Какие функциональные группы содержаться в аминокислотах

Среди
азотсодержащих органических веществ имеются соединения с двойственной функцией.
Особенно важными из них являются аминокислоты.

В клетках и тканях живых организмов
встречается около 300 различных аминокислот, но только 20 (
α-аминокислоты) из них служат звеньями (мономерами), из которых построены пептиды и
белки всех организмов (поэтому их называют белковыми аминокислотами).
Последовательность расположения этих аминокислот в белках закодирована в
последовательности нуклеотидов соответствующих генов. Остальные аминокислоты
встречаются как в виде свободных молекул, так и в связанном виде. Многие из
аминокислот встречаются лишь в определенных организмах, а есть и такие, которые
обнаруживаются только в одном из великого множества описанных организмов.
Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты;
животные и человек не способны к образованию так называемых незаменимых
аминокислот, получаемых с пищей. Аминокислоты участвуют в обмене белков и
углеводов, в образовании важных для организмов соединений (например, пуриновых
и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот),
входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов,
антибиотиков и т. д.; некоторые аминокислоты служат посредниками при передаче
нервных импульсов.

Аминокислоты — органические амфотерные соединения, в состав
которых входят карбоксильные группы – СООН и аминогруппы -NH2.

Аминокислоты можно рассматривать как
карбоновые кислоты, в молекулах которых атом водорода в радикале замещен
аминогруппой.

КЛАССИФИКАЦИЯ

Какие функциональные группы содержаться в аминокислотах

Аминокислоты классифицируют по структурным признакам.

1.    
В
зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты
подразделяют на α-, β-, γ-, δ-, ε- и
т. д.

2.    
В
зависимости от количества функциональных групп различают кислые, нейтральные и
основные.

3.    
По
характеру углеводородного радикала различают алифатические (жирные), ароматические,
серосодержащие
и гетероциклические
аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду. 

Примером
ароматической аминокислоты может служить пара-аминобензойная
кислота:

 

Примером
гетероциклической аминокислоты может служить триптофан –       незаменимая α- аминокислота

НОМЕНКЛАТУРА

По систематической номенклатуре названия
аминокислот образуются из названий соответствующих кислот прибавлением
приставки амино- и указанием места расположения аминогруппы по отношению
к карбоксильной группе. Нумерация углеродной цепи с атома углерода карбоксильной группы.

Например:

Часто используется также другой способ
построения названий аминокислот, согласно которому к тривиальному названию
карбоновой кислоты добавляется приставка амино- с указанием положения
аминогруппы буквой греческого алфавита.

Пример:

Для α-аминокислот R-CH(NH2)COOH

Какие функциональные группы содержаться в аминокислотах

, которые играют исключительно важную
роль в процессах жизнедеятельности животных и растений, применяются тривиальные
названия.

Таблица. Некоторые важнейшие α-аминокислоты 

Аминокислота

Сокращённое

обозначение

Строение радикала ( R )

Глицин

Gly (Гли)

H –

Аланин

Ala (Ала)

CH3 –

Валин

Val (Вал)

(CH3)2CH –

Лейцин

Leu (Лей)

(CH3)2CH – CH2 – 

Серин

Ser (Сер)

OH- CH2 –

Тирозин

Tyr (Тир)

HO – C6H4 – CH2 – 

Аспарагиновая кислота

Asp (Асп)

HOOC – CH2 –

Глутаминовая кислота

Glu (Глу)

HOOC – CH2 – CH2 –

Цистеин

Cys (Цис)

HS – CH2 –

Аспарагин

Asn (Асн)

O = C – CH2 –

       │

       NH2

Лизин

Lys (Лиз)

NH2 – CH2- CH2 – CH2 –

Фенилаланин

Phen (Фен)

C6H5 – CH2 –

Если
в молекуле аминокислоты содержится две аминогруппы, то в ее названии
используется приставка диамино-, три группы NH2 – триамино-
и т.д.

Пример:

Наличие
двух или трех карбоксильных групп отражается в названии суффиксом –диовая
или -триовая кислота:

  ИЗОМЕРИЯ

1. Изомерия углеродного скелета

2. Изомерия положения функциональных
групп

3. Оптическая изомерия

α-аминокислоты, кроме глицина NН2-CH2-COOH.

ФИЗИЧЕСКИЕ СВОЙСТВА 

Аминокислоты представляют собой
кристаллические вещества с высокими (выше 250°С) температурами плавления,
которые мало отличаются у индивидуальных аминокислот и поэтому нехарактерны.
Плавление сопровождается разложением вещества. Аминокислоты хорошо растворимы в
воде и нерастворимы в органических растворителях, чем они похожи на
неорганические соединения. Многие аминокислоты обладают сладким вкусом.

ПОЛУЧЕНИЕ

3. Микробиологический синтез. Известны микроорганизмы, которые
в процессе жизнедеятельности продуцируют α – аминокислоты белков.

ХИМИЧЕСКИЕ СВОЙСТВА 

Аминокислоты
амфотерные органические соединения, для них характерны кислотно-основные
свойства.

I.Общие свойства

1. Внутримолекулярная нейтрализация → образуется биполярный цвиттер-ион:

Водные
растворы электропроводны. Эти свойства объясняются тем, что молекулы
аминокислот существуют в виде внутренних солей, которые образуются за счет
переноса протона от карбоксила к аминогруппе:

                                                                       цвиттер-ион

Водные растворы аминокислот имеют нейтральную, кислую
или щелочную среду в зависимости от количества функциональных групп.

Видео-опыт «Свойства аминоуксусной кислоты» 

2. Поликонденсация→ образуются полипептиды (белки):

При взаимодействии двух
α-аминокислот образуется дипептид.

3. Разложение → Амин +
Углекислый газ:

NH2-CH2-COOH  → NH2-CH3 + CO2↑

II. Свойства карбоксильной группы
(кислотность)

1. С основаниями → образуются соли:

NH2-CH2-COOH
+ NaOHNH2-CH2-COONa + H2O

NH2-CH2-COONa – натриевая соль  2-аминоуксусной кислоты

2. Со спиртами → образуются сложные
эфиры
– летучие вещества (р.
этерификации):        NH2-CH2-COOH
+ CH3OH   HCl(газ)NH2-CH2-COOCH3
+ H2O

Читайте также:  В каких продуктах содержится натуральный коллаген

NH2-CH2-COOCH3  – метиловый эфир 2- аминоуксусной кислоты 

3. С аммиаком → образуются
амиды:

NH2-CH(R)-COOH + H-NH2 →
NH2-CH(R)-CONH2 + H2O

 4. Практическое значение имеет
внутримолекулярное взаимодействие функциональных групп ε-аминокапроновой
кислоты, в результате которого образуется ε-капролактам (полупродукт для
получения капрона):

III. Свойства аминогруппы (основность)

1. С сильными кислотами → соли:

HOOC-CH2-NH2 + HCl → [HOOC-CH2-NH3]Cl

                                              или HOOC-CH2-NH2*HCl

2. С азотистой кислотой (подобно
первичным аминам):

NH2-CH(R)-COOH +
HNO2 → HO-CH(R)-COOH + N2↑+ H2O

                                                   
гидроксокислота

Измерение
объёма выделившегося азота позволяет определить количество аминокислоты (метод
Ван-Слайка)
                                     

IV.Качественная реакция

1. Все аминокислоты окисляются
нингидрином с образованием продуктов сине-фиолетового цвета!

2. С ионами тяжелых металлов α-аминокислоты
образуют внутрикомплексные соли. Комплексы меди (II), имеющие глубокую
синюю окраску, используются для обнаружения α-аминокислот.

 

 Видео-опыт “Образование медной соли аминоуксусной кислоты”.

Генетическая связь аминокислот с другими классами органических соединений

ПРИМЕНЕНИЕ 

1) аминокислоты широко
распространены в природе;

2) молекулы аминокислот – это те
кирпичики, из которых построены все растительные и животные белки;
аминокислоты, необходимые для построения белков организма, человек и животные
получают в составе белков пищи;

3) аминокислоты прописываются при
сильном истощении, после тяжелых операций;

4) их используют для питания
больных;

5) аминокислоты необходимы в
качестве лечебного средства при некоторых болезнях (например, глутаминовая
кислота используется при нервных заболеваниях, гистидин – при язве желудка);

6) некоторые аминокислоты
применяются в сельском хозяйстве для подкормки животных, что положительно
влияет на их рост;

7) имеют техническое значение:
аминокапроновая и аминоэнантовая кислоты образуют синтетические волокна –
капрон и энант.

О РОЛИ АМИНОКИСЛОТ 

Нахождение в природе и биологическая роль аминокислот

Источник

В составе живых организмов присутствуют такие сложные органические образования как белки. В состав тела человека входит 30% органических веществ, среди которых основное количество приходится на эти сложные соединения. В свое время Фридрих Энгельс сказал «Жизнь есть способ существования белковых тел». Таблица аминокислот в количестве 20 молекул с разными формулами – это тот основной арсенал, из которого построены белковые макромолекулы.

Что такое аминокислоты

Разгадка их строения находится в названии. Слово «амино» говорит о наличии аминогруппы – NH2, а «кислоты» — о присутствии в составе кислотной карбоксильной группы – СООН. По-другому, данная группа соединений состоит из карбоновой кислоты, один из атомов водорода которой замещен на аминогруппу.

Формула не так проста: между аминогруппой и карбоксильной группой находится углеродный скелет аминокислоты, который отличается функциональными группами. Поэтому строение аминокислот различно, как и их формулы. Наличие кислотных и основных свойств делает их амфотерными (нейтральными) соединениями. Кислые аминокислоты – не совсем верное выражение, да и вкус у них сладковатый.

Это кристаллические вещества, которые плавятся при высоких температурах (+250°С) и хорошо растворяются в воде, но сохраняют состав в большинстве органических растворителей. Большинство веществ этой группы  обладают сладким вкусом.

Они способны образовывать соли, эфиры, но основное химическое свойство аминокислот – это возможность создавать белковые макромолекулы. Соединяясь между собой аминокислоты обрадуют петпиды (кусочки белкового скелета). Две кислоты образуют дипептид:

Три собираются в трипептид, четыре формируют тетрапептид и так постепенно идет сборка белковой макромолекулы. Ответ, зачем нужны аминокислоты, кроется в создании огромного разнообразия белков. Они являются мономерами, из которых строится крупная полимерная нить белка со своей формулой и свойствами.

Представим себе аминокислоту (АМК) в виде бусины. Разные бусины нанизываем на длинную нить. Это первичное строение белка. Затем эту нить сворачиваем в виде зигзага, чтобы некоторые бусинки соприкасались между собой. Так получается вторичная структура. Затем эту нить еще несколько раз скручиваем, чтобы образовался клубок, и выходим на третичную структуру. Несколько бусин-клубков, соединенных вместе, образуют четвертичную структуру. Каждый белок устроен непросто, но благодаря строению и свойствам аминокислот создаются особые конфигурации разных белковых макромолекул со своим строением и уникальной формулой.

Ученые насчитали 200 различных аминокислот, которые встречаются в клетках и тканях разных организмов. Они обнаружены в свободном и связанном виде. Некоторые из них единичны и уникальны: они найдены в отдельных организмах.

Незаменимые и заменимые аминокислоты

Из большого разнообразия только 20 аминокислот обладают свойством образовывать белки. АМК делятся на α-, β-, γ-, δ- и ω-аминокислоты, обладающие разными формулами и химическими свойствами. Наиболее важны альфа аминокислоты, из которых строится большинство белков.

Существует классификация аминокислот, которая делит эту группу на гидрофильные (обладающие свойством взаимодействия с водой) и гидрофобные аминокислоты (пытаются избежать контакта с водой). Но есть и классификация, которая строится на поступлении их в организм: виды аминокислот делятся на заменимые и незаменимые.

Незаменимые

К незаменимым АМК относятся соединения, которые организм не способен синтезировать в необходимом количестве. Это следующий комплекс аминокислот:

  • лейцин;
  • валин;
  • лизин;
  • метионин;
  • треонин;
  • триптофан;
  • фенилаланин;
  • гистидин.

Каждая из них имеет свою формулу, свойства и выполняет определенную роль в ходе обменных процессов. Есть группа и условно-незаменимых аминокислот, которые организм синтезирует в недостаточных для него количествах. Это тирозин и цистеин.

Читайте также:  В каких металлах содержится никель

Заменимые

Эту группу АМК организм синтезирует самостоятельно. Лучшие аминокислоты вырабатываются внутри организма, их не нужно постоянно поставлять извне. К ним относятся:

  • аргинин;
  • аланин;
  • аспаргин;
  • глутамин;
  • глицин;
  • карнитин;
  • орнитин;
  • пролин;
  • серин;
  • таурин.

Каждый из них играет важную роль в организме. Обладает строением (формулой), которое определяет его свойства. А в целом они участвуют в белково-углеводном обмене, в синтезе нужных организму веществ. Из аминокислот стоятся гормоны, витамины, алкалоиды, пигменты и другие соединения.

Аминокислоты в продуктах питания

Чтобы избежать дефицита соединений с важными свойствами, их нужно получать извне с пищей. Источником аминокислот служит «продуктовая корзина» с белковым набором  веществ.

«Незаменимые аминокислоты: список в продуктах питания»

АМКпродукты
незаменимые
1.лейцинмолочные продукты, овес, зародыши пшеницы, мясо
2.валинмясо, грибы, зерновые и молочные продукты, грецкие орехи
3.лизинбобовые и молочные продукты, мясо птицы, рыба, арахис, зародыши пшеницы
4.метионинбобовые продукты, мясо, овощи, творог, арахис
5.треонинмолочные продукты, мясо, яйца, горох
6.триптофанмясо индейки, молочные продукты, яйца, орехи, семечки, рис, картофель
7.фенилаланинмясные и молочные продукты, куриное мясо, овес, зародыши пшеницы
8.гистидинмясо, молочные продукты, зародыши пшеницы
условно-незаменимые
9.тирозинмолочные и мясные продукты, рыба, миндаль, бананы
10.цистеинрыба, мясо, соевые продукты, пшеница, овес, куриное филе, чеснок

Аминокислоты в продуктах в обязательном порядке должны поступать в организм. Они постоянно востребованы в синтезе белка. Это свойство делает их в полном смысле незаменимыми и нужными.

Зная, в каких продуктах содержатся аминокислоты, легко составить меню, включив необходимый продуктовый набор. Оптимальное соотношение нужных компонентов возможно только при правильном питании. Например, молоко и молочные продукты содержат практически полный комплекс незаменимых АМК.

Аминокислоты в человеческом организме

Природные аминокислоты – это 200 нужных соединений и 200 уникальных формул. Они встречаются в свободном или связанном виде. Когда АМК синтезируются самостоятельно, проблем не возникает. Основное внимание следует обращать на незаменимые компоненты белковых молекул, которые нужно получать извне. У них свои формулы и нужные организму, основные свойства:

  • улучшение работы мозга за счет способности передачи нервных импульсов (валин, лейцин, триптофан);
  • накопление кальция (лизин),
  • усиление липидного обмена (метионин);
  • нормализация деятельности ЦНС (изолейцин, метионин, треонин);
  • улучшение аппетита (фенилаланин);
  • снижение болевого порога (фенилаланин).

Существует 8 незаменимых АМК, но важен контроль за тремя из них: валином, лейцином и изолейцином (ВССА). Их формула имеет разветвленные боковые цепи. Если не возникнет дефицита ВССА, то и потребность в других аминокислотах  будет удовлетворена.

Признаки недостатка и переизбытка аминокислот

Нехватка или избыточное содержание АМК влияет на общее состояние организма. При их недостатке наблюдается:

  • плохой аппетит;
  • состояние сонливости и слабости;
  • торможение роста и развития;
  • выпадение волос;
  • плохое состояние кожи;
  • анемия;
  • слабая иммунная защита.

Свойства АМК таковы, что их переизбыток тоже влияет на здоровье:

  1. При высоком содержании тирозина изменяется баланс в работе щитовидки, развивается гипертония.
  2. При избытке гистидина возможны болезни суставов, аневризма аорты. Возникает ранняя седина.
  3. При большой концентрации метионина велик риск развития инсульта или инфаркта.

Такие проблемы возможны при нехватке ряда витаминов (А, С, группы В) и селена. В их присутствии происходит нейтрализация избыточного содержания аминокислот.

Баланс АМК связан с правильным питанием и состоянием здоровья. При наличии хронических патологий печени, ЖКТ, недостатке некоторых ферментов содержание количества АМК становится неконтролируемым.

Суточная потребность в аминокислотах

Каждая аминокислота со своей индивидуальной формулой и свойствами нужна организму в определенных количествах. Подсчет суточной нормы нужного организму набора сложен, поскольку зависит от ее содержания в 1 г белка. Общая потребность в нужных аминокислотах составляет 0,5-2 г в день.

Если суточная норма белка примерно 120 г, то человек получает:

  • 8,4 г лейцина;
  • 4,8 г изолейцина;
  • 6 г валина.

Это те самые ВССА, которые покрывают дефицит незаменимых аминокислот. Суточная норма нужного белка для мужчин – 65-120 г, для женщин – 60-90 г. Половина этой нормы приходится на белки животного происхождения. Аминокислоты входят в состав белков, поэтому  возможно просчитать, в каком количестве они попадают в организм.

Активный метаболизм аминокислот происходит:

  • во время роста организма;
  • при активных занятиях спортом;
  • при серьезных умственных и физических нагрузках;
  • в период болезни и в процессе выздоровления.

Скорость усвоения нужных АМК  зависит от отдельных продуктов или их сочетания. Организм быстро усваивает белок яиц, обезжиренный творог, нежирное мясо и рыбу. Хорошо идет усвоение при сочетании молока с гречневой кашей и белым хлебом, мучных изделий с мясом и творогом.

Если организм здоров и потребление белка соответствует суточной норме, то можно не задумываться над вопросом, как правильно принимать аминокислоты. Больше всего нужных компонентов белка содержится в мясе, молоке и яйцах. Их правильное распределение в течение дня позволит насытить организм необходимыми веществами с разными формулами и с важными для метаболизма свойствами.

Читайте также:  В каких продуктах содержится кальций для ребенка 1 год

Полезные свойства аминокислот, их влияние на организм

Основной наследственный материал клетки – это ДНК, одной из задач которого является синтез цепочек аминокислот. Пептидные нити создаются также в митохондриях (органеллы, которые называются «маленькими силовыми станциями»). Так, в митохондриях синтезируется серин и другие кислоты.

Из них строятся нужные организму белковые конгломераты. АМК строят наше тело, создавая мышечную массу. Они нужны для работы мозга, помогают женщине сохранить внешнюю красоту. Но это лишь верхушка айсберга: биологическая роль аминокислот огромна.

Аминокислоты для спортсменов

Чтобы добиться нужных результатов в спорте, необходимо строить и укреплять мышечную массу. Свойства АМК обеспечивают:

  • доступ к мышцам строительного материала;
  • построение мышечных белков;
  • быстрые окислительно-восстановительные процессы в мышцах;
  • выработку гормонов;
  • ускорение анаболических процессов (обновление клеток и тканей);
  • необходимые процессы для иммунитета, его роста;
  • нормализацию белкового обмена;
  • сжигание жировой ткани.

Для спортсменов кислоты предлагаются в виде жидких концентратов и желатиновых капсул. Обычно их принимают во время еды или между приемами пищи в чистом виде. Как принимать аминокислоты, сказано в аннотации к каждому конкретному препарату: имеет значение также время начало или окончания тренировки.

Аминокислоты для похудения

Процесс потери лишних килограммов возможен только в том случае, если параллельно тренировать тело. Даже при диетическом питании включение в рацион белков обязателен. В реакцию с аминокислотами вступает жир, в результате чего происходит высвобождение дополнительной энергии.

Благодаря свойствам кислот происходит:

  • быстрый белково-жировой обмен;
  • расход жировых отложений;
  • приостановка отложений жиров в артериях и печени.

При усиленных тренировках жировые отложения постепенно превращаются в мышечную массу. Жир более легкий, а белковая ткань тяжелая, поэтому планка весов может сохраняться на прежнем уровне. Визуально же фигура выглядит стройнее.

Аминокислоты для волос

Каждый волос образован белком кератином. В слое дермы находятся волосяные фолликулы, обладающие свойством роста. Формулы аминокислот волоса имеет линейное строение и нужны для построения новых кератиновых конгломератов. Белки волос образованы пятью основными АМК: глицином, таурином, пролином, аргинином и лизином.

Нужное и полноценное белковое питание поддержит качество волос в хорошем состоянии. Но если пряди потускнели, стали ломкими и слабыми, то нужны маски для укрепления формулы кератина. Источником глицина и аргинина служит пищевой желатин, таурин входит в состав яичного желтка, а лизином и пролином богаты молочные продукты. Нужным для волос является и цистеин. Это источник серы, который придает прядям силу и блеск. Им обогащен желатин. Отсюда вывод: нужно использовать желатиновые, масляно-яичные и молочные маски.

Если у женщины волосы сильно испорчены многочисленным окрашиванием или химическими завивками, то нужна профессиональная помощь косметолога и посещение салонов красоты, где предложат комплексную программу оздоровления прядей.

Аминокислоты для мозга

В медицине давно известно действие аминокислот на мозг. Это нужные кирпичики для строительства белков, которые являются питательным материалом для клеток головного мозга. Свойства некоторых кислот значительно улучшают состояние ЦНС в целом и работу мозга в частности:

  1. Формула глицина нормализует психоэмоциональное состояние и улучшает работоспособность мозга. Частично снимает губительное действие этанола на нервные клетки. Среди его полезных свойств восстановление нарушенных биоритмов: контроль за режимом сна и бодрствования.
  2. Формула фенилаланина обладает способностью восстанавливать организм при синдроме хронической усталости. Это нужное соединение для усиления остроты и скорости мысли и запоминания. Снимает тревожность и действует против стресса. Он синтезирует формулу фенилэтиламина – вещества, влияющего на состояние влюбленности.
  3. Тирозин – самый нужный и мощный антидепрессант. Он входит в состав «гормонов радости» и «гормонов опасности». Оказывая влияние на основные обменные процессы, поддерживает тонус организма. Снимает болевой порог и стресс у женщин при различных гормональных перестройках.
  4. Триптофан снижает уровень агрессии, что позволяет лечить гиперактивность у детей. Он обладает свойством обнаруживать очаги патологической активности в мозге, предупреждая развитие головной боли и расстройства сна. Усиливает чувство голода, позволяя лечить булимию и анорексию. Уменьшает количество депрессивных эпизодов.

Аминокислоты в таблетках используются, если их недостаточно в питании или нужно подкорректировать определенную проблему, возникшую в организме. Например, свойства глицина используют при неврозах, истощении и стрессах. Он выпускается в виде белых таблеток со сладковатым вкусом. Синтетический вариант фенилаланина предназначен для использования при лечении неврозов, депрессий и биполярного расстройства.

Выпускается большое количество нужных для здоровья препаратов с аминокислотами в составе. Например, Энсил, Феличита, Амвикс, Канакор и другие, не менее нужные и востребованные препараты.

Формулы компонентов и свойства позволяют решить некоторые проблемы, связанные со здоровьем. Как пить аминокислоты, указано в инструкции к препаратам. Дозировку и продолжительность приема назначает врач, исходя из анамнеза больного.

Лучше всего использовать нужные свойства аминокислот, поглощая насыщенные ими продукты. Включенные в рацион мясо, яйца, молочные продукты, злаковые, бобовые позволят организму получать необходимый набор кислот и строить огромное разнообразие белковых молекул. Не нужно забывать, что «жизнь есть способ существования белковых тел».

Источник