Какие физические свойства характерны для веществ с ионной кристаллической решеткой

Кристаллические решетки

Твердые вещества бывают аморфные или кристаллические (чаще всего имеют кристаллическое строение).

Кристаллическое строение характеризуется правильным расположением частиц в определенных точках пространства. При соединении этих точек воображаемыми прямыми линиями образуется так называемая кристаллическая решетка Точки, в которых размещены частицы, называются узлами кристаллической решетки.

В узлах кристаллической решетки могут находиться ионы, атомы или молекулы.

В зависимости от вида частиц, расположенных в узлах кристаллической решетки, и характера связи между ними различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические.

Ионная решетка

Эту решетку образуют все вещества с ионным типом связи — соли, щелочи, бинарные соединения активных металлов с активными неметаллами (оксиды, галогениды, сульфиды), алкоголяты, феноляты, соли аммония и аминов. Примеры: КОН, СаСО$_3$, СН$_3$СООК, NH$_4$NO$_3$, [CH$_3$NH$_3$]Cl, С$_2$Н$_5$ОК. В узлах решетки — ионы, между которыми существует электростатическое притяжение. Ионная связь очень прочная.

Какие физические свойства характерны для веществ с ионной кристаллической решеткой

Свойства ионных кристаллов:

  • твердые, но хрупкие;

  • отличаются высокими температурами плавления;

  • нелетучи, не имеют запаха; 

  • расплавы ионных кристаллов обладают электропроводностью;

  • многие растворимы в воде. При растворении в воде диссоциируют на катионы и анионы, и образующиеся растворы проводят электрический ток.

Атомная решетка

В узлах решетки — атомы, связанные ковалентными связями. Химическая связь — ковалентная полярная или неполярная. Атомная кристаллическая решетка характерна для углерода (алмаз, графит — рисунок), бора, кремния, германия, оксида кремния SiO$_2$ (кремнезем, кварц, речной песок), карбида кремния SiC (карборунд), нитрида бора BN. Свойства: высокая твердость, высокие температуры плавления, нерастворимость, нелетучесть, отсутствие запаха.

Свойства веществ с атомной кристаллической решеткой:

  • высокая твердость;

  • высокие температуры плавления;

  • нерастворимость;

  • нелетучесть;

  • отсутствие запаха.

Металлическая решетка

Реализуется в простых веществах — металлах и их сплавах. В узлах решетки — атомы и катионы металла, при этом электроны металла обобществляются и образуют так называемый электронный газ, который движется между узлами решетки, обеспечивая ее устойчивость.

Какие физические свойства характерны для веществ с ионной кристаллической решеткой

Молекулярные решетки

В узлах — молекулы веществ, которые удерживаются в узлах решетки с помощью слабых межмолекулярных сил.

Молекулярное строение имеют:

  • все органические вещества (кроме солей);

  • вещества — газы и жидкости;

  • легкоплавкие и летучие твердые вещества, в молекулах которых ковалентные связи (полярные и неполярные).

Подобные вещества часто имеют запах.

Обобщающая таблица

Кристаллические решетки, вид связи и свойства веществ

Тип решетки Виды частиц в узлах решеткиВид связи между частицами  Примеры веществФизические свойства веществ 
 Ионная Ионы Ионная — связь прочная Соли, галогениды (IA, IIA), оксиды и гидроксиды щелочных и щел.-зем. металлов Твердые, прочные, нелетучие, хрупкие, тугоплавкие, многие растворимы в воде, расплавы проводят электрический ток
 Атомная Атомы

 1. Ковалентная  неполярная — очень прочная

2. Ковалентная полярная связь — очень прочная. Простые вещества: алмаз (C), графит (C), бор (B), кремний (Si)

 Сложные вещества:оксид алюминия

(Al$_2$O$_3$), оксид кремния (IV) SiO$_2$

 Очень твердые, очень тугоплавкие, прочные, нелетучие, нерастворимы в воде
 Молекулярная Молекулы Между молекулами слабые силы межмолекулярного притяжения, внутри молекул прочная ковалентная связь

 При обычных условиях – газы, жидкости или летучие твердые вещества

(О$_2$, Н$_2$, Cl$_2$,

N$_2$, Br$_2$, H$_2$O, CO$_2$, HCl); сера, белый фосфор, иод; органические вещества

 Непрочные, летучие, легкоплавкие, способны к возгонке, имеют небольшую твердость
 Металлическая Атом-ионы Металлическая  разной прочности Металлы и сплавы Ковкие, обладают блеском, пластичностью, тепло- и электропроводны

Источник

Ионными называют кристаллические решетки, в узлах которых находятся ионы. Их образуют вещества с ионной связью. Ионные кристаллические решётки имеют соли, некоторые оксиды и гидроксиды металлов. Рассмотрим строение кристалла поваренной соли, в узлах которого находятся ионы хлора и натрия.

Связи между ионами в кристалле очень прочные и устойчивые.Поэтому вещества с ионной решёткой обладают высокой твёрдостью и прочностью, тугоплавки и нелетучи.

Вещества с ионной кристаллической решеткой обладают следующими свойствами:

1. Относительно высокой твердостью и прочностю;

2. Хрупкостью;

3. Термостойкостью;

4. Тугоплавкостью;

5. Нелетучестью.

Примеры: соли – хлорид натрия, карбонат калия, основания – гидрооксид кальция, гидрооксид натрия.

4. Механизм образования ковалентной связи (обменный и донорно-акцепторный).

Каждый атом стремится завершить свой внешний электронный уровень, чтобы уменьшить потенциальную энергию. Поэтому ядро одного атома притягивается к себе электронную плотность другого атома и наоборот, происходит наложение электронных облаков двух соседних атомов.

Демонстрация аппликации и схемы образования ковалентной неполярной химической связи в молекуле водорода. (Учащиеся записывают и зарисовывают схемы).

Вывод: Связь между атомами в молекуле водорода осуществляется за счет общей электронной пары. Такая связь называется ковалентной.

Прочитать стр. 33 в учебнике и записать определение.

Какую связь называют ковалентной неполярной? (Учебник стр. 33).

Составление электронных формул молекул простых веществ неметаллов:

•• ••

•• CI •• CI •• – электронная формула молекулы хлора,

•• ••

CI — CI – структурная формула молекула хлора.

••

•• N •• N •• – электронная формула молекулы азота,

••

N ≡ N – структурная формула молекулы азота.

Электроотрицательность. Ковалентные полярная и неполярная связи. Кратность ковалентной связи.

Но молекулы могут образовывать и разные атомы неметаллов и в этом случае общая электронная пара будет смещаться к более электроотрицательному химическому элементу.

Изучить материал учебника на стр. 34

Вывод: Металлы имеют более низкое значение электроотрицательности, чем неметаллы. И между ними она сильно отличается.

Демонстрация схемы образования полярной ковалентной связи в молекуле хлороводорода.

Общая электронная пара смещена к хлору, как более электроотрицательному. Значит это ковалентная связь. Она образована атомами, электроотрицательности которых несильно отличаются, поэтому это ковалентная полярная связь.

Составление электронных формул молекул йодоводорода и воды:

••

H •• J •• – электронная формула молекулы йодоводорода,

••

H → J – структурная формула молекулы йодоводорода.

••

H •• O •• – электронная формула молекулы воды,

••

H

Н →О – структурная формула молекулы воды.

Н

Самостоятельная работа с учебником: выписать определение электроотрицательности.

Молекулярные и атомные кристаллические решетки. Свойства веществ с молекулярными и атомными кристаллическими решетками

Самостоятельная работа с учебником.

Вопросы для самоконтроля

– Атом, какого химического элемента имеет заряд ядра +11

– Записать схему электронного строения атома натрия

– Внешний слой завершен?

– Как добиться завершения заполнения электронного слоя?

– Составить схему отдачи электрона

– Сравнить строение атома и иона натрия

– Сравнить строение атома и иона инертного газа неона.

– Определить атом, какого элемента с количеством протонов 17.

– Запишите схему электронного строения атома.

– Слой завершен? Как этого добиться.

– Составить схему завершения электронного слоя хлора.

Задание по группам:

1-3 группа: Cоставьте электронные и структурные формулы молекул веществ и укажите тип связи Br2 ; NH3.

4-6 группы: Cоставьте электронные и структурные формулы молекул веществ и укажите тип связи F2 ; HBr.

Два ученика работают у дополнительной доски с этим же заданием для образца к самопроверке.

Устный опрос.

1. Дайте определение понятия «электроотрицательность».

2. От чего зависит электроотрицательность атома?

3. Как изменяется электроотрицательность атомов элементов в периодах?

4. Как изменяется электроотрицательность атомов элементов в главных подгруппах?

5. Сравните электроотрицательность атомов металлов и неметаллов. Отличаются ли способы завершения внешнего электронного слоя, характерные для атомов металлов и неметаллов? Каковы причины этого?

7. Какие химические элементы способны отдавать электроны, принимать электроны?

Что происходит между атомами при отдаче и принятии электронов?

Как называют частицы, образовавшиеся из атома в результате отдачи или присоединения электронов?

8. Что произойдет при встрече атомов металла и неметалла?

9. Как образуется ионная связь?

10. Химическая связь, образуемая за счет образования общих электронных пар называется …

11. Ковалентная связь бывает … и …

12. В чем сходство ковалентной полярной и ковалентной неполярной связи? От чего зависит полярность связи?

13. В чем различие ковалентной полярной и ковалентной неполярной связи?

ПЛАН ЗАНЯТИЯ № 8

Дисциплина: Химия.

Тема:Металлическая связь. Агрегатные состояния веществ и водородная связь.

Цель занятия: Сформировать понятие об химических связях на примере металлической связи. Добиться понимания механизма образования связи.

Планируемые результаты

Предметные: формировании кругозора и функциональной грамотности человека для решения практических задач; умение обрабатывать, объяснять результаты; готовность и способность применять методы познания при решении практических задач;

Метапредметные: использование различных источников для получения химической информации, умение оценить ее достоверность для достижения хороших результатов в профессиональной сфере;

Личностные: умение использовать достижения современной химической науки и химических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

Норма времени:2 часа

Вид занятия:Лекция.

План занятия:

1. Металлическая связь. Металлическая кристаллическая решетка и металлическая химическая связь.

2. Физические свойства металлов.

3. Агрегатные состояния веществ. Переход вещества из одного агрегатного состояния в другое.

4. Водородная связь

Оснащение: Периодическая система химических элементов, кристаллическая решетка, раздаточный материал.

Литература:

1. Химия 11 класс: учеб. для общеобразоват. организаций Г.Е. Рудзитис, Ф.Г. Фельдман. – М.:Просвещение, 2014. -208 с.: ил..

2. Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования / О.С.Габриелян, И.Г. Остроумов. – 5 – изд., стер. – М.: Издательский центр «Академия», 2017. – 272с., с цв. ил.

Преподаватель: Тубальцева Ю.Н.

Источник

         Взаимосвязь
типа химической связи с видом кристаллической решетки

         Вещества и кристаллические решетки

         Твердые вещества бывают аморфные или кристаллические (чаще
всего имеют кристаллическое строение).

     Кристаллическое строение характеризуется
правильным расположением частиц в определенных точках пространства. При
соединении этих точек воображаемыми прямыми линиями образуется так называемая
кристаллическая решетка. Точки, в которых размещены частицы, называются узлами кристаллической решетки.

         В узлах кристаллической решетки могут
находиться ионы, атомы или молекулы.

      В зависимости от вида частиц,
расположенных в узлах кристаллической решетки, и характера связи между ними
различают четыре типа кристаллических решеток:

Какие физические свойства характерны для веществ с ионной кристаллической решеткой

·       
ионные,

·       
атомные,

·       
молекулярные и

·       
металлические.

      Ионная решетка

         Эту решетку образуют все вещества с
ионным типом связи — соли, щелочи, бинарные соединения активных металлов с
активными неметаллами (оксиды, галогениды, сульфиды), алкоголяты, феноляты,
соли аммония и аминов. В узлах решетки — ионы, между которыми существует
электростатическое притяжение. Ионная связь очень прочная.

Примеры:
КОН, СаСО3, СН3СООК, NH4NO3, [CH3NH3]Cl,
С2Н5ОК. 

Свойства ионных кристаллов:

·       твердые, но хрупкие;

·       отличаются высокими температурами
плавления;

·       нелетучи, не имеют запаха;

·       расплавы ионных кристаллов обладают
электропроводностью;

·       многие растворимы в воде; при растворении
в воде диссоциируют на катионы и анионы, и образующиеся растворы проводят
электрический ток.

         Металлическая решетка

         Характерна для веществ с металлической
связью. Реализуется в простых веществах — металлах и их сплавах. В узлах
решетки — атомы и катионы металла, при этом электроны металла обобществляются и
образуют так называемый электронный газ, который движется между узлами решетки,
обеспечивая ее устойчивость. Именно свободно перемещающимися электронами и
обусловлены свойства веществ с
металлической решеткой
:

·       
тепло- и электропроводность;

·       
обладают металлическим блеском;

·       
высокие температуры плавления.

         Атомная решетка

         В узлах решетки — атомы, связанные
ковалентными связями. Химическая связь — ковалентная полярная или неполярная.
Атомная кристаллическая решетка характерна для углерода (алмаз, графит),
бора, кремниягермания, оксида кремния SiO2(кремнезем, кварц,
речной песок), карбида кремния SiC (карборунд), нитрида бора BN.

Свойства веществ с атомной решеткой:

·       
высокая твердость;

·       
высокие температуры плавления;

·       
нерастворимость;

·       
нелетучесть;

·       
отсутствие запаха.

         Молекулярная решетка

Какие физические свойства характерны для веществ с ионной кристаллической решеткой

         В узлах — молекулы веществ, которые
удерживаются в решетке с помощью слабых межмолекулярных сил.

Молекулярное
строение имеют:

o   все органические вещества (кроме солей);

o   вещества — газы и жидкости;

o   легкоплавкие и летучие твердые вещества, в молекулах
которых ковалентные связи (полярные и неполярные).

Подобные вещества часто имеют запах.

Обобщающая таблица

Кристаллические решетки, вид связи и
свойства веществ

Тип решетки

Виды частиц в узлах решетки

Вид связи между частицами 

 Примеры веществ

Физические свойства веществ 

Ионная

Ионы

Ионная связь — прочная

Соли, галогениды (IA,IIA), оксиды и гидроксиды щелочных и щел.-зем.
металлов

Твердые, прочные, нелетучие, хрупкие, тугоплавкие, многие растворимы в
воде, расплавы проводят электрический ток

Атомная

Атомы

1. Ковалентная неполярная -очень прочная

2. Ковалентная полярная связь — очень прочная

Простые вещества: алмаз (C), графит (C), бор (B), кремний (Si)

Сложные вещества: оксид алюминия (Al2O3), оксид кремния
(IV) SiO2

Очень твердые, очень тугоплавкие, прочные, нелетучие, нерастворимы в воде

Молекулярная

Молекулы

Между молекулами — слабые силы межмолекулярного притяжения, внутри
молекул — прочная ковалентная связь

При обычных условиях — газы, жидкости или летучие твердые вещества:

(О2,Н2,Cl2,N2,Br2,
H2O, CO2, HCl); сера, белый фосфор, йод; органические
вещества

Непрочные, летучие, легкоплавкие, способны к возгонке, имеют небольшую
твердость

Металлическая

Атом-ионы

Металлическая связь — разной прочности

Металлы и сплавы

Ковкие, обладают блеском, пластичностью, тепло- и электропроводны

 источник  информации: https://foxford.ru/wiki/himiya/vzaimosvyaz-tipa-himicheskoy-svyazi-s-vidom-kristallicheskoy-reshetki

Источник

По характеру структуры кристаллические решетки всех веществ относят к одному из четырех основных типов:

а) молекулярная решетка,

б) атомная,

в) ионная,

г) металлическая.

В основу этой классификации положен род структурных частиц (молекулы-атомы-ионы), находящихся в узлах кристаллической решетки.

Молекулярная решетка

В узлах молекулярной решетки находятся полярные или неполярные молекулы, связанные между собой слабыми силами межмолекулярного взаимодействия (силами Ван-дер-Ваальса). Молекулы в кристалле способны совершать незначительные колебания различного характера. Вещества с молекулярным типом решетки, например, органические вещества, кристаллы инертных газов и большинства неметаллов, сухой лед (СО2 тверд.) обладают малой твердостью, низкими температурами плавления и кипения. Эти характеристики объясняются тем, что при приложении незначительной  энергии межмолекулярные связи разрываются и кристалл разрушается с образованием отдельных молекул, что и наблюдается  при плавлении и при испарении кристаллов. Внутри отдельных молекул атомы связаны значительно более прочными связями (ковалентными полярными или неполярными). Эти связи разрушаются при более высокой температуре, и молекулы распадаются на составляющие их атомы (происходит термическая диссоциация).

Атомная решетка

В узлах атомной кристаллической решетки находятся атомы. Роль сил межмолекулярного взаимодействия здесь играют достаточно прочные ковалентные связи. Выделить из общей массы атомов один невозможно. Вещества с атомным типом кристаллической решетки (алмаз, бор, кремний, карборунд SiC, нитрид алюминия и другие) характеризуются очень большой твердостью, иногда сочетающейся с хрупкостью, нерастворимостью в обычных растворителях, очень высокими температурами плавления и кипения. Все связи в кристалле равноценны. При разрыве этих связей, достигаемом лишь при высокой температуре, кристалл диссоциирует на отдельные атомы: плавление, кипение и термическая диссоциация практически совпадают.

Ионная (координационная) решетка

В узлах ионной кристаллической решетки находятся чередующиеся положительные и отрицательные ионы, связанные между собой силами кулоновского взаимодействия. Особенностью этих сил является их ненасыщаемость. Это приводит к тому, что отдельный ион координирует вокруг себя несколько ионов противоположного заряда. Ионы в кристаллах совершают упорядоченные колебания. Энергия связей между противоположно заряженными ионами очень велика, и такие кристаллы, казалось бы, должны обладать наиболее высокой твердостью и высокими температурами плавления и кипения. На самом деле эти свойства у них ниже, чем у кристаллов с атомной структурой. Причина заключается в том, что наряду с силами притяжения в кристалле действуют силы отталкивания между одноименно заряженными ионами, причем соотношение этих сил приводит к определенному равновесному состоянию. Вещества с ионной решеткой растворимы в той или иной степени в полярных растворителях.

Металлическая решетка

В узлах металлической решетки находятся положительно заряженные ионы металлов, окруженные электронами. Эти электроны, связанные отчасти с ионами силами электростатического взаимодействия, являются «полусвободными», иначе говоря «не прикреплены» к отдельным ионам, а более или менее свободно перемещаются между ними. Этот «электронный газ» обусловливает типичные для металлов свойства: тепло- и электропроводность, серовато-серебристый (у большинства металлов) цвет, металлический блеск (отражательную способность), способность отражать радиоволны, пластичность, ковкость и в то же время достаточную прочность (результат обволакивания ионов «электронным газом»). Подходя к катиону металла, электроны образуют с ним на мгновение электронейтральную частицу, которая быстро разрушается и через мгновение такой же непрочный «атом» образуется с этим или другим электроном и другим ионом металла. Между «атомами» возникают мгновенные ковалентные связи. Это и приводит к возникновению особой металлической связи, промежуточной по характеру между ионной и ковалентной, качественно отличающейся от той и другой и наблюдаемой лишь в куске металла. Энергия электронов в металле недостаточна, чтобы они могли «оторваться» от катионов металла и самопроизвольно покинуть металлическую решетку. Но при подведении энергии извне выход электронов наблюдается: фотоэлектрический эффект, термоэлектронная эмиссия. Прочность и температуры плавления и кипения у металлов не всегда имеют промежуточные значения между этими же свойствами у веществ с атомными и ионными решетками. Это зависит от природы металла. Интересно, что заряд ионов в металлах не всегда отвечает номеру группы периодической системы, в которой металл находится. Например, в кристаллической решетке алюминия ионы имеют средний заряд +2. Это можно объяснить двумя способами:

а) все атомы алюминия отдали по два электрона в «электронный газ»;

б) все атомы отдали по три электрона, но в среднем одна треть образовавшихся ионов Al+3 снова образует «атомы», поэтому средний заряд всех структурных частиц +2.

Таким образом, металлическое состояние в упрощенном представлении подобно атомарному ввиду его суммарной электронейтральности; это сосуществование и взаимосвязь «атомов»-ионов-электронов.

Типы кристаллических решеток и свойства веществ

Тип кристаллической решетки

Структурные частицы кристалла

Характер связи между структурными частицами кристалла

Характер связи в молекулах

Примеры кристаллических веществ

Характерные свойства

1.

Молекулярная

Полярные молекулы – диполи

1. Электростатическое взаимодействие диполей.
2. Силы Ван-дер-Ваальса (средние)

Ковалентные полярные

HF, H2O, HCl, H2S, PCl3, NH3 (твердые)

Межмолекулярное взаимодействие средней силы.
Растворимы в полярных растворителях, малая термическая устойчивость, слабая электропроводность, летучесть средняя, слабые механические свойства.

Неполярные молекулыСилы Ван-дер-Ваальса (слабые)Ковалентные неполярные и ковалентные полярныеH2, Cl2, O2, N2, F2, СО2, SO3 (образованы молекулами симметричного строения)Межмолекулярное взаимодействие слабое.
Растворимы в неполярных растворителях, очень малая термическая устойчивость, очень слабая электропроводность, легкая летучесть (очень низкие температуры плавления и кипения), очень слабые механические свойства.

2.

Атомная

Атомы

Ковалентные связи

C, Si, SiC, AlN, ВеО (образованы элементами, среднее арифметическое номеров групп которых равно 4)

Нерастворимы в обычных растворителях, термически устойчивы, неэлектропроводны, температуры плавления и кипения очень высокие; твердые, но хрупкие, прочность связей между частицами очень высокая.

3.

Ионная

Ионы: катионы, анионы

1. Электростатическое взаимодействие.
2. Значительные силы Ван-дер-Ваальса.

CsF, KCl, CaF2, CsH, NaF,  ВаCl2

Растворимы в полярных растворителях, термическая устойчивость высокая, большая электропроводность в растворах и расплавах, высокие температуры плавления; вещества твердые, но хрупкие, прочность связей между частицами высокая.

4.

Металлическая

Катионы, «атомы», электроны

1. Электростатическое притяжение ионов и электронов.
2. Мгновенные ковалентные связи между «атомами».

Na, K, Cu, Zn, Fe, Pt, Pb

Растворимы в расплавленных металлах, термическая устойчивость различная, электропроводность высокая, температуры плавления и кипения лежат в широких пределах; вещества пластичные, твердость, как и прочность связей между частицами, различная.

Источник