнением.
Регулирование воздушного режима почв достигается агротехническими и мелиоративными приемами. Применяются такие мероприятия по обеспечению нормального газообмена, как разрушение почвенной корки и поддержание поверхности почвы в рыхлом состоянии путем глубокой вспашки, боронования, культивации, рыхления междурядий в период вегетации. Воздушный режим в заболоченных и периодически переувлажненных почвах регулируют осушением.
Источник
Добавлено: 11.02.2015
В статье “Углерод и карбонаты в воде искусственного водоёма” мы показали, что диоксид углерода (CO2), как источник углерода, имеет исключительно важное значение для растительных организмов населяющих искусственный водоём, а в статье “Кислород. Его влияние на состояние искусственного водоёма” – влияние кислорода в воде на жизнедеятельность живых организмов, населющих искусственный водоём и на общее состояние водоёма. Правильно организовать газонасыщение водоы искусственного водоёма – залог его гармоничного существования.
В этой статье мы расскажем о необычном источнике углекислого газа и кислорода.
Состав почвенного воздуха, воздушные свойства почв.
Почвенный воздух – это смесь газов и летучих органических соединений, заполняющий поры почвы, свободные от воды. Главным источником почвенного воздуха является атмосферный воздух и газы, образующиеся в самой почве. Попадая в почву, атмосферный воздух претерпевает значительные изменения. Поэтому состав почвенного воздуха отличается от атмосферного воздуха:
Воздух | O2 (%) | N (%) | CO2 (%) | Прочие газы (%) |
Атмосферный | 20,95 | 78,08 | 0,03 | 1 |
Почвенный (верхние 15-30 см) | 11 – 21 | 78 – 86 | 0,3 – 8,0 | – |
Состав атмосферного воздуха достаточно постоянен, и содержание его основных компонентов практически не меняется. Почвенный воздух отличается значительной динамичностью. Изменение состава почвенного воздуха происходит вследствие процессов жизнедеятельности организмов, дыхания корней растений и почвенной фауны, в результате окисления органического вещества. Трансформация атмосферного воздуха в почве тем интенсивнее, чем выше ее энергетический потенциал и биологическая активность, а также зависит от сложности удаления газов из почвенного профиля. Зависимость интенсивности поглощения кислорода почвой из атмосферы выражается следующей формулой:
SO2 = F (CO2, TS, W, RS, FS, MS, NS…),
где СO2 – концентрация кислорода в почвенном воздухе; TS – температура почвы, W – влажность почвы; RS – количество корней в почве; FS – дыхание почвенных животных; MS – активность почвенных микроорганизмов; NS – содержание органического вещества.
В зависимости от количественного содержания, в почвах различают макрогазы и микрогазы.
К макрогазам относятся: азот, кислород, диоксид углерода;
К микрогазам – СО, N2О, NО2, предельные и непредельные углеводороды, водород, сероводород, аммиакэфиры, пары органических и неорганических кислот и другие.
Из всех газов почвенного воздуха наиболее динамичны кислород (O2) и углекислый газ (CO2). Это объясняется непрерывным поступление кислорода, необходимого для дыхания почвенной фауны и флоры и образованием углекислоты как следствие процессов окисления органического вещества почвы и активной жизнедеятельности почвенных организмов. В почвенном воздухе содержание СО2 может доходить до 4-6%, содержание О2 не превышать 15%, содержание азота мало отличается от атмосферного, при этом в почве обнаруживается характерный продукт денитрификации – закись азота (NО3).
Состав почвенного воздуха различен для различных почвенных горизонтов, различных типов почв и изменяется по сезонам года в связи с колебаниями влажности почвы, разложением животных и растительных остатков, внесением органических удобрений.
Процесс поглощения воздуха почвой зависит от ее морфологических особенностей, содержания органических веществ, минералов монтмориллонитовой группы, а также соединений, обладающих большой поглотительной способностью в отношении газов, от давления и температуры воздуха.
Воздушно-физические свойства почв характеризуются рядом показателей, главными из которых являются воздухопроницаемость и воздухоемкость.
Воздухоемкость – это максимально возможное количество воздуха, которое может содержаться в воздушно-сухой почве. Выражается в объемных процентах. Величина воздухоемкости приближается к пористости сухих почв, исключая объема, занятого гигроскопической водой и поглощенным воздухом. Она имеет наибольшие показатели в сухих структурных рыхлых почвах, а также в почвах легкого гранулометрического состава.
Существует капиллярная и некапиллярная воздухоемкость:
- Капиллярная воздухоемкость – это способность почвы в сухом состоянии поглощать и удерживать воздух в капиллярных порах малого диаметра. Чем выше капиллярная воздухоемкость, тем меньше подвижность воздуха и сложнее газообмен между почвой и атмосферой.
- Некапиллярная воздухоемкость – это способность почвы при капиллярном насыщении водой содержать определенный объем свободного воздуха. Некапиллярная водухоемкость прямо пропорциональна некапиллярной скважности почвы.
Соотношение капиллярной и некапиллярной воздухоемкости является важным показателем воздушно-физических свойств почвы. Структурные почвы всегда имеют определенную величину некапиллярной скважности, которая свободна от воды и заполнена воздухом даже при большой влажности почвы. Это обеспечивает определенную степень проветриванности почвы.
Воздухопроницаемость – это способность почвы пропускать в единицу времени через единицу объема определенное количество воздуха. Воздухопроницаемость является необходимым условием для осуществления газообмена между почвой и атмосферой. Передвижение воздуха в почве происходит по порам, соединенным друг с другом и не заполненным водой. Чем крупнее поры аэрации, тем лучше выражена воздухопроницаемость почв как в сухом, так и во влажном состоянии. Воздухопроницаемость структурных рыхлых почв значительно выше, чем плотных бесструктурных глинистых почв, она максимальна в сухих почвах и быстро снижается при увлажнении.
Свойства почв определяющие процессы обмена почвенного воздуха с атмосферным, называется газообменом или аэрацией. Газообмен осуществляется через систему почвенных пор, сообщающихся между собой и атмосферой.
Аэрация почв – это величина фактического содержания воздуха в почве, выраженная в объемных процентах. Величина аэрации характеризует разность между общей скважностью и влажностью почвы. Чем выше влажность, тем меньше аэрация, так как большая часть объема почвы занята влагой. Максимальная степень аэрации характерна при воздушно-сухом состоянии почв, минимальная – при избыточном увлажнении почв вследствие близкого залегания грунтовых вод, поверхностном заболачивании или затоплении, а также в условиях водоносных горизонтов.
Основными факторами газообмена в почве являются:
- атмосферные условия, к которым относятся амплитуды колебания температур воздуха (суточные и годовые), амплитуды колебаний атмосферного давления (суточные и годовые), температурные градиенты на поверхности раздела почва – атмосфера, движение атмосферного воздуха, осадки и характер их распределения, характер испарения и транспирации.
- физические свойства почвы, к которым относится гранулометрический состав, структура, состояние поверхности, плотность, пористость, температурный режим, влажность почвы,
- физические свойства газов, к которым относятся скорость диффузии, градиенты концентраций газов в почвенном профиле и на границе раздела сред, их гравитационный перенос под действием силы тяжести, способность к сорбции – десорбции на твердой фазе почвы, растворение в почвенных растворах и дегазация.
- физико-химические реакции в почвах, к которым относятся обменные реакции между ППК – почвенным раствором – газовой фазой, а также окислительно-восстановительные реакции.
Основным механизмом переноса газов является диффузия. Диффузия – это процесс перемещения газов, связанный с их различной концентрацией в почве и атмосфере (градиентом концентрации). В почвенном воздухе концентрация кислорода всегда меньше, а углекислого газа больше, чем в атмосфере. Поэтому под влиянием диффузии создаются условия для поступления в почву кислорода и выделения в атмосферу углекислого газа.
Поток газообразного вещества (QS), протекающего через единицу площади почвенной среды за единицу времени, рассчитывается уравнением молекулярной диффузии (первый закон Фике):
где DS – коэффициент диффузии газа в почве, см2 · с;
с – концентрация газа в почвенном воздухе, мг/см3;
z – глубина слоя, см.
Остальные факторы в большей или меньшей степени связаны с диффузией: они изменяют градиенты концентрации газов или изменяют свойства среды, через которую идет диффузия.
Формы почвенного воздуха
Почвенный воздух находится в почве в трех состояниях: собственно почвенный воздух (свободный и защемленный), адсорбированный и растворенный.
Свободный почвенный воздух – это смесь газов и летучих органических соединений, размещается в капиллярных и некапиллярных почвенных порах. Он обладает большой подвижностью и способен свободно перемещаться в почве и активно обмениваться с атмосферой.
Защемленный почвенный воздух – воздух, который находится в порах, со всех сторон изолированных водными пробками. Максимальное количество защемленного воздуха имеют тонкодисперсные уплотненные почвы. Этот воздух неподвижен и практически не участвует в газообмене между почвой и атмосферой. Он препятствует фильтрации воды, может вызывать разрушение почвенной структуры.
Растворенный почвенный воздух – это газы, растворенные в почвенной воде. Взаимоотношение жидкой и газообразной фаз почвы определяется режимом температуры и давления, а также концентрацией газов в свободном почвенном воздухе.
Количество растворенных газов подчиняется закону фазового равновесия Генри:
где С – массовая концентрация газа, растворенного в воде, мг/л,
λ – коэффициент растворимости газа в воде, мг/л,
р – парциальное давление газа в почвенном воздухе, МПа,
10,2 – нормальное атмосферное давление, МПа.
Повышение давления повышает растворимость газов, понижение давления способствует переходу газов из почвенного раствора в почвенный воздух. Увеличение концентрации того или иного газа в составе почвенного воздуха вызывает увеличение этого газа в почвенном растворе. Понижение температуры почвы приводит к повышению растворимости всех почвенных газов. Хорошо растворяются в воде аммиак, сероводород, углекислый газ, растворимость кислорода небольшая. Растворенные газы проявляют высокую активность. С насыщением почвенного раствора СО2 повышается растворимость карбонатов, гипса, других соединений. Растворенный кислород поддерживает окислительные свойства почвенного раствора. С повышением температуры окислительные процессы ослабевают и происходит выпадение из растворов карбонатов. Растворенные газы играют большую роль в обеспечении физиологических потребностей почвенной флоры и фауны.
Адсорбированный почвенный воздух – это газы и летучие органические соединения, сорбированные поверхностью твердой фазы почвы. Чем выше степень дисперсности почвы, тем больше сорбированных газов при данной температуре она содержит. Количество сорбированного воздуха зависит от минералогического состава почв, их влажности и количества органических веществ. Адсорбция газов сильнее проявляется в почвах тяжелого гранулометрического состава, богатых органическим веществом. Наибольшее количество адсорбированного воздуха характерно для сухих почв, активнее поглощающих воду, чем газы.
Количество адсорбированных газовых компонентов (Г) можно рассчитать при промощи уравнения изотермы адсорбции Ленгмюра:
где:
Г∞ – предельное значение адсорбции насыщения на единицу поверхности адсорбента, мг,
С – равновесная концентрация газа в системе, мг/л,
K – эмпирический коэффициент.
Газы сорбируются в зависимости от строения их молекул и дипольного момента. Хуже всех сорбируется N2, лучшими сорбционными способностями обладает кислород и углекислый газ, самая высокая сорбция – у NH3.
Использование почвенного воздуха.
Обладая подробными данными о концентрации кислорода и углекислого газа в почве, можно наладить оптимальное обогащение водоёма этими газами. Для этого используется система из двух аэраторов, настроенных с помощью таймера. В ночное время водоём обогащается кислородом, получаемым из атмосферы. В дневное время вода искусственного водоёма обогащается углекислым газом, получаемым из почвы. Налаживание этих процессов позволит получить экологически сбалансированный искусственный водоём, биологические процессы в котором протекают оптимальным образом.
По материалам научно-информационного журнала “Биофайл”
Источник