Какие физические и химические свойства

Разнообразие веществ

За последние 200 лет человечество изучило свойства веществ лучше, чем за всю историю развития химии. Естественно, количество веществ так же стремительно растет, это связано, прежде всего, с освоением различных методов получения веществ.

В повседневной жизни мы сталкиваемся с множеством веществ. Среди них – вода, железо, алюминий, пластмасса, сода, соль и множество других. Вещества, существующие в природе, например, кислород и азот, содержащиеся в воздухе, вещества, растворенные в воде, и имеющие природное происхождение, называются природными веществами. Алюминия, цинка, ацетона, извести, мыла, аспирина, полиэтилена и многих других веществ в природе не существует.

Их получают в лаборатории, и производит промышленность. Искусственные вещества не встречаются в природе, их создают из природных веществ. Некоторые вещества, существующие в природе, можно получить и в химической лаборатории.

Так, при нагревании марганцовки выделяется кислород, а при нагревании мела – углекислый газ. Ученые научились превращать графит в алмаз, выращивают кристаллы рубина, сапфира и малахита. Итак, наряду с веществами природного происхождения существует огромное множество и искусственно созданных веществ, не встречающихся в природе.

Вещества, не встречающиеся в природе, производятся на различных предприятиях: фабриках, заводах, комбинатах и т.п.

В условиях исчерпания природных ресурсов нашей планеты, сейчас перед химиками стоит важная задача: разработать и внедрить методы, при помощи которых можно искусственно, в условиях лаборатории, или промышленного производства, получать вещества, являющиеся аналогами природных веществ. Например, запасы топливных ископаемых в природе на исходе.

Может настать тот момент, когда нефть и природный газ закончатся. Уже сейчас ведутся разработки новых видов топлива, которые были бы такими же эффективными, но не загрязняли окружающую среду. На сегодняшний день человечество научилось искусственно получать различные драгоценные камни, например, алмазы, изумруды, бериллы.

Агрегатное состояние вещества

Вещества могут существовать в нескольких агрегатных состояниях, три из которых вам известны: твердое, жидкое, газообразное. Например, вода в природе существует во всех трех агрегатных состояниях: твердом (в виде льда и снега), жидком (жидкая вода) и газообразном (водяной пар). Известны вещества, которые не могут существовать в обычных условиях во всех трех агрегатных состояниях. Например, таким веществом является углекислый газ. При комнатной температуре это газ без запаха и цвета. При температуре –79°С данное вещество «замерзает» и переходит в твердое агрегатное состояние. Бытовое (тривиальное) название такого вещества «сухой лед». Такое название дано этому веществу из-за того, что «сухой лед» превращается в углекислый газ без плавления, то есть, без перехода в жидкое агрегатное состояние, которое присутствует, например, у воды.

Это интересно:  Химические свойства кислорода

Таким образом, можно сделать важный вывод. Вещество при переходе из одного агрегатного состояния в другое не превращается в другие вещества. Сам процесс некоего изменения, превращения, называется явлением.

Физические явления. Физические свойства веществ.

Явления, при которых вещества изменяют агрегатное состояние, но при этом не превращаются в другие вещества, называют физическими. Каждое индивидуальное вещество обладает определенными свойствами. Свойства веществ могут быть различными или сходными друг с другом. Каждое вещество описывают при помощи набора физических и химических свойств. Рассмотрим в качестве примера воду. Вода замерзает и превращается в лед при температуре 0°С, а закипает и превращается в пар при температуре +100°С. Данные явления относятся к физическим, так как вода не превратилась в другие вещества, происходит только изменение агрегатного состояния. Данные температуры замерзания и кипения – это физические свойства, характерные именно для воды.

Свойства веществ, которые определяют измерениями или визуально при отсутствии превращения одних веществ в другие, называют физическими

Испарение спирта, как и испарение воды – физические явления, вещества при этом изменяют агрегатное состояние. После проведения опыта можно убедиться, что спирт испаряется быстрее, чем вода – это физические свойства этих веществ.

К основным физическим свойствам веществ можно отнести следующие: агрегатное состояние, цвет, запах, растворимость в воде, плотность, температура кипения, температура плавления, теплопроводность, электропроводность. Такие физические свойства как цвет, запах, вкус, форма кристаллов, можно определить визуально, с помощью органов чувств, а плотность, электропроводность, температуру плавления и кипения определяют измерением. Сведения о физических свойствах многих веществ собраны в специальной литературе, например, в справочниках. Физические свойства вещества зависят от его агрегатного состояния. Например, плотность льда, воды и водяного пара различна.

Газообразный кислород бесцветный, а жидкий – голубой Знание физических свойств помогает «узнавать» немало веществ. Например, медь – единственный металл красного цвета. Соленый вкус имеет только поваренная соль. Иод – почти черное твердое вещество, которое при нагревании превращается в фиолетовый пар. В большинстве случаев для определения вещества нужно рассматривать несколько его свойств. В качестве примера охарактеризуем физические свойства воды:

  • цвет – бесцветная (в небольшом объеме)
  • запах – без запаха
  • агрегатное состояние – при обычных условиях жидкость
  • плотность – 1 г/мл,
  • температура кипения – +100°С
  • температура плавления – 0°С
  • теплопроводность – низкая
  • электропроводность – чистая вода электричество не проводит

Кристаллические и аморфные вещества

При описании физических свойств твердых веществ принято описывать структуру вещества. Если рассмотреть образец поваренной соли под увеличительным стеклом, можно заметить, что соль состоит из множества мельчайших кристаллов. В соляных месторождениях можно встретить и весьма крупные кристаллы. Кристаллы – твердые тела, имеющие форму правильных многогранников Кристаллы могут иметь различную форму и размер. Кристаллы некоторых веществ, таких как поваренная сольхрупкие, их легко разрушить. Существуют кристаллы довольно твердые. Например, одним из самых твердых минералов считается алмаз. Если рассматривать кристаллы поваренной соли под микроскопом, можно заметить, что все они имеют похожее строение. Если же рассмотреть, например, частицы стекла, то все они будут иметь различное строение – такие вещества называют аморфными. К аморфным веществам относят стекло, крахмал, янтарь, пчелиный воск. Аморфные вещества – вещества, не имеющие кристаллического строения

Химические явления. Химическая реакция.

Если при физических явлениях вещества, как правило, лишь изменяют агрегатное состояние, то при химических явлениях происходит превращение одних веществ в другие вещества. Приведем несколько простых примеров: горение спички сопровождается обугливанием древесины и выделением газообразных веществ, то есть, происходит необратимое превращение древесины в другие вещества. Другой пример: со временем бронзовые скульптуры покрываются налетом зеленого цвета. Дело в том, что в состав бронзы входит медь. Этот металл медленно взаимодействует с кислородом, углекислым газом и влагой воздуха, в результате на поверхности скульптуры образуются новые вещества зеленого цвета Химические явления – явления превращений одних веществ в другие Процесс взаимодействия веществ с образованием новых веществ называют химической реакцией. Химические реакции происходят повсеместно вокруг нас. Химические реакции происходят и в нас самих. В нашем организме непрерывно происходят превращения множества веществ, вещества реагируют друг с другом, образуя продукты реакции. Таким образом, в химической реакции всегда есть реагирующие вещества, и вещества, образовавшиеся в результате реакции.

  • Химическая реакция – процесс взаимодействия веществ, в результате которого образуются новые вещества с новыми свойствами
  • Реагенты – вещества, вступающие в химическую реакцию
  • Продукты – вещества, образовавшиеся в результате химической реакции
Читайте также:  Благодаря каким свойствам сахар используют в пищевой и кондитерской промышленности

Химическая реакция изображается в общем виде схемой реакции РЕАГЕНТЫ -> ПРОДУКТЫ

  • реагенты – исходные вещества, взятые для проведения реакции;
  • продукты – новые вещества, образовавшиеся в результате протекания реакции.

Любые химические явления (реакции) сопровождаются определенными признаками, при помощи которых химические явления можно отличить от физических. К таким признакам можно отнести изменение окраски веществ, выделение газа, образование осадка, выделение тепла, излучение света.

Многие химические реакции сопровождаются выделением энергии в виде тепла и света. Как правило, такими явлениями сопровождаются реакции горения. В реакциях горения на воздухе вещества реагируют с кислородом, содержащимся в воздухе. Так, например, металл магний вспыхивает и горит на воздухе ярким слепящим пламенем. Именно поэтому вспышку магния использовали при создании фотографий в первой половине ХХ века. В некоторых случаях возможно выделение энергии в виде света, но без выделения тепла. Один из видов тихоокеанского планктона способен испускать ярко-голубой свет, хорошо заметный в темноте. Выделение энергии в виде света – результат химической реакции, которая протекает в организмах данного вида планктона.

Итог статьи:

  • Существуют две большие группы веществ: вещества природного и искусственного происхождения
  • В обычных условиях вещества могут находиться в трех агрегатных состояниях
  • Свойства веществ, которые определяют измерениями или визуально при отсутствии превращения одних веществ в другие, называют физическими
  • Кристаллы – твердые тела, имеющие форму правильных многогранников
  • Аморфные вещества – вещества, не имеющие кристаллического строение
  • Химические явления – явления превращений одних веществ в другие
  • Реагенты – вещества, вступающие в химическую реакцию
  • Продукты – вещества, образующиеся в результате химической реакции
  • Химические реакции могут сопровождаться выделением газа, осадка, тепла, света; изменением окраски веществ
  • Горение – сложный физико-химический процесс превращения исходных веществ в продукты сгорания в ходе химической реакции, сопровождающийся интенсивным выделением тепла и света (пламени)

Источник

§ 3. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Физические свойства. К физическим свойствам металлов относят цвет, плотность, температуру плавления, теплопроводность, тепловое расширение, теплоемкость, электропроводность, магнитные свойства и др.
Цветом называют способность металлов отражать световое излучение с определенной длиной волны. Например, медь имеет розово-красный цвет, алюминий – серебристо-белый.
Плотность металла характеризуется его массой, заключенной в единице объема. По плотности все металлы делят на легкие (менее 4500 кг/м3) и тяжелые. Плотность имеет большое значение при создании различных изделий. Например, в самолето- и ракетостроении стремятся использовать более легкие металлы и сплавы (алюминиевые, магниевые, титановые), что способствует снижению массы изделий.
Температурой плавления называют температуру, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие металлы (вольфрам 3416°С, тантал 2950°С, титан 1725°С, и др.) и легкоплавкие (олово 232°С, свинец 327°С, цинк 419,5°С, алюминий 660°С). Температура плавления имеет большое значение при выборе металлов для изготовления литых изделий, сварных и паяных соединений, термоэлектрических приборов и других изделий. В единицах СИ температуру плавления выражают в градусах Кельвина (К).
Теплопроводностью называют способность металлов передавать тепло от более нагретых к менее нагретым участкам тела. Серебро, медь, алюминии обладают большой теплопроводностью. Железо имеет теплопроводность примерно в три раза меньше, чем алюминий, и в пять раз меньше, чем медь. Теплопроводность имеет большое значение при выборе материала для деталей. Например, если металл плохо проводит тепло, то при нагреве и быстром охлаждении (термическая обработка, сварка) в нем образуются трещины. Некоторые детали машин (поршни двигателей, лопатки турбин) должны быть изготовлены из материалов с хорошей теплопроводностью. В единицах СИ теплопроводность имеет размерность Вт/(м∙К).
Тепловым расширением называют способность металлов увеличиваться в размерах при нагревании и уменьшаться при охлаждении. Тепловое расширение характеризуется коэффициентом линейного расширения α=(l2-l1)/[l1(t2-t1)], где l1 и l2 длины тела при температурах t1 и t2. Коэффициент объемного расширения равен 3α. Тепловые расширения должны учитываться при сварке, ковке и горячей объемной штамповке, изготовлении литейных форм, штампов, прокатных валков, калибров, выполнении точных соединений и сборке приборов, при строительстве мостовых ферм, укладке железнодорожных рельс.
Теплоемкостью называют способность металла при нагревании поглощать определенное количество тепла. В единицах СИ имеет размерность Дж/К. Теплоемкость различных металлов сравнивают по величине удельной теплоемкости – количеству тепла, выраженному в больших калориях, которое требуется для повышения температуры 1 кг металла на 1°С (в единицах СИ – Дж/(кг∙К).
Способность металлов проводить электрический ток оценивают двумя взаимно противоположными характеристиками – электропроводностью и электросопротивлением. Электрическая проводимость оценивается в системе СИ в сименсах (См), а удельная электропроводность – в Cм/м, аналогично электросопротивление выражают в омах (Ом), а удельное электросопротивление — в Ом/м. Хорошая электропроводность необходима, например, для токонесущих проводов (медь, алюминий). При изготовлении электронагревателей приборов и печей необходимы сплавы с высоким электросопротивлением (нихром, константан, манганин). С повышением температуры металла его электропроводность уменьшается, а с понижением – увеличивается.
Магнитные свойства характеризуются абсолютной магнитной проницаемостью или магнитной постоянной, т. е. способностью металлов намагничиваться. В единицах СИ магнитная постоянная имеет размерность Гн/м. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, называемые ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов.
Химические свойства. Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем легче металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием на их поверхность внешней агрессивной среды называют коррозией.
Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими или окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур.
Сопротивление металлов коррозии, окалинообразованию и растворению определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени.
Химические свойства металлов обязательно учитываются при изготовлении тех или иных изделий. Особенно это относится к изделиям или деталям, работающим в химически агрессивных средах.

Читайте также:  На каких физических и химических свойствах основано применение алюминия и его сплавов

Источник

1. Основные понятия, определения и законы химии

1.1. Вещество, его физические и химические свойства

Химия — наука о веществах, их строении, свойствах и превращениях.

В самом широком смысле вещество — это то, из чего состоят физические тела. Например, физическое тело «железный гвоздь» состоит из вещества железо. Физическое тело может состоять как из одного вещества (физическое тело «медная проволока» состоит из одного вещества — меди), так и из нескольких (физическое тело «автомобиль» состоит из различных металлов, пластмасс). Одно и то же вещество, в свою очередь, может образовывать несколько физических тел. Например: вещество вода образует айсберги, капли дождя, снежинки, иней; только из вещества железо состоят железные гвоздь, скрепка, проволока. В отличие от физического тела, понятие «вещество» абстрактное, вещество нельзя потрогать, нарисовать.

Вещество — только одна из форм материи. Вторая форма существования материи — поле. Поле — это материальная среда, посредством которой тела или частицы вещества взаимодействуют между собой. Примеры полей: гравитационное, электрическое, магнитное, ядерные силы. Вещество имеет дискретное (прерывистое, корпускулярное) строение, поскольку состоит из атомов, а поле однородно, непрерывно. Частицы поля (кванты), в отличие от частиц вещества, не имеют массы покоя (это означает, что они всегда находятся в движении). Характеристики поля: частота, потенциал, напряженность. Характеристики вещества: масса (покоя), размеры, плотность, окраска и т.д.

Традиционно физика и химия понятие «вещество» рассматривают по-разному. В физическом смысле веществом являются все материальные объекты, имеющие массу покоя; иными словами, это не только, например, порция воды массой 1 г, но и отдельно взятая молекула воды, а также любая элементарная частица — электрон, протон или нейтрон.

С химической точки зрения вещество — это устойчивая совокупность атомов, молекул или ионов:

  • находящаяся в определенном агрегатном состоянии,
  • обладающая некоторым набором постоянных при данных условиях физических и химических свойств.

Пример 1.1.
Укажите химические вещества: а) молекула воды; б) порция аммиака массой 10 г; в) соляная кислота; г) медный таз; д) порция метана объемом 1,12 дм3.

1) б, в, г, д; 3) а, б, в, д;2) б, в, д; 4) б, д.

Решение. Молекула воды является веществом только в физическом смысле, так как имеет массу, но не имеет определенного агрегатного состояния. Соляная кислота — это не вещество, а смесь HCl и H2O, медный таз — физическое тело. О веществах в химическом смысле говорится в случаях б), д).

Ответ: 4).

Физические свойства вещества — это набор определенных констант, характеризующих его агрегатное состояние, плотность, температуры плавления и кипения, цвет, растворимость, твердость, вязкость, летучесть, запах и вкус, теплопроводность, электрическую проводимость, магнитные и оптические свойства, диэлектрическую проницаемость и т.д.

Химические свойства вещества — это совокупность данных о том, с какими веществами и при каких условиях реагирует данное вещество и в какие другие вещества оно при этом превращается.

Например, физические свойства воды: бесцветная жидкость (обычные условия), без цвета, запаха и вкуса, плотность (н.у.) равна 1 г/см3, температуры кипения и плавления соответственно 100 °С и 0 °С, плохо проводит электрический ток. Химические свойства воды: взаимодействует с кислотными и основными оксидами, некоторыми металлами, при электролизе разлагается на водород и кислород.

Свойства вещества зависят от его состава и строения. Различают качественный и количественный состав вещества.

Качественный состав — это природа атомов, образующих вещество. Количественный состав — это число атомов каждого элемента в составе молекулы или в формульной единице вещества.

Например, вещество гидроксид натрия состоит из атомов натрия, кислорода и водорода (качественный состав), причем в формульной единице вещества, NaOH, мольное отношение атомов равно 1:1:1 (количественный состав).

Под строением вещества понимается природа его структурных единиц (молекулы — в случае веществ молекулярного строения или формульные единицы — для веществ немолекулярного строения), взаимное положение атомов и структурных единиц, длины связей, валентные углы, распределение электронной плотности в молекуле или формульной единице. Например, именно о строении идет речь, когда мы говорим, что вещество вода состоит из молекул, молекулы воды имеют угловое строение (валентный угол равен 105°), связь в молекуле ковалентная полярная.

Каждое вещество имеет свое название (названия). Названия бывают:

  • международные (систематические): NaCl — хлорид натрия; KNO3 — нитрат калия; H2SO4 — сульфат водорода;
  • традиционные (привычные): H2SO4 — серная кислота; H3PO4 — фосфорная кислота;
  • специальные: NH3 — аммиак; H2O — вода; H2S — сероводород;
  • тривиальные: олеум, норвежская селитра, угарный газ, пирит, галит, сусальное золото.

В зависимости от качественного состава вещества делят на простые и сложные. Простые вещества состоят из атомов одного элемента, причем число атомов в структурной единице простого вещества может быть разным: аргон Ar, медь Cu, водород Н2, кислород О2, белый фосфор Р4, ромбическая сера S8. Сложные вещества (химические соединения) состоят из атомов различных элементов. Например, вода Н2О, аммиак NH3, метан CH4. Сложные вещества, в отличие от простых, можно разложить на несколько других простых и/или сложных веществ:

2H2O →электролиз 2H2↑ + O2↑

2KNO3→t° 2KNO2 + O2↑

CaCO3→t° CaO + CO2↑

В свою очередь простые вещества делятся на неметаллы и металлы. Неметаллы, как правило, плохо проводят теплоту и электрический ток, при обычных условиях могут быть жидкими (бром), твердыми (кремний, бор, сера) или газообразными (водород, кислород, азот, хлор). Металлы (медь, железо, кальций) хорошо проводят электрический ток и теплоту, твердые при обычных условиях (кроме ртути), ковкие, непрозрачные.

Сложные вещества классифицируются:

  • по происхождению (органические и неорганические);
  • составу (бинарные, т.е. состоящие из атомов двух различных элементов — CaO, H2O, PH3, и многоэлементные, состоящие из атомов трех и более различных элементов — H3PO4, CH3COOH).

Бинарные вещества в свою очередь делятся на оксиды (CuO, K2O), нитриды (Ca3N2), фосфиды (Mg3P2), карбиды (CaC2), гидриды (NaH), галогениды (KCl, FeBr3) и халькогениды (K2S, CS2, Al2Se3).

Среди многоэлементных веществ различают соли, гидроксиды (кислородсодержащие кислоты, основания и амфотерные гидроксиды), комплексные соединения (K3[Al(OH)6], Na2[Zn(OH)4]) и кристаллогидраты (CuSO4 ⋅ 5H2O, Na2SO4 ⋅ 7H2O). Комплексные соединения содержат внешнюю и внутреннюю (указана в квадратных скобках) сферы. Частицы, образующие внутреннюю сферу соединения, очень устойчивы и в водных растворах существуют самостоятельно: [Al(OH)6]3−, [Zn(OH)4]2−.

При записи формул бинарных соединений вначале, как правило, записывается символ менее электроотрицательного элемента. Исключения: аммиак NH3, гидразин N2H4, углеводороды CH4, C2H2 и др., фосфин PH3.

Физические и химические явления

В природе с веществами происходят различные изменения (явления), которые принято классифицировать на химические и физические.

Читайте также:  С какими свойствами пространства и времени связаны законы сохранения

Физические явления — это изменения агрегатного состояния, скорости движения, температуры и формы тел. При этих явлениях новые вещества не образуются. Например, таяние снега, испарение воды, возгонка (сублимация) сухого льда СО2 (сублимация — переход вещества при нагревании из твердого состояния в газообразное, минуя жидкое).

К физическим явлениям относятся также ядерные реакции:

B510+n01→L37i+H24e

и радиоактивные превращения:

R88226a→R86222n+H24e

В этих процессах новые вещества хотя и образуются, однако это связано с изменением природы атомов.

Химические явления, или химические реакции — это изменения веществ, процесс их превращения в другие вещества, протекающий без изменения природы атомов (атомы в химических реакциях сохраняются).

В результате химических явлений могут изменяться:

  • как качественный состав, так и строение веществ:

BaCl2 + H2SO4 = BaSO4 + 2HCl

  • только строение веществ с сохранением качественного и количественного состава:

CH3–CH2–CH=CH2→t°, кат. CH3–CH=CH–CH3

C (алмаз) →t° C (графит);

  • количественный состав (с сохранением качественного) и строение:

3O2 = 2O3

2NO → N2O4

1. В результате химических явлений молекулы (формульные единицы) разрушаются, а атомы не изменяются (сохраняются).

2. Ядерные реакции и радиоактивные превращения относятся к физическим явлениям.

Каждому химическому явлению сопутствует физическое, которое может быть зафиксировано непосредственно нашими органами чувств или специальными приборами. К числу важнейших физических признаков химических явлений относятся выделение газа, выпадение или растворение осадка, изменение окраски, выделение или поглощение теплоты, излучение света, появление запаха.

Следует иметь в виду, что само по себе каждое из отмеченных физических явлений еще не будет однозначным признаком химической реакции. Например, если ударить молотком по куску железа, то выделится тепло и железо нагреется (механическая энергия переходит в тепловую), однако новые вещества при этом не образуются. Откроем флакон с духами — появится запах, но и в этом случае новые вещества не образуются. Оба описанных явления относятся к физическим. Однозначный признак химической реакции — это образование новых веществ.

Закон сохранения массы вещества

Поскольку при химических реакциях атомы не исчезают и их природа сохраняется (новые атомы не образуются), то и общее число атомов до и после реакции остается неизменным. Отсюда следует закон сохранения массы в химических реакциях (М.В. Ломоносов, 1748; А. Лавуазье, 1789): масса веществ, вступивших в химическую реакцию, равна массе продуктов.

Отметим, что этот закон справедлив только в практическом смысле, так как из-за взаимосвязи массы и энергии выделение или поглощение теплоты (энергии) в химических реакциях должно приводить к тому, что массы исходных веществ и продуктов будут различаться. Оценим численное значение этого различия.

Связь массы и энергии выражается уравнением А. Эйнштейна:

Е = mc
2,

где c — скорость света (c = 3 ⋅ 108 м/с).

Отсюда следует, что изменение массы

Δm=ΔEc2.

Для химических реакций значение ΔЕ(Q) порядка нескольких сотен килоджоулей, поэтому при огромной скорости света значения Δm получаются чрезвычайно малыми (≈ 10−9 г) и не поддаются непосредственному измерению. (Изменение энергии огромно в ядерных реакциях, например процессах образования ядер атомов из протонов и нейтронов. Это приводит к так называемому дефекту масс, суть которого состоит в том, что масса ядра атома всегда меньше общей суммы масс составляющих его протонов и нейтронов.) Тем не менее, более правильно говорить о сохранении не только массы, но и энергии (т.е. материи) в химических реакциях:

суммарные масса и энергия веществ, вступающих в химическую реакцию, равны суммарным массам и энергии продуктов реакции.

Чистые вещества и смеси

В природе вещества встречаются как в индивидуальном виде (так называемые чистые вещества), так и (чаще) в виде смесей.

Смесь — система, состоящая из двух и более разных веществ, не изменяющих свои свойства в результате смешивания. Примеры смесей: молоко, бетон, дым, туман, пена.

1. Абсолютно чистых веществ в природе нет и быть не может.

2. Смеси к веществам не относятся.

Вещество считают чистым (индивидуальным), если содержание примесей в нем настолько мало, что практически не влияет на физические и химические свойства вещества.

Чистые сложные вещества следует отличать от смесей (табл. 1.1).

Таблица 1.1

Различия между смесями и сложными веществами

Сложное веществоСмесь веществ
Образуется в результате химической реакцииОбразуется при смешивании
Физические и химические свойства отдельных веществ, из которых получено сложное вещество, не сохраняютсяФизические и химические свойства веществ, образующих смесь, сохраняются (исключение — растворы)
Имеет определенный качественный и количественный состав, который может быть выражен химической формулойСостав произвольный и не может выражаться определенной химической формулой
Разлагается на составные части только в химических реакцияхМожно разделить на составные компоненты сравнительно простыми физическими методами (выпаривание, фильтрование и т.д.)
Физические свойства постоянныеФизические свойства не постоянные

Например, при нагревании железных опилок с серой образуется новое химическое вещество с определенным качественным и количественным составом — сульфид железа(II) FeS. В составе FeS химические свойства веществ железо и сера утрачены, не проявляются. Разложить сульфид железа(II) на отдельные простые вещества железо и серу простыми физическими методами нельзя. Плотность сульфида железа(II) постоянна, магнитом это вещество не притягивается.

Смешаем железные опилки и серу без нагревания. Во-первых, смешивать эти вещества можно в любых соотношениях (состав смеси произвольный и не имеет определенной формулы), во-вторых, железо и сера не утратили своих свойств (в составе смеси железо так же притягивается магнитом, как и индивидуальное железо); эту смесь можно разделить на отдельные компоненты с помощью магнита или воды (сера водой не смачивается и остается на ее поверхности), ее плотность не постоянна и возрастает с увеличением содержания железа.

Смеси делятся на однородные и неоднородные. В однородных (гомогенных) смесях отдельные компоненты нельзя различить не только невооруженным глазом, но и с помощью микроскопа. Однородными смесями являются растворы. В неоднородных (гетерогенных) смесях отдельные компоненты можно различить невооруженным глазом (смесь бензина и воды) или с помощью микроскопа (сливки). Неоднородные смеси часто называются механическими.

Из неоднородных смесей отдельные компоненты выделяют:

  • отстаиванием (смесь воды и подсолнечного масла, воды и глины);
  • фильтрованием (смесь воды и глины, воды и осадка BaSO4);
  • с помощью магнита (смесь железных и древесных опилок, железа и серы).

Однородную смесь разделяют на отдельные вещества:

  • выпариванием (смесь NaCl и H2O),
  • дистилляцией (перегонкой); этот метод основан на различии температур кипения компонентов.

Примеры разделения однородных смесей методом перегонки:

а) нефть представляет собой смесь различных углеводородов. При постепенном нагревании нефти происходит ее разделение на отдельные фракции (процесс называется ректификацией) со все большей молярной массой углеводородов;

б) для получения азота и кислорода из воздуха последний предварительно повышением давления и понижением температуры переводят в жидкое состояние. Затем полученную жидкую смесь нагревают, вначале испаряется азот (его молекулы более легкие), оставшаяся жидкость представляет собой чистый кислород.

Примеры неоднородных смесей: томатный сок, шоколад, взвесь глины в воде, смесь железных и древесных опилок.

Примеры однородных смесей: нашатырный спирт — смесь NH3 и H2O; соляная кислота — смесь HCl и H2O; раствор этанола в воде.

Источник