Какие физико механические свойства каучука

Какие физико механические свойства каучука thumbnail

Физико-механические свойства каучуков и резин могут быть охарактеризованы комплексом свойств. К особенностям физико-механических свойств каучуков и резин следует отнести:

1) высокоэластический характер деформации каучуков;

2) зависимость деформаций от их скорости и продолжительности действия деформирующего усилия, что проявляется в релаксационных процессах и гистерезисных явлениях

3) зависимость механических свойств каучуков от их предварительной обработки, температуры и воздействия различных немеханических факторов (света, озона, тепла и др.).

Различают деформационно-прочностные, фрикционные и другие специфические свойства каучуков и резин.

Деформационно-прочные и фрикционные свойства резин

К основным деформационно-прочностным свойствам относятся: пластические и эластические свойства, прочность при растяжении, относительное удлинение при разрыве, остаточное удлинение после разрыва, условные напряжения при заданном удлинении, условно-равновесный модуль, модуль эластичности, гистерезисные потери, сопротивление раздиру, твердость.

К фрикционным свойствам резин относится износостойкость, характеризующая сопротивление резин разрушению при трении, а также коэффициент трения.

Специфические свойства резины

К специфическим свойствам резин относятся, например, температура хрупкости, морозостойкость, теплостойкость, сопротивление старению.

Очень важным свойством резин является сопротивление старению (сохранение механических свойств) после воздействия света, озона, тепла и других факторов. Механические свойства резин определяют в статических условиях, т. е. при постоянных нагрузках и деформациях, при относительно небольших скоростях нагружения (например, при испытании на разрыв), а также в динамических условиях, например, при многократных деформациях растяжения, сжатия, изгиба или сдвига. При этом особенно часто резины испытывают на усталостную выносливость и теплообразование при сжатии.

Усталостная выносливость характеризуется числом циклов деформаций, которое выдерживает резина до разрушения. Для сокращения продолжительности определения усталостной выносливости испытания проводят иногда в условиях концентрации напряжений, создаваемых путем дозированного прокола или применения образцов с канавкой.

Теплообразование при многократных деформациях сжатия определяется по изменению температуры образца резины в процессе испытания в заданном режиме (при заданном сжатии и заданной частоте деформаций).

Пластичностью называется способность материала легко деформироваться и сохранять форму после снятия деформирующей нагрузки. Иными словами, пластичность — это способность материала к необратимым деформациям. Эластичностью называется способность материала легко деформироваться и восстанавливать свою первоначальную форму и размеры после снятия деформирующей нагрузки, т.е. способность к значительным обратимым деформациям. Эластическими деформациями, в отличие от упругих, называются такие обратимые деформации, которые характеризуются значительной величиной при относительно малых деформирующих усилиях (низкое значение модуля упругости). Пластические и эластические свойства каучука проявляются одновременно; в зависимости от предшествующей обработки каучука каждое из них проявляется в большей или меньшей степени. Пластичность невулканизованного каучука постепенно снижается при вулканизации, а эластичность возрастает. В зависимости от степени вулканизации соотношение этих свойств каучука постепенно изменяется. Для невулканизованных каучуков более характерным свойством является пластичность, а вулканизованные каучуки отличаются высокой эластичностью. Но при деформациях невулканизованного каучука наблюдается также частичное восстановление первоначальных размеров и формы, т. е. наблюдается некоторая эластичность, а при деформациях резины можно наблюдать некоторые неисчезающие остаточные деформации.

Согласно теории, разработанной советскими учеными А. П. Александровым и Ю. С. Лазуркиным, общая деформация каучука и резины состоит из трех составляющих:

1) упругой деформации, подчиняющейся закону Гука, у;

2) высокоэластической деформации в и

3) пластической деформации п: = у + в + п

Соотношение составляющих общей деформации зависит от природы каучука, его структуры, степени вулканизации, состава резины, а также от скорости деформаций, значений создаваемых напряжений и деформаций, длительности нагружения и от температуры. Упругая деформация практически устанавливается мгновенно при приложении деформирующего усилия и также мгновенно исчезает после снятия нагрузки; обычно она составляет доли процента от общей деформации. Этот вид деформации обусловлен небольшим смещением атомов, изменением межатомных и межмолекулярных расстояний и небольшим изменением валентных углов.

Высокоэластическая деформация резин увеличивается во времени по мере действия деформирующей силы и достигает постепенно некоторого предельного (условно-равновесного) значения. Она так же, как и упругая деформация, обратима; при снятии нагрузки высокоэластическая деформация постепенно уменьшается, что приводит к эластическому восстановлению деформированного образца. Высокоэластическая деформация, в отличие от упругой, характеризуется меньшей скоростью, так как связана с конформационными изменениями макромолекул каучука под действием внешней силы. При этом происходит частичное распрямление и ориентация макромолекул в направлении растяжения. Эти изменения не сопровождаются существенными нарушениями межатомных и межмолекулярных расстояний и происходят легко при небольших усилиях. После прекращения действия деформирующей силы вследствие теплового движения происходит дезориентация молекул и восстановление размеров образца.

Специфическая особенность механических свойств каучуков и резин связана с высокоэластической деформацией. Пластическая деформация непрерывно возрастает при нагружении и полностью сохраняется при снятии нагрузки. Она характерна для невулканизованного каучука и резиновых смесей и связана с необратимым перемещением макромолекул друг относительно друга.

Скольжение молекул у вулканизованного каучука сильно затруднено наличием прочных связей между молекулами, и поэтому вулканизаты, не содержащие наполнители, почти полностью восстанавливаются после прекращения действия внешней силы. Наблюдаемые при испытании наполненных резин неисчезающие деформации являются следствием нарушения межмолекулярных связей, а также следствием нарушения связей между каучуком и компонентами, введенными в нею, например, вследствие отрыва частиц ингредиентов от каучука. Неисчезающие остаточные деформации часто являются кажущимися вследствие малой скорости эластического восстановления, т. е. оказываются практически исчезающими в течение некоторого достаточно продолжительного времени.

Твердость резины характеризуется сопротивлением вдавливанию в резину металлической иглы или шарика (индентора) под действием усилия сжатой пружины или под действием груза. Для определения твердости резины применяются различные твердомеры. Часто для определения твердости резины используется твердомер ТМ-2 (типа Шора), который имеет притупленную иглу, связанную с пружиной, находящейся внутри прибора. Твердость определяется глубиной вдавливания иглы в образец под действием сжатой пружины при соприкосновении плоскости основания прибора с поверхностью образца (ГОСТ 263-75). Вдавливание иглы вызывает пропорциональное перемещение стрелки по шкале прибора. Максимальная твердость, соответствующая твердости стекла или металла, равна 100 условным единицам. Резина в зависимости от состава и степени вулканизации имеет твердость в пределах от 40 до 90 условных единиц. С увеличением содержания наполнителей и увеличением продолжительности вулканизации твердость повышается; мягчители (масла) снижают твердость резины.

Читайте также:  Какие свойства характерны для водной среды обитания 5 класс кратко

Теплостойкость. О стабильности механических свойств резины при повышенных температурах судят по показателю ее теплостойкости. Испытания на теплостойкость производят при повышенной температуре (70°С и выше) после прогрева образцов при температуре испытания в течение не более 15 мин (во избежание необратимых изменений) с последующим сопоставлением полученных результатов с результатами испытаний при нормальных условиях (23±2°С). Количественной характеристикой теплостойкости эластомеров служит коэффициент теплостойкости, равный отношению значений прочности при растяжении, относительного удлинения при разрыве и других показателей, определенных при повышенной температуре, к соответствующим показателям, определенным при нормальных условиях. Чем ниже показатели при повышенной температуре по сравнению с показателями при нормальных условиях, тем ниже коэффициент теплостойкости. Полярные каучуки обладают пониженной теплостойкостью.

Наполнители значительно повышают теплостойкость резин.

Износостойкость. Основным показателем износостойкости является истираемость и сопротивление истиранию, которые определяются в условиях качения с проскальзыванием (ГОСТ 12251-77 «Резина. Метод определения сопротивления истиранию при качении с проскальзыванием») или в условиях скольжения по истирающей поверхности, обычно, как и в предыдущем случае, по шлифовальной шкурке (ГОСТ 426-77 «Резина. Метод определения сопротивления истиранию при скольжении»). Истираемость определяется как отношение уменьшения объема образца при истирании к работе, затраченной на истирание, и выражается в м3/МДж [см3/(кВтч)]. Сопротивление истиранию определяется как отношение затраченной работы на истирание к уменьшению объема образца при истирании и выражается в МДж/м3 [см3/(кВтч)]. Истирание кольцевых образцов при качении с проскальзыванием более соответствует условиям износа протекторов шин при эксплуатации и поэтому применяется при испытании на износостойкость протекторных резин.

Теплообразование при многократном сжатии. Теплообразование резины при многократном сжатии цилиндрических образцов характеризуется температурой, развивающейся в образце вследствие внутреннего трения (или повышением температуры при испытании).

Морозостойкость – способность резины сохранять высокоэластические свойства при пониженных температурах. Свойства резин при пониженных температурах характеризуются коэффициентом морозостойкости при растяжении, температурой хрупкости и температурой механического стеклования. Коэффициент морозостойкости при растяжении (ГОСТ 408-78 «Резина. Методы определения морозостойкости при растяжении») представляет собой отношение удлинения образца при пониженной температуре к удлинению его (равному 100%) при температуре 23±2°С под действием той же нагрузки. Резина считается морозостойкой при данной температуре, если коэффициент морозостойкости выше 0,1.

Температура хрупкости. Тхр–максимальная минусовая температура, при которой консольно закрепленный образец резины разрушается или дает трещину при изгибе под действием ударе (ГОСТ 7912-74 «Резина. Метод определения температурного предела хрупкости»). Температура хрупкости резин зависит от полярности и гибкости макромолекул, с повышением гибкости молекулярных цепей она понижается.

Температурой механического стеклования называется температура, при которой каучук или резина теряют способность к высокоэластическим деформациям. По ГОСТ 12254- 66 этот показатель определяется на образцах, замороженных при температуре ниже температуры стеклования. Образец резины цилиндрической формы нагружают (после предварительного замораживания) и затем медленно размораживают со скоростью 1°С в минуту и находят температуру, при которой деформация образца начинает резко возрастать.

Сопротивление старению и действию агрессивных сред. Старением называется необратимое изменение свойств каучука или резины под действием тепла, света, кислорода, воздуха, озона или агрессивных сред, т. е. преимущественно немеханических факторов. Старение активируется, если резина одновременно подвергается воздействию механических нагрузок. Испытания на старение производят, выдерживая резину в различных условиях (на открытом воздухе, в кислороде или воздух при повышенной температуре; в среде озона или при воздействии света и озона). При атмосферном старении на открытом воздухе или термическом старении в среде горячего воздуха (ГОСТ 9.024-74 «Единая система защиты от коррозии и старения. Резины. Методы испытаний на стойкость к термическому старению») результат испытания оценивают коэффициентом старения, который представляет отношение изменения показателей каких-либо свойств, чаще всего предела прочности и относительного удлинения при разрыве к соответствующим показателям до старения. Чем меньше изменения свойств при старении и коэффициент старения, тем выше сопротивление резины старению.

Сопротивление действию различных сред (масел, щелочей, кислот и др.) оценивается по изменению свойств – предела прочности при растяжении и относительного удлинения при разрыве в этих средах. Оно характеризуется коэффициентом, представляющим отношение показателя после воздействия агрессивной среды к соответствующему показателю до ее воздействия.

Долговечность резин в условиях статической деформации. Прочность любого твердого тела понижается с увеличением продолжительности действия напряжения и поэтому разрушающая нагрузка не является константой твердого тела. Разрушающая нагрузка – условная мера прочности только при строго определенных скорости деформации и температуре. Снижение прочности материала, находящегося в статически напряженном состоянии, называется статической усталостью. Продолжительность пребывания тела в напряженном состоянии от момента нагружения до разрушения называется долговечностью материала под нагрузкой.

При температурах ниже ТХР полимеры ведут себя подобно хрупким твердым телам и температурно-временная зависимость прочности выражается уравнением Журкова:

= o exp (( uo – ) / kT)

Где o – константа, имеющая размерность времени и значение, близкое к периоду собственных колебаний атомов, 10-13 -10-12 с;

k – константа Больцмана;

uo – энергия активации процесса разрушения в исходном, ненагруженном состоянии, равная энергии активации процесса в расчете на 1химическую связь;

– структурно-чувствительный коэффициент.

При температуре выше Tc полимеры переходят в высокоэластическое состояние, при котором температурно-временная зависимость прочности описывается для сшитых полимеров уравнением:

= C b -6 exp ( u / kT)

Где C и b – константы, зависящие от типа каучука, структуры вулканизата;

u – энергия активации разрушения резин в расчете на 1 связь.

Изменения материала, происходящие под действием напряжения во времени, являются необратимыми. Резиновые изделия находятся под воздействием среды. Особенно опасно воздействие озона. Растрескивание, которое наблюдается у напряженных резин, находящихся под воздействием озона, называется озонным растрескиванием. Действие агрессивных сред на резину в напряженном состоянии называют коррозионным растрескыванием.

Читайте также:  Какими лечебными свойствами обладает овес

Долговечность резины в условиях динамических деформаций. Снижение прочности материала вследствие многократных деформаций называется динамической усталостью или утомлением. Сопротивление резин утомлению или динамическая выносливость выражается числом циклов деформации, необходимым для разрушения образца. Максимальное напряжение в цикле деформации, соответствующее разрушению образца в условиях многократных деформаций, называется усталостной прочностью, а время, необходимое для разрушения резины в условиях многократных деформаций, – динамической долговечностью.

Наиболее распространенным режимом испытаний на многократное растяжение является режим постоянных максимальных удлинений, который осуществляется на машине МРС-2. Это испытание проводится при постоянной амплитуде и заданной частоте (250 и 500 цикл/мин), а также при постоянном максимальном и среднем значениях деформации.

Влияние структуры и состава резин на ее долговечность. Как правило, резина имеет высокую усталостную выносливость, если она обладает высокой прочностью, малым внутренним трением и высокой химической стойкостью.

Влияние структуры или состава резины на эти свойства различно. Влияние типа каучука, характера вулканизационной сетки наполнителей, пластификаторов, антиоксидантов также неоднозначно. Методы испытания долговечности выбираются с учетом реальных условий эксплуатации резины, видов и условий деформаций, имеющих решающее значение.

Источник

    Дана сравнительная оценка физико-механических свойств каучука, выделенного в глицерине. [c.217]

    При вулканизации за счет валентных связей серы происходит сшивание цепеобразных макромолекул каучука (см. рис. Х-1), причем образуется пространственная сетчатая структура. Это в большой степени повышает механические свойства каучука. Вулканизированный каучук называется р е з и н о й. В гидрофобных растворителях резина только набухает, но не растворяется. Обычно вулканизации подвергают каучук в смеси с наполнителями (сажа, мел, каолин и др.), чтобы сообщить обрабатываемому материалу необходимые эксплуатационные качества (прочность, упругость и т. д.). [c.240]

    Температура вулканизации оказывает очень сильное влияние на скорость присоединения серы к каучуку и скорость изменения физико-механических свойств каучука. При повышении температуры на 10 °С скорость присоединения серы в тонком слое каучука возрастает примерно в два раза. Этот коэффициент, характеризующий изменение скорости процесса при изменении температуры на 10 °С, называется температурным коэффициентом скорости вулканизации. В зависимости от типа каучука и ускорителей он изменяется в пределах от 1,8 до 2,8. [c.76]

    В табл. 4 приведены значения температурного коэффициента скорости вулканизации натурального каучука, определенные по скорости связывания серы. Температурный коэффициент скорости вулканизации может быть вычислен также по кинетическим кривым изменения физико-механических свойств каучука при вулканизации при разных температурах, например по величине модуля. Значения коэффициентов, вычисленных по кинетике изменения модуля, приведены в той же таблице. [c.76]

    Изменение температуры оказывает сильное влияние на релаксационные процессы и на физико-механические свойства каучука. Для всех каучуков наблюдается понижение предела прочности при растяжении с повышением температуры, но оно происходит у различных каучуков в разной степени. [c.100]

    Группы механических свойств каучуков и резин. Что они характеризуют  [c.63]

    В настояш ее время в производстве шин и других резиновых изделий используются каучуки и технический углерод различных видов с весьма широким спектром реологических и физико-химических характеристик. До сих пор выбор полимеров для резиновой промышленности обусловлен физико-механическими свойствами и химической стабильностью готовых изделий на их основе. Однако неблагоприятное технологическое поведение ряда ценных по фи-зико-механическим свойствам каучуков (таких, как СКД, бутил-каучук и др.) часто является препятствием для их эффективного внедрения в массовое производство [50, 51]. Между тем соответствующий подбором рецептур, комбинаций с другими полимерами. и отработкой специфических технологических режимов можно в значительной степени преодолеть указанные трудности. [c.42]

    В ней излагаются основные особенности механических свойств каучуков, резиновых смесей и технических резин, обусловливающих поведение этих материалов в производстве и при эксплуатации изделий из них. [c.359]

    Испытания пластоэластических и физико-механических свойств каучуков и их вулканизатов (табл. 5), полученных при регулировании ДДМ и меркаптанами нефтяного происхождения, показали их идентичность. [c.43]

    Сажа является главным наполнителем при производстве автопокрышек (30—60 ч. на 100 ч. каучука), тав как она значительно улучшает механические свойства каучука. Применяемая сажа должна иметь очень малые размеры частиц и получается сжиганием мотана, аг етилена или нефтяных газов с недостаточным количеством воздуха. [c.944]

    В табл. 7 и 8 приведены данные, характеризующие процесс полимеризации и качества полученных каучуков. Очевидно, что пластические и физико-механические свойства каучуков, полученных при использовании меркаптанов, выделенных из керосинового дистиллята тереклинской нефти, и стандартного импортного трето-додецилмеркаптана, одинаковы. [c.29]

    Пластические и физико-механические свойства каучуков и их вулканизатов [c.30]

    Вулканизация. Одним из радикальных способов улучшения физико-механических свойств каучука является вулканизация, приводящая к образованию химических связей между полимерными молекулами. Реакции вулканизации подразделяются на две группы вулканизация в присутствии серы и без нее. При этом применяют неорганические и органические ускорители реакции вулканизации. [c.650]

    Большое внимание уделено количественному анализу компонентов резин [1392—1407]. Среди этих работ встречаются исследования по разработке экспресс-методов [1401, 1406, 1407]. Ряд работ относится к разработке методов определения механических свойств каучуков при динамических деформациях [1408—1425]. Опубликованы работы по исследованию различных свойств резин и разработке методов испытаний как резин, так и изделий из нее 1426—1475]. Много работ посвящено описанию устройства новых приборов, рекомендуемых для различных испытаний каучуков с приведением методик исследований [1476— 1500]. [c.668]

    МЕХАНИЧЕСКИЕ СВОЙСТВА КАУЧУКОВ И РЕЗИН [c.302]

    Важнейшим процессом превращения каучука в технический продукт — резину — является вулканизация, в результате которой происходит резкое изменение физико-механических свойств каучуков повышается термостойкость, механическая прочность, устойчивость к действию растворителей и т. д. [c.99]

Читайте также:  Какими свойствами обладает полупроводниковый диод

    Сырой каучук, получаемый обработкой сока преимущественно тропических каучуконосных растений, — липкое мягкое вещество с незначительной механической прочностью, набухающее во многих органических растворителях и непосредственно не имеющее технического применения. Лишь после открытия вулканизации, резко меняющей физико-механические свойства каучука, он уже в виде резины нашел широкое применение. [c.98]

    Строение и физико-механические свойства каучука, коллагена и производ- [c.351]

    Для уточнения понятий, характеризующих механические свойства каучуков, резиновых смесей и вулканизатов, в справочник включена глава Терминология по механическим свойствам каучуков, резиновых смесей и вулканизатов . [c.5]

    V. ТЕРМИНОЛОГИЯ по МЕХАНИЧЕСКИМ СВОЙСТВАМ КАУЧУКОВ, РЕЗИНОВЫХ СМЕСЕЙ И ВУЛКАНИЗАТОВ [c.560]

    Механические свойства каучуков и резин резко отличают их от всех других материалов. Это прежде всего способность к большим обратимым деформациям при сравнительно небольших значениях модуля упругости, проявляющаяся в широком температурном интервале, включающем и комнатную температуру. Именно эти уникальные особенности механических свойств резин и определяют их практическое применение и то огромное значение, которое имеет резина для современного машиностроения и других отраслей техники. Механические свойства эластомеров подробно рассмотрены в ряде монографий и учебных пособий  [c.7]

    Гидроперекиси п-изопропилциклогексилбензола и несимметричного дифенилэтана в 2,3 раза более активны, чем гидроперекись пзопропилбензола. При помощи указанных гидроперекисей за 4 часа достигается конверсия углеводородов в 59%. Что же касается физико-механических свойств каучуков, полученных на рецепте СКС-ЗОА в нрисутствии различных гидроперекисей, то они существенно не различаются. [c.311]

    Физико-механические свойства каучука, выделенного в глицерине в присутствии сажи, изучались в резиновой смеси (вес. ч.) саженаполнеиный цис-1,4-полибутадиен — 150 рубракс — 5 стеариновая кислота — 2 сантокюр — 0,7 окись цинка — 5 сера — 2. [c.215]

    А. М. Гуткина и Г. М. Бартенева. Б. А. Догадкиным развита теория синтеза механических свойств каучуков и резин. Обширные исследования структурно-механических (деформационных) свойств растворов и гелей полимеров, пластичных дисперсных систем, адсорбционных слоев и пленок проведены А. А. Трапезниковым. Обстоятельно изучены структурно-механические свойства технических дисперсий Г. В. Куколевым. [c.10]

    Вулканизация была открыта в 1839 г. Генкоком и Гудьиром. В результате этого сложного химического и физико-химического процесса резко изменяются физико-механические свойства каучука. Каучук становится нерастворимым, повышается его твердость, прочность, уменьшаются пластические и возрастают высокоэластические деформации, увеличивается модуль упругости. Механизм процесса вулканизации каучука подробно рассматривается в специальных монографиях здесь приводятся лишь реакции, протекающие при вулканизации. [c.252]

    На заводы резиновых изделий синтетические и натуральные каучуки поступают партиями. Каждая партия снабжается паспортом, в котором отражены важнейшие показатели технологических и физико-механических свойств каучука. Основными технологическими свойствами каучука, подлежащими дополнительной проверке на резиновом заводе, являются его пластичность и эластическая восстанавливаемость, способность к пластикации, скорость вулканизации резиновых смесей и склонность к подвулканиза-ции. Показатели механических свойств—эластичность по отскоку, сопротивление разрыву и раздиру, износостойкость, относи- [c.523]

    Применимость сырого каучука ограничена вследствие его чувствительности к изменениям температуры, большой остаточной деформации и относительно малой прочности. Вальцованный каучук даже слабее сырого и почти неприменим как таковой. В 1839 г. Гудьир установил, что свойства каучука сильно улучшаются при введении в мастицируемый каучук небольших количеств серы и нагревании смеси в течение нескольких часов при температуре 130—150° С. Механические свойства каучука при этом резко изменяются, сопротивление разрыву и излому возрастает примерно в семь раз (рис. 1) каучук становится гораздо менее термопластичным, так что его можно с успехом использовать для разных целей в гораздо более широких пределах температур, чем сырой каучук растворимость и набухание каучука в органических растворителях понижается сильно понижается и величина остаточной деформации. Такое изменение свойств сопровождается, как будет показано ниже, образованием химического соединения серы с каучуком. Для обозначения этого процесса применяются слова варка и вулканизация . Хотя они часто рассматриваются как синонимы, следовало бы, как это часто делают, сохранить слово варка для обозначения процесса изменения физических свойств (как при переварке или недоварке и т. п.), прилагая термин вулканизация только к процессам, связанным с химическими изме- [c.414]

    Синтетический изонреновый каучук СКИ-3, полученный с комплексными катализаторами, по микроструктуре не отличается от натурального и америпола SN и близок к ним по технологическим и физико-механическим свойствам. Каучуки, полз чен-пые с комплексными катализаторами, более регулярно построены, обладают лзпппими технологическими свойствами и более высокой температуростойкостью, но уступают более высокомолекулярным литийизопреновым каучукам по эластическим динамическим свойствам. [c.521]

    Изложены современные цредставления о химических превращениях, протекающих при переработке, вулканизации, старении (в том числе и радиационном) и утомлении эластомеров. сжатой форме описаны основные реологические и механические свойства каучуков и резин, явления переноса (растворимости и диффузии) в эластомерах, а также рассмотрены вопросы теплофизики. [c.2]

    Изменение физико-механических свойств каучука и его способности к кристаллизации в результате химических превращений, предполагающих цис-транс-изомеризацию, не всегда однозначно указывает на то, что изомеризация имела место. Подобным же образом изменения в ИК-спектрах в случае, например, полинзопрена не всегда могут надежно свидетельствовать о цис-транс-изомеризации или циклизации. [c.71]

    Бысокоэластическая деформация характерна только для полимеров в высокоэластическом состоянии и связана с изменением конфигурации макромолекул. Ее развитие не сопровождается изменением внутренней энергии, а связано лишь с изменением энтропии системы. Высокоэластическая деформация, как и упругая, обратима, но характерной ее особенностью является малая скорость. Весь комплекс уникальных механических свойств каучуков и резин определяется именно этим типом деформации. [c.302]

Смотреть страницы где упоминается термин Механические свойства каучуков:

[c.108]   

[c.396]   

[c.5]   

Физико-химические основы получения, переработки и применения эластомеров (1976) — [

c.0

]

Источник