Какие физические свойства характерны для всех металлов

Какие физические свойства характерны для всех металлов thumbnail

Общие физические свойства мекталлов:

1) Пластичность – способность изменять форму при ударе, вытягиваться в проволоку, прокатываться в тонкие листы. В ряду – Au, Ag, Cu, Sn, Pb, Zn, Fe уменьшается.
2) Блеск, обычно серый цвет и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл квантами света.
3) Электропроводность. Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. В ряду – Ag, Cu, Al, Fe уменьшается. При нагревании электропроводность уменьшается, т. к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение “электронного газа”.
4) Теплопроводность. Закономерность та же. Обусловлена высокой подвижностью свободных электронов и колебательным движением атомов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность – у висмута и ртути.
5) Твердость. Самый твердый – хром (режет стекло) ; самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.
6) Плотность. Она тем меньше, чем меньше атомная масса металла и чем больше радиус его атома (самый легкий – литий (r=0,53 г/см3); самый тяжелый – осмий (r=22,6 г/см3).
Металлы, имеющие r < 5 г/см3 считаются “легкими металлами”.
7) Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т. пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C).
Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

Все металлы являются восстановителями. Для металлов главных подгрупп восстановительная активность (способность отдавать электроны) возрастает сверху вниз и справа налево. Например, Натрий и кальций вытесняют водород из воды уже при обычных условиях:

Ca + 2H2O  Ca(OH)2 + H2¬ ; 2Na + 2H2O  2NaOH + H20

А магний при повышении температуры:

Mg + H2O –t MgO + H2

Восстановительная способность и химическая активность элементов побочных подгрупп увеличивается снизу вверх по группе (например, серебро на воздухе окисляется, а золото нет; медь вытесняет серебро из его соли) :

Cu + 2AgNO3 → 2Ag ↓ + Cu(NO3)2
Cu0 -2 ē → Cu+2 1 О. О. В.
Ag+ + ē → Ag0 2 В. В. О.

Высшая положительная степень окисления для металлов главных подгрупп в их соединениях равна номеру группы (например, NaCl, MgCl2, AlCl3, SnCl4), а для металлов побочных подгрупп в их кислородосодержащих соединениях также часто совпадает с номером группы (например, ZnO, TiO2, V2O5, CrO3, KMnO4).
Свойства оксидов металлов слева направо по периоду и снизу вверх по группе изменяются от основных к амфотерным для металлов главных подгрупп (Na2O и MgO – основные оксиды, Al2O3 и BeO – амфотерные) . Для металлов побочных подгрупп свойства оксидов, в которых металлы проявляют свою высшую степень окисления, изменяются от основных через амфотерные к кислотным ( CuO – основной, ZnO – амфотерный, CrO3 – кислотный) .
Сила оснований, образуемых металлами главных подгрупп увеличивается справа налево по периоду и сверху вниз по группе ( Be(OH)2 и Al(OH)3– амфотерные гидроксиды, Mg(OH)2 – слабое основание, NaOHи – Ca(OH)2 сильные основания) . Гидраты оксидов металлов побочных подгрупп с высшими степенями окисления металла вдоль периода слева направо меняют свои свойства от оснований через амфотерные гидроксиды к кислотам ( Cu(OH)2 – основание, Zn(OH)2 – амфотерный гидроксид, H2CrO4 – кислота) .
В природе металлы встречаются в основном в виде соединений – оксидов или солей. Исключение составляют такие малоактивные металлы, как серебро, золото, платина, которые встречаются в самородном состоянии.
Все способы получения металлов основаны на процессах их восстановления из природных соединений.

Источник

Общие физические свойства металлов

Благодаря  наличию свободных электронов (“электронного газа”) в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

1)     Пластичность – способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

2)    Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

3)     Электропроводность. Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов.  При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение “электронного газа”.

4)     Теплопроводность.  Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность – у висмута и ртути.

5)     Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

6)     Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий – литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее  5 г/см3 считаются “легкими металлами”.

7)     Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

Общие химические свойства металлов

Сильные восстановители: Me0 – nē →  Men+

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

1. РЕАКЦИИ МЕТАЛЛОВ С НЕМЕТАЛЛАМИ

1)     С кислородом:
2Mg + O2 →  2MgO

Читайте также:  Основные свойства каких аминов выражены сильнее

2)     С серой:
Hg + S →  HgS

3)     С галогенами:
Ni + Cl2  –t°→   NiCl2

4)     С азотом:
3Ca + N2  –t°→   Ca3N2

5)     С фосфором:
3Ca + 2P  –t°→   Ca3P2

6)     С водородом (реагируют только щелочные и щелочноземельные металлы):
2Li + H2 →  2LiH

Ca + H2 →  CaH2

2. РЕАКЦИИ МЕТАЛЛОВ С КИСЛОТАМИ

1)     Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

Mg + 2HCl →   MgCl2 + H2

2Al+ 6HCl →  2AlCl3 + 3H2

6Na + 2H3PO4 →  2Na3PO4 + 3H2

2) С кислотами-окислителями:

При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

Zn + 2H2SO4(К) → ZnSO4 + SO2 + 2H2O

4Zn + 5H2SO4(К) → 4ZnSO4 + H2S + 4H2O

3Zn + 4H2SO4(К) → 3ZnSO4 + S + 4H2O

2H2SO4(к) + Сu → Сu SO4 + SO2 + 2H2O

10HNO3 + 4Mg → 4Mg(NO3)2 + NH4NO3 + 3H2O

4HNO3(к) + Сu → Сu (NO3)2 + 2NO2 + 2H2O

3. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ВОДОЙ

1)     Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

2Na + 2H2O →  2NaOH + H2

Ca+ 2H2O →  Ca(OH)2 + H2

2)     Металлы средней активности окисляются водой при нагревании до оксида:

Zn + H2O  –t°→   ZnO + H2

3)     Неактивные (Au, Ag, Pt) – не реагируют.

4.    ВЫТЕСНЕНИЕ БОЛЕЕ АКТИВНЫМИ МЕТАЛЛАМИ МЕНЕЕ АКТИВНЫХ МЕТАЛЛОВ ИЗ РАСТВОРОВ ИХ СОЛЕЙ:

Cu + HgCl2 →  Hg+ CuCl2

Fe+ CuSO4 →  Cu+ FeSO4

В промышленности часто используют не чистые металлы, а их смеси — сплавы, в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь) являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем – дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении. Сплавы железа с углеродом (и добавками других металлов) – это широко известные чугун и сталь.

Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой, в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией. Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте – металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа+, Са2+,А13+,Fе2+ и Fе3+)

Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg – только серной (концентрированной) и азотной кислотами, а Рt и Аи – «царской водкой».

ОПРЕДЕЛЕНИЕ

Неметаллы – химические элементы, атомы которых принимают электроны для завершения внешнего энергетического уровня, образуя при этом отрицательно заряженные ионы.

Электронная конфигурация валентных электронов неметаллов в общем виде — ns2np1−5 Исключение составляют водород (1s1) и гелий (1s2), которые тоже рассматривают как неметаллы.

Неметаллы обычно обладают большим спектром степеней окисления в своих соединениях. Большее число электронов на внешнем энергетическом уровне по сравнению с металлами определяет их большую способность к присоединению электронов и проявлению высокой окислительной активности.

Если в Периодической системе мысленно провести диагональ от бериллия к астату, то в правом верхнем углу таблицы будут находиться элементы-неметаллы. Среди неметаллов есть s-элемент – водород; р-элементы бор; углерод, кремний; азот, фосфор, мышьяк, кислород, сера, селен, теллур, галогены и астат. Элементы VIII группы – инертные (благородные) газы, которые имеют полностью завершенный внешний энергетический уровень и их нельзя отнести ни к металлам, ни к неметаллам.

Неметаллы обладают высокими значениями сродства к электрону , электроотрицательность и окислительно-восстановительный потенциал.

Химические свойства неметаллов

Основные химические свойства неметаллов (общие для всех) – это:

— взаимодействие с металлами

2Na + Cl2 = 2NaCl

Fe + S = FeS

6Li + N2 = 2Li3N

2Ca + O2 = 2CaO

— взаимодействие с другими неметаллами

3H2+ N2 = 2NH3

H2+ Br2 = 2HBr

S + O2 = SO2

4P + 5O2 = 2P2O5

2F2+ O2 = 2OF2

S + 3F2 = SF6,

C + 2Cl2 = CCl4

Каждый неметалл обладает специфическими химическими свойствами, характерными только для него, которые подробно рассматривают при изучении каждого неметалла в отдельности.

Физические свойства неметаллов

Фтор, хлор, кислород, азот, водород и инертные газы представляют собой газообразные вещества, йод, астат, сера, селен, теллур, фосфор, мышьяк, углерод, кремний, бор –твёрдые вещества; бром -жидкость.

Читайте также:  Какими свойствами обладает ромашка аптечная

Неметаллы находятся в земной коре (в большинстве своем кислород и кремний — 76 % от массы земной коры а также As, Se, I, Te, но в очень езначительных количествах), в воздухе (азот и кислород), в составе растительной массы (98,5 % — углерод, водород, кислород, сера, фосфор и азот), а также в основе массы человека (97,6 % — — углерод, водород, кислород, сера, фосфор и азот). Водород и гелий – входят в состав космических объектов, включая Солнце. Чаще всего в природе неметаллы встречаются в виде соединений.

Источник

Физические свойства металлов отличают их от неметаллов. Все металлы, кроме ртути, – твёрдые кристаллические вещества, являющиеся восстановителями в окислительно-восстановительных реакциях.

Какие физические свойства характерны для всех металлов

Положение в таблице Менделеева

Металлы занимают I-II группы и побочные подгруппы III-VIII групп. Металлические свойства, т.е. способность отдавать валентные электроны или окисляться, увеличиваются сверху вниз по мере увеличения количества энергетических уровней. Слева направо металлические свойства ослабевают, поэтому наиболее активные металлы находятся в I-II группах, главных подгруппах. Это щелочные и щелочноземельные металлы.

Определить степень активности металлов можно по электрохимическому ряду напряжений. Металлы, стоящие до водорода, наиболее активны. После водорода стоят слабоактивные металлы, не вступающие в реакцию с большинством веществ.

Электрохимический ряд напряжений металлов

Рис. 1. Электрохимический ряд напряжений металлов.

Строение

Вне зависимости от активности все металлы имеют общее строение. Атомы в простом металле расположены не хаотично, как в аморфных веществах, а упорядоченно – в виде кристаллической решётки. Удерживает атомы в одном положении металлическая связь.

Такой вид связи осуществляется за счёт положительно заряженных ионов, находящихся в узлах кристаллической ячейки (единицы решётки), и отрицательно заряженных свободных электронов, которые образуют так называемый электронный газ. Электроны отделились от атомов, превратив их в ионы, и стали перемещаться в решётке хаотично, скрепляя ионы вместе. Без электронов решётка бы распалась за счёт отторжения одинаково заряженных ионов.

Различают три типа кристаллической решётки. Кубическая объемно-центрированная состоит из 9 ионов и характерна хрому, железу, вольфраму. Кубическая гранецентрированная включает 14 ионов и свойственная свинцу, алюминию, серебру. Из 17 ионов состоит гексагональная плотноупакованная решётка цинка, титана, магния.

Виды кристаллических решёток

Рис. 2. Виды кристаллических решёток.

Свойства

Строение кристаллической решётки определяет основные физические и химические свойства металлов. Металлы блестят, плавятся, проводят тепло и электричество. Промышленность и металлургия нашли применение физическим свойствам металлов в изготовлении деталей, фольги, корпусов машин, зеркал, бытовой и промышленной химии. Особенности металлов и их использование представлены в таблице физических свойств металлов.

Свойства

Особенности

Примеры

Применение

Металлический блеск

Способность отражать солнечный свет

Наиболее блестящими металлами являются Hg, Ag, Pd

Изготовление зеркал

Плотность

Лёгкие – имеют плотность меньше 5 г/см3

Na, K, Ba, Mg, Al. Самый лёгкий металл – литий с плотностью 0,533 г/см3

Изготовление облицовки, деталей самолётов

Тяжёлые – имеют плотность больше 5 г/см3

Sn, Fe, Zn, Au, Pb, Hg. Самый тяжёлый – осмий с плотностью 22,5 г/см3

Использование в сплавах

Пластичность

Способность изменять форму без разрушений (можно раскатать в тонкую фольгу)

Наиболее пластичные – Au, Cu, Ag. Хрупкие – Zn, Sn, Bi, Mn

Формовка, сгибание труб, изготовление проволоки

Твёрдость

Мягкие – режутся ножом

Na, K, In

Изготовление мыла, стекла, удобрений

Твёрдые – сравнимы по твёрдости с алмазом

Самый твёрдый – хром, режет стекло

Изготовление несущих конструкций

Температура плавления

Легкоплавкие – температура плавления ниже 1000°С

Hg (38,9°С), Ga (29,78°С), Cs (28,5°С), Zn (419,5°C)

Производство радиотехники, жести

Тугоплавкие – температура плавления выше 1000°С

Cr (1890°С), Mo (2620°С), V (1900°С). Наиболее тугоплавкий – вольфрам (3420°С)

Изготовление ламп накаливания

Теплопроводность

Способность передавать тепло другим телам

Лучше всего проводят ток и тепло Ag, Cu, Au, Al

Приготовление пищи в металлической посуде

Электропроводность

Способность проводить электрический ток за счёт свободных электронов

Передача электричества по проводам

Примеры применения металлов

Рис. 3. Примеры применения металлов.

Что мы узнали?

Из урока 9 класса узнали о физических свойствах металлов. Кратко рассмотрели положение металлов в периодической таблице и особенности строения кристаллической решётки. Благодаря строению металлы обладают пластичностью, твёрдостью, способностью плавиться, проводить электрический ток и тепло. Свойства металлов неоднородны. Различают лёгкие и тяжёлые металлы, лёгкоплавкие и тугоплавкие, мягкие и твёрдые. Физические свойства используются для изготовления сплавов, электрических проводов, посуды, мыла, стекла, конструкций различной формы.

Тест по теме

Доска почёта

Чтобы попасть сюда – пройдите тест.

    

  • Какие физические свойства характерны для всех металлов

    Лидия Маслова

    10/10

Оценка доклада

Средняя оценка: 4.2. Всего получено оценок: 142.

Источник

Физические свойства металлов.

Какие физические свойства характерны для всех металловКакие физические свойства характерны для всех металловКакие физические свойства характерны для всех металловКакие физические свойства характерны для всех металловКакие физические свойства характерны для всех металловКакие физические свойства характерны для всех металловКакие физические свойства характерны для всех металловКакие физические свойства характерны для всех металловКакие физические свойства характерны для всех металловКакие физические свойства характерны для всех металлов

Металлы имею такие физические свойства, как твердость, температуру плавления, плотность, пластичность, электропроводность, теплопроводность и цвет.

Твёрдость:

Все металлы, кроме ртути и, условно, франция, при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью.

Таблица твёрдости металлов по шкале Мооса:

ТвёрдостьМеталл
0.2Цезий
0.3Рубидий
0.4Калий
0.5Натрий
0.6Литий
1.2Индий
1.2Таллий
1.25Барий
1.5Стронций
1.5Галлий
1.5Олово
1.5Свинец
1.5Ртуть
1.75Кальций
2.0Кадмий
2.25Висмут
2.5Магний
2.5Цинк
2.5Лантан
2.5Серебро
2.5Золото
2.59Иттрий
2.75Алюминий
3.0Медь
3.0Сурьма
3.0Торий
3.17Скандий
3.5Платина
3.75Кобальт
3.75Палладий
3.75Цирконий
4.0Железо
4.0Никель
4.0Гафний
4.0Марганец
4.5Ванадий
4.5Молибден
4.5Родий
4.5Титан
4.75Ниобий
5.0Иридий
5.0Рутений
5.0Тантал
5.0Технеций
5.0Хром
5.5Бериллий
5.5Осмий
5.5Рений
6.0Вольфрам
6.0β-Уран
Читайте также:  Какой угол называется внешним углом треугольника каким свойством он обладает

Температура плавления:

Температуры плавления чистых металлов лежат в диапазоне от −38,83 °C (ртуть) до 3422 °C (вольфрам).

Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые металлы, например, олово и свинец, могут расплавиться на обычной электрической или газовой плите.

В зависимости от температуры плавления металлы делятся на: легкоплавкие (до 600 °C); среднеплавкие (от 600 до 1600 °C); тугоплавкие (выше 1600 °C).

Таблица температуры плавления легкоплавких металлов и сплавов:

Название металла Температура плавления, оС
Ртуть-38,83
Франций25
Цезий28,44
Галлий29,7646
Рубидий39,3
Калий63,5
Натрий97,81
Индий156,5985
Литий180,54
Олово231,93
Полоний254
Висмут271,3
Таллий304
Кадмий321,07
Свинец327,46
Цинк419,53

Таблица температуры плавления среднеплавких металлов и сплавов:

Название металла Температура плавления, оС
Сурьма630,63
Нептуний639
Плутоний639,4
Магний650
Алюминий660,32
Радий700
Барий727
Стронций777
Церий795
Иттербий824
Европий826
Кальций841,85
Лантан920
Празеодим935
Германий938,25
Серебро961,78
Неодим1024
Прометий1042
Актиний1050
Золото1064,18
Самарий1072
Медь1084,62
Уран1132,2
Марганец1246
Бериллий1287
Гадолиний1312
Тербий1356
Диспрозий1407
Никель1455
Гольмий1461
Кобальт1495
Иттрий1526
Эрбий1529
Железо1538
Скандий1541
Тулий1545
Палладий1554,9
Протактиний1568

Таблица температуры плавления тугоплавких металлов и сплавов:

Название металла Температура плавления, оС
Лютеций1652
Титан1668
Торий1750
Платина1768,3
Цирконий1855
Хром1907
Ванадий1910
Родий1964
Технеций2157
Гафний2233
Рутений2334
Иридий2466
Ниобий2477
Молибден2623
Тантал3017
Осмий3033
Рений3186
Вольфрам3422

Плотность:

В зависимости от плотности металлы делят на лёгкие (плотность от 0,53 до 5 г/см³) и тяжёлые (от 5 до 22,6 г/см³).

Самым лёгким металлом является литий (плотность 0,53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22,6 г/см³ — ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.

Пластичность:

Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними.

Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0,003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются.

Пластичность зависит и от чистоты металла. Так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы, такие, как золото, серебро, свинец, алюминий, осмий, могут срастаться между собой, но на это могут уйти десятки лет.

Электропроводность:

Все металлы хорошо проводят электрический ток, обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля.

Серебро, медь и алюминий имеют наибольшую электропроводность. По этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также и натрий. В экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.

Теплопроводность:

Теплопроводность металлов зависит от подвижности свободных электронов.

Поэтому ряд теплопроводностей похож на ряд электропроводностей, и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла. Широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.

Наименьшая теплопроводность — у висмута и ртути.

Цвет:

Цвет у большинства металлов примерно одинаковый — светло-серый, иногда с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.

Металлы подразделяются на цветные и черные.

Чёрные металлы – железо и сплавы на его основе (стали, ферросплавы, чугуны). К чёрным металлам также зачастую относят марганец и, иногда, – хром и ванадий.

Цветные металлы — это особый класс нержавеющих металлов и сплавов, в составе которых нет железа. Металлы называются цветными, потому что каждый из них имеет определенный окрас. К цветным металлам относятся медь, молибден, свинец, цинк, олово, никель, кадмий, кобальт, алюминий, титан, магний, висмут, вольфрам, ртуть, золото, платину, серебро, палладий, родий, рутений, осмий, иридий.

Примечание: © Фото https://www.pexels.com, https://pixabay.com

карта сайта

Коэффициент востребованности
175

Источник