Какие есть свойство корней

Какие есть свойство корней thumbnail

Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств , изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства  n-ой степени.

Свойства корней

Мы поговорим о свойствах.

  1. Свойство умноженных чисел a и b, которое представляется как равенствоa·b=a·b. Его можно представить в виде множителей, положительных или равных нулю a1, a2, …, ak как a1· a2· …· ak=a1· a2· …· ak;
  2. из частного a:b= a:b,  a≥0, b>0, он также может записываться в таком виде ab=ab;
  3. Свойство из степени числа a с четным показателем a2·m=am при любом числе a, например, свойство из квадрата числа a2=a.

В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a·b=a·b трансформируется как a·b=a·b. Свойства для равенства часто используются для упрощения сложных уравнений.

Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.

Первым делом, необходимо доказать свойства квадратного корня a·b=a·b. Согласно определению , необходимо рассмотреть, что a·b – число, положительное или равное нулю, которое будет равно a·bпри возведениив квадрат. Значение выражения a·b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде (a·b)2=a2·b2. По определению квадратного корня a2=a и b2=b, то a·b2=a2·b2=a·b.

Аналогичным способом можно доказать, что из произведения k множителей a1, a2, …, ak будет равняться произведению квадратных корней из этих множителей. Действительно, a1·a2· …· ak2=a12· a22· …· ak2=a1· a2· …· ak.

Из этого равенства следует, что a1· a2· …· ak=a1· a2· …· ak.

Рассмотрим несколько примеров для закрепления темы.

Пример 1

3·525=3·525, 4,2·1312=4,2·1312 и 2,7·4·1217·0,2(1)=2,7·4·1217·0,2(1).

Необходимо доказать свойство арифметического квадратного корня из частного: a:b=a:b, a≥0, b>0. Свойство позволяет записать равенство a:b2=a2:b2, а a2:b2=a:b, при этом a:bявляется положительным числом или равно нулю. Данное выражение и станет доказательством.

Например, 0:16=0:16, 80:5=80:5 и 30,121=30,121.

Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенствакак a2=aЧтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a≥0 и при a<0.

Очевидно, что при a≥0 справедливо равенство a2=a. При a<0 будет верно равенство a2=-a. На самом деле, в этом случае −a>0 и (−a)2=a2. Можно сделать вывод, a2=a, a≥0-a, a<0=a. Именно это и требовалось доказать.

Рассмотрим несколько примеров.

Пример 2

52=5=5 и -0,362=-0,36=0,36.

 Доказанное свойство поможет дать обоснованиеa2·m=am, где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a2·m выражением (am)2, тогда a2·m=(am)2=am.

Пример 3

38=34=34 и (-8,3)14=-8,37=(8,3)7.

Свойства корня n-ой степени

Для начала необходимо рассмотреть основные свойства корней n-ой степени:

  1. Свойство из произведения чисел a и b, которые положительны или равны нулю, можно выразить в качестве равенства a·bn=an·bn, данное свойство справедливо для произведения k чисел a1, a2, …, ak как a1· a2· …·akn=a1n· a2n· …·akn;
  2.  из дробного числа обладает свойством abn=anbn, где a – любое действительное число, которое положительно или равно нулю, а b – положительное действительное число;
  3. При любом a и четных показателях n=2·m справедливо a2·m2·m=a, а при нечетных n=2·m−1 выполняется равенство a2·m-12·m-1=a.
  4. Свойство извлечения из amn=an·m, где a – любое число, положительное или равное нулю, n и m – натуральные числа, это свойство также может быть представлено в виде …ankn2n1=an1·n2…·nk;
  5. Для любого неотрицательного a и произвольных n и m, которые являются натуральными, также можно определить справедливое равенство amn·m=an;
  6. Свойство степени n из степени числа a, которое положительно или равно нулю, в натуральной степени m, определяемое равенством amn=anm;
  7. Свойство сравнения , которые обладают одинаковыми показателями: для любых положительных чисел a и b таких, что a<b, выполняется неравенство an<bn;
  8. Свойство сравнения , которые обладают одинаковыми числами под корнем: если m и n – натуральные числа, что m>n, тогда при 0<a<1 справедливо неравенство am>an, а при a>1 выполняется am<an.

Равенства, приведенные выше, являются справедливыми, если части до и после знака равно поменять местами. Они могут быть использованы и в таком виде. Это зачастую применяется во время упрощения или преобразовании выражений.

Доказательство приведенных выше свойств корня основывается на определении, свойствах степени и определении модуля числа. Данные свойства необходимо доказать. Но все по порядку.

  1. Первым делом докажем свойства корня n-ой степени из произведения a·bn=an·bn. Для a и b, которые являютсяположительными или равными нулю, значение an·bn также положительно или равно нулю, так как является следствием умножения неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство an·bnn=ann·bnn. По определению корня n-ой степени ann=a и bnn=b, следовательно, an·bnn=a·b. Полученное равенство – именно то, что и требовалось доказать.

Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a1, a2, …, an выполняется a1n· a2n· …· akn ≥0 .

Приведем примеры использования свойства корня n-ой степени из произведения: 5·2127=57·2127 и 8,34·17,(21)4·34·574=8,3·17,(21)·3·574.

  1. Докажем свойство корня из частного  abn=anbn. При a≥0 и b>0выполняется условие anbn≥0, а anbnn=annbnn=ab.

Покажем примеры:

Читайте также:  Какие углы называются смежными свойство смежных углов

Пример 4

8273=83273 и  2,310:2310=2,3:2310.

  1. Для следующего шага необходимо доказать свойстваn-ой степени из числа в степени n. Представим это в виде равенства a2·m2·m=a и a2·m-12·m-1=a для любого действительного a и натурального m. При a≥0 получаем a=a и a2·m=a2·m, что доказывает равенство a2·m2·m=a, а равенство a2·m-12·m-1=a очевидно. При a<0 получаем соответственно a=-a и a2·m=(-a)2·m=a2·m. Последняя трансформация числа справедлива согласно свойству степени. Именно это доказывает равенство a2·m2·m=a, а a2·m-12·m-1=a будет справедливо, так как за  нечетной степени рассматривается -c2·m-1=-c2·m-1 для любого числа c, положительного или равного нулю.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько примеров с использованием свойства:

Пример 5

744=7=7, (-5)1212=-5=5, 088=0=0, 633=6 и (-3,39)55=-3,39.

  1. Докажем следующее равенство amn=an·m. Для этого необходимо поменять числа до знака равно и после него местами an·m=amn. Это будет означать верная запись . Для a, которое является положительнымили равно нулю, из вида amn является числом положительным или равным нулю. Обратимся к свойству возведения степени в степень и определению . С их помощью можно преобразовать равенства в виде amnn·m=amnnm=amm=a. Этим доказано рассматриваемое свойство корня из корня.

Аналогично доказываются и другие свойства. Действительно, …ankn2n1n1·n2·…·nk=…ankn3n2n2·n3·…·nk=…ankn4n3n3·n4·…·nk=…=anknk=a.

Например,735=75·3 и 0,00096=0,00092·2·6=0,000924.

  1. Докажем следующее свойствоamn·m=an. Для этого необходимо показать, что an – число, положительное или равное нулю. При возведении в степень n·m равно am. Если число a является положительным или равным нулю, то n-ой степени из числа a является числом положительным или равным нулю При этом an·mn=annm, что и требовалось доказать.

Для того, чтобы закрепить полученные знания, рассмотрим несколько примеров

2312=24.

  1. Докажем следующее свойство – свойство корня из степени вида amn=anm. Очевидно, что при a≥0 степень anm является неотрицательным числом. Более того, ее n-ая степень равна am, действительно, anmn=anm·n=annm=am. Этим и доказано рассматриваемое свойство степени.

Например, 2353=2335.

  1. Необходимо доказательство, что для любых положительных чисел a и b выполнено условие a<b. Рассмотрим неравенство an<bn. Воспользуемся методом от противного an≥bn. Тогда, согласно свойству, о котором говорилось выше, неравенство считается верным ann≥bnn, то есть, a≥b. Но это не соответствует условию a<b. Следовательно, an<bn при a<b.

Для примера приведем 124<15234.

  1. Рассмотрим свойство корня n-ой степени. Необходимо для начала рассмотреть первую часть неравенства. При m>n и 0<a<1справедливо am>an. Предположим, что am≤an. Свойства позволят упростить выражение до anm·n≤amm·n. Тогда, согласно свойствам степени с натуральным показателем, выполняется неравенство anm·nm·n≤amm·nm·n, то есть, an≤am. Полученное значение при m>n и 0<a<1 не соответствует свойствам, приведенным выше.

Таким же способом можно доказать, что при m>n и a>1справедливо условие am<an.

Для того, чтобы закрепить приведенные свойства, рассмотрим несколько конкретных примеров. Рассмотрим неравенства, используя конкретные числа.

Пример 6

0,73>0,75 и 12>127.

Источник

Корень, его свойства, извлечение корня

В этой статье мы разберем основные свойства корней. Начнем со свойств арифметического квадратного корня, дадим их формулировки и приведем доказательства. После этого займемся свойствами арифметического корня n-ой степени.

Свойства квадратного корня

В этом пункте мы разберемся со следующими основными свойствами арифметического квадратного корня:

  1. свойство квадратного корня из произведения двух неотрицательных действительных чисел a и b, задающееся равенством вида Какие есть свойство корней, его можно распространить на произведение k неотрицательных множителей a1, a2, …, ak как Какие есть свойство корней;
  2. корень из частного Какие есть свойство корней, которое часто записывают с помощью дробей как Какие есть свойство корней;
  3. свойство арифметического квадратного корня из степени числа a с четным показателем Какие есть свойство корней при любом действительном a, в частности, свойство квадратного корня из квадрата числа Какие есть свойство корней.

В каждом из записанных равенств можно левую и правую части поменять местами, например, равенство Какие есть свойство корней можно переписать как Какие есть свойство корней. В таком «обратном» виде свойства арифметического квадратного корня применяются при упрощении выражений столь же часто, как и в «прямом» виде.

Доказательство первых двух свойств базируется на определении арифметического квадратного корня и на свойствах степени с натуральным показателем. А для обоснования последнего свойства арифметического квадратного корня придется вспомнить определение модуля числа.

Итак, начнем с доказательства свойства арифметического квадратного корня из произведения двух неотрицательных чисел: Какие есть свойство корней. Для этого, согласно определению арифметического квадратного корня, достаточно показать, что Какие есть свойство корней – неотрицательное число, квадрат которого равен a·b. Сделаем это. Значение выражения Какие есть свойство корней неотрицательно как произведение неотрицательных чисел. Свойство степени произведения двух чисел позволяет записать равенство Какие есть свойство корней, а так как по определению арифметического квадратного корня Какие есть свойство корней и Какие есть свойство корней, то Какие есть свойство корней.

Аналогично доказывается, что арифметический квадратный корень из произведения k неотрицательных множителей a1, a2, …, ak равен произведению арифметических квадратных корней из этих множителей. Действительно, . Из этого равенства следует, что Какие есть свойство корней.

Приведем примеры: Какие есть свойство корней и Какие есть свойство корней.

Теперь докажем свойство арифметического квадратного корня из частного: Какие есть свойство корней. Свойство частного в натуральной степени позволяет нам записать равенство Какие есть свойство корней, а Какие есть свойство корней, при этом Какие есть свойство корней есть неотрицательное число. Это и является доказательством.

Например, Какие есть свойство корней и Какие есть свойство корней.

Пришло время разобрать свойство арифметического квадратного корня из квадрата числа, в виде равенства оно записывается как Какие есть свойство корней. Для его доказательства рассмотрим два случая: при a≥0 и при a<0.

Читайте также:  Какие свойства есть у стали

Очевидно, что при a≥0 справедливо равенство Какие есть свойство корней. Также легко заметить, что при a<0 будет верно равенство Какие есть свойство корней. Действительно, в этом случае −a>0 и (−a)2=a2. Таким образом, Какие есть свойство корней, что и требовалось доказать.

Приведем примеры: Какие есть свойство корней и Какие есть свойство корней.

Только что доказанное свойство квадратного корня позволяет обосновать следующий результат Какие есть свойство корней, где a – любое действительное число, а m – любое натуральное число. В самом деле, свойство возведения степени в степень позволяет заменить степень a2·m выражением (am)2, тогда Какие есть свойство корней.

К примеру, Какие есть свойство корней и Какие есть свойство корней.

Свойства корня n-ой степени

Сначала перечислим основные свойства корней n-ой степени:

  1. свойство корня из произведения двух неотрицательных чисел a и b, ему отвечает равенство Какие есть свойство корней, это свойство распространяется на произведение k неотрицательных чисел a1, a2, …, ak как Какие есть свойство корней;
  2. корень из дроби обладает следующим свойством Какие есть свойство корней, где a – любое неотрицательное действительное число, а b – положительное действительное число;
  3. при любом действительном a и четных показателях n=2·m справедливо Какие есть свойство корней, а при нечетных n=2·m−1 выполняется равенство Какие есть свойство корней.
  4. свойство корня из корня Какие есть свойство корней, где a – любое неотрицательное число, n и m – натуральные числа, это свойство можно распространить как Какие есть свойство корней;
  5. для любого неотрицательного a и произвольных натуральных n и m справедливо равенство Какие есть свойство корней;
  6. свойство корня степени n из степени неотрицательного числа a в натуральной степени m, определяемое равенством Какие есть свойство корней;
  7. свойство сравнения корней с одинаковым показателем: для любых положительных чисел a и b таких, что a<b, выполняется неравенство Какие есть свойство корней;
  8. свойство сравнения корней с одинаковыми подкоренными числами: если m и n такие натуральные числа, что m>n, тогда при 0<a<1 справедливо неравенство Какие есть свойство корней, а при a>1 выполняется Какие есть свойство корней.

Все записанные равенства остаются справедливыми, если в них поменять местами левую и правую части. В таком виде они употребляются также часто, в основном при упрощении и преобразовании выражений.

Доказательство всех озвученных свойств корня основывается на определении арифметического корня n-ой степени, на свойствах степени и на определении модуля числа. Докажем их в порядке очередности.

  1. Начнем с доказательства свойства корня n-ой степени из произведения Какие есть свойство корней. Для неотрицательных a и b значение выражения Какие есть свойство корней тоже неотрицательно, как произведение неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство Какие есть свойство корней. По определению арифметического корня n-ой степени Какие есть свойство корней и Какие есть свойство корней, следовательно, Какие есть свойство корней. Этим доказано рассматриваемое свойство корня.

    Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a1, a2, …, an выполняется Какие есть свойство корней и .

    Приведем примеры использования свойства корня n-ой степени из произведения: Какие есть свойство корней и Какие есть свойство корней.

  2. Докажем свойство корня из частного Какие есть свойство корней. При a≥0 и b>0 выполняется условие Какие есть свойство корней, а Какие есть свойство корней.

    Покажем примеры: Какие есть свойство корней и Какие есть свойство корней.

  3. Двигаемся дальше. Докажем свойство корня n-ой степени из числа в степени n. То есть, докажем, что Какие есть свойство корней и Какие есть свойство корней для любого действительного a и натурального m. При a≥0 имеем Какие есть свойство корней и Какие есть свойство корней, что доказывает равенство Какие есть свойство корней, а равенство Какие есть свойство корней очевидно. При a<0 имеем Какие есть свойство корней и Какие есть свойство корней (последний переход справедлив в силу свойства степени с четным показателем), что доказывает равенство Какие есть свойство корней, а Какие есть свойство корней справедливо в силу того, что при разговоре о корне нечетной степени мы приняли Какие есть свойство корней для любого неотрицательного числа c.

    Приведем примеры использования разобранного свойства корня: и Какие есть свойство корней.

  4. Переходим к доказательству свойства корня из корня Какие есть свойство корней. Поменяем местами правую и левую части, то есть, докажем справедливость равенства Какие есть свойство корней, которое будет означать справедливость исходного равенства. Для неотрицательного числа a корень из корня вида Какие есть свойство корней является неотрицательным числом. Вспомнив свойство возведения степени в степень, и воспользовавшись определением корня, можно записать цепочку равенств вида Какие есть свойство корней. Этим доказано рассматриваемое свойство корня из корня.

    Аналогично доказывается и свойство корня из корня из корня и т.д. Действительно, Какие есть свойство корней.

    Например, Какие есть свойство корней и Какие есть свойство корней.

  5. Докажем следующее свойство сокращения показателя корня Какие есть свойство корней. Для этого в силу определения корня достаточно показать, что Какие есть свойство корней есть неотрицательное число, которое при возведении в степень n·m равно am. Сделаем это. Понятно, что если число a неотрицательное, то корень n-ой степени из числа a является неотрицательным числом. При этом Какие есть свойство корней, что и завершает доказательство.

    Приведем пример применения разобранного свойства корня: Какие есть свойство корней.

  6. Докажем следующее свойство – свойство корня из степени вида Какие есть свойство корней. Очевидно, что при a≥0 степень Какие есть свойство корней является неотрицательным числом. Более того, ее n-ая степень равна am, действительно, Какие есть свойство корней. Этим и доказано рассматриваемое свойство степени.

    Например, Какие есть свойство корней.

  7. Переходим дальше. Докажем, что для любых положительных чисел a и b, для которых выполняется условие a<b, выполняется неравенство Какие есть свойство корней. Доказательство проведем от противного. Предположим, что Какие есть свойство корней. Тогда по свойству степеней с натуральным показателем должно быть справедливым неравенство Какие есть свойство корней, то есть, a≥b. А это противоречит условию a<b. Следовательно, Какие есть свойство корней при a<b.

    Для примера приведем верное неравенство Какие есть свойство корней.

  8. Наконец, осталось доказать последнее свойство корня n-ой степени. Докажем сначала первую часть этого свойства, то есть, докажем, что при m>n и 0<a<1 справедливо неравенство Какие есть свойство корней. Доказательство проведем методом от противного. Предположим, что при указанных выше условиях Какие есть свойство корней. Свойства корня позволяют это неравенство переписать в виде Какие есть свойство корней. Тогда в силу свойств степени с натуральным показателем должно выполняться неравенство Какие есть свойство корней, то есть, an≤am. А полученное неравенство при m>n и 0<a<1 противоречит свойствам степени с натуральным показателем.

    Аналогично методом от противного доказывается, что при m>n и a>1 выполняется условие Какие есть свойство корней.

    Приведем примеры применения доказанного свойства корня в конкретных числах. К примеру, верны неравенства Какие есть свойство корней и Какие есть свойство корней.

Читайте также:  Какие вы знаете свойства веществ приведите примеры

Список литературы.

  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 – 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

Источник

Ñâîéñòâà êâàäðàòíûõ êîðíåé.

  • Êâàäðàòíûé êîðåíü;
  • Êâàäðàòíûé êîðåíü åñëè à ≥ 0 è b > 0;
  • Êâàäðàòíûé êîðåíü åñëè à ≥ 0 è n — íàòóðàëüíîå ÷èñëî;
  • Êâàäðàòíûé êîðåíü åñëè à ≥ 0 è n — íàòóðàëüíîå ÷èñëî.
  • Îáðàòèòå âíèìàíèå, (−5)2 = 25, íî Êâàäðàòíûé êîðåíü.
  • Êîðåíü íå ìîæåò ðàâíÿòüñÿ íåïîëîæèòåëüíîìó ÷èñëó.
  • Êâàäðàòíûé êîðåíü — íåâîçìîæíî âû÷èñëèòü, êîðåíü èç îòðèöàòåëüíîãî ÷èñëà íå ñóùåñòâóåò.
  • Åñëè Êâàäðàòíûé êîðåíü, òî b2 = a, ïðè à ≥ 0 è b ≥ 0, ýòî îäíî èç âàæíåéøèõ ñâîéñòâ êîðíåé.
  • Âàæíî ïîíèìàòü, ÷òî êâàäðàòíûé êîðåíü – ýòî äðóãàÿ çàïèñü ñòåïåíè ½:

Êâàäðàòíûé êîðåíü

Íàïðèìåð:

Êâàäðàòíûé êîðåíü

Êâàäðàòíûé êîðåíü

  • Âåëè÷èíà êîðíÿ íå èçìåíèòñÿ, åñëè åãî ïîêàçàòåëü óâåëè÷èòü â n ðàç è îäíîâðåìåííî âîçâåñòè ïîäêîðåííîå çíà÷åíèå â ñòåïåíü n:
  •   Âåëè÷èíà êîðíÿ íå èçìåíèòñÿ, åñëè ïîêàçàòåëü ñòåïåíè óìåíüøèòü â n ðàç è îäíîâðåìåííî èçâëå÷ü êîðåíü n-é ñòåïåíè èç ïîäêîðåííîãî çíà÷åíèÿ:
  •  Êîðåíü îò ÷àñòíîãî ðàâåí ÷àñòíîìó îò äåëåíèÿ êîðíÿ èç äåëèìîãî íà êîðåíü èç äåëèòåëÿ (ïîêàçàòåëè êîðíåé äîëæíû áûòü îäèíàêîâûìè):

  Îáðàòíî:

  •   ×òîáû âîçâåñòè êîðåíü â ñòåïåíü, äîñòàòî÷íî âîçâåñòè â ýòó ñòåïåíü ïîäêîðåííîå çíà÷åíèå:

  Îáðàòíî, ÷òîáû èçâëå÷ü êîðåíü èç ñòåïåíè, äîñòàòî÷íî âîçâåñòè â ýòó ñòåïåíü êîðåíü èç îñíîâàíèÿ ñòåïåíè:

  •   Êîðåíü èç ïðîèçâåäåíèÿ íåñêîëüêèõ ñîìíîæèòåëåé ðàâåí ïðîèçâåäåíèþ êîðíåé òîé æå ñòåïåíè èç ýòèõ ñîìíîæèòåëåé (òîæå âàæíîå ñâîéñòâî êîðíåé):

  Îáðàòíî, ïðîèçâåäåíèå êîðíåé îäíîé è òîé æå ñòåïåíè ðàâíî êîðíþ òîé æå ñòåïåíè èç ïðîèçâåäåíèÿ ïîäêîðåííûõ çíà÷åíèé:

Êâàäðàòíûé êîðåíü êàê ýëåìåíòàðíàÿ ôóíêöèÿ.

Êâàäðàòíûé êîðåíü – ýòî ýëåìåíòàðíàÿ ôóíêöèÿ è ÷àñòíûé ñëó÷àé ñòåïåííîé ôóíêöèè Ãðàôèê ôóíêöèè êâàäðàòíîãî êîðíÿ ïðåîáðàçîâàíèÿ ãðàôèêîâ ïðè Ãðàôèê ôóíêöèè êâàäðàòíîãî êîðíÿ ïðåîáðàçîâàíèÿ ãðàôèêîâ. Àðèôìåòè÷åñêèé êâàäðàòíûé êîðåíü ÿâëÿåòñÿ ãëàäêèì ïðè Ãðàôèê ôóíêöèè êâàäðàòíîãî êîðíÿ ïðåîáðàçîâàíèÿ ãðàôèêîâ, à â íóëå îí íåïðåðûâåí ñïðàâà, íî íå äèôôåðåíöèðóåòñÿ (îòëè÷èòåëüíîå ñâîéòâî êîðíåé).

Êàê ôóíêöèÿ êîìïëåêñíûé ïåðåìåííûé êîðåíü — äâóçíà÷íàÿ ôóíêöèÿ, ó êîòîðîé ëèñòû ñõîäÿòñÿ â íóëå.

Ñâîéñòâî êîðíÿ êàê ôóíêöèè.

Íà [0; +∞) ìîæíî ïîñòàâèòü êàæäîìó ÷èñëó õ â ñîîòâåòñòâèå åäèíñòâåííîå ÷èñëî êîðåíü n-ñòåïåíè èç x ïðè ëþáîì çíà÷åíèè n.

Ôóíêöèè êîðíÿ

Òî åñòü ýòî îçíà÷àåò, ÷òî íà ìíîæåñòâå [0; +∞) ìîæíî ãîâîðèòü î ôóíêöèè êîðíÿ:

Ôóíêöèè êîðíÿ

Òåïåðü îïðåäåëèì ñâîéñòâà ôóíêöèè êîðíÿ è ïîñòðîèì åå ãðàôèê.

Îñíîâíûå ñâîéñòâà êîðíÿ êàê ôóíêöèè:

Ïðîìåæóòîê [0; +∞) – ÿâëÿåòñÿ îáëàñòüþ îïðåäåëåíèÿ.

Òàê êàê íåîòðèöàòåëüíîå ÷èñëî ÿâëÿåòñÿ êîðíåì n-ñòåïåíè èç íåîòðèöàòåëüíîãî ÷èñëà, çíà÷èò ïðîìåæóòîê [0; +∞) áóäåò îáëàñòüþ çíà÷åíèÿ ôóíêöèè.

Ïîñêîëüêó ñèììåòðè÷íûì ìíîæåñòâîì íå ÿâëÿåòñÿ îáëàñòü îïðåäåëåíèÿ ôóíêöèè, ïîýòîìó äàííàÿ ôóíêöèÿ íå ÿâëÿåòñÿ íè íå÷åòíîé, íè ÷åòíîé.

Îïåðàöèÿ ïî èçâëå÷åíèþ êîðíÿ ââîäèëàñü êàê îáðàòíàÿ îïåðàöèÿ âîçâåäåíèÿ â ñîîòâåòñòâóþùóþ ñòåïåíü.

Çíà÷èò ìîæíî óòâåðæäàòü, ÷òî:

Ôóíêöèè êîðíÿ

Òåïåðü ìîæíî ïîñòðîèòü ãðàôèê ôóíêöèè êîðíÿ.

Ôóíêöèè êîðíÿ

Ïîëüçóÿñü ãðàôèêîì, ìîæíî çàïèñàòü îñòàâøèåñÿ ñâîéñòâà ôóíêöèè.

Íà ïðîìåæóòêå [0; +∞) ôóíêöèÿ âîçðàñòàåò.

Ñâåðõó ôóíêöèÿ íå îãðàíè÷åíà, íî îíà îãðàíè÷åíà ñíèçó, íàïðèìåð, ïðÿìîé ó, êîòîðàÿ = -0,5.

Íà âñåé îáëàñòè îïðåäåëåíèÿ ôóíêöèÿ âûïóêëà ââåðõ.

Ó ôóíêöèè íàèìåíüøèì çíà÷åíèåì áóäåò ÿâëÿòüñÿ 0, à íàèáîëüøåãî çíà÷åíèÿ îíà íå èìååò.

Åñëè â êàæäîé èç òî÷åê íåêîòîðîãî ïðîìåæóòêà ôóíêöèÿ äèôôåðåíöèðóåìà, òî ýòî çíà÷èò, ÷òî íà äàííîì ïðîìåæóòêå îíà íåïðåðûâíà.

Ôóíêöèè êîðíÿ

Òîãäà:

Ôóíêöèè êîðíÿ

 ëþáîé òî÷êå ïðîìåæóòêà [0; +∞) ñóùåñòâóåò ýòà ïðîèçâîäíàÿ, èñêëþ÷åíèåì ÿâëÿåòñÿ òîëüêî òî÷êà 0.

Ïîñêîëüêó â ëþáîé òî÷êå ïðîìåæóòêà (0; +∞) ôóíêöèÿ èìååò ïðîèçâîäíóþ, çíà÷èò íà ïðîìåæóòêå (0; +∞) ôóíêöèÿ äèôôåðåíöèðóåìà.

  

Èçâëå÷ü êîðåíü 2, 3, 4, 5, n ñòåïåíè îíëàéí

Íàéòè êîðåíü 2, 3, 4, 5, … n ñòåïåíè èç ëþáîãî ÷èñëà.
Èçâëå÷ü êîðåíü 2, 3, 4, 5, n ñòåïåíè îíëàéí
  

Ìàòåìàòèêà 4,5,6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ

Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ìàòåìàòèêè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ
Ìàòåìàòèêà 4,5,6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ
  

Êâàäðàòíûé êîðåíü.

Ñâîéñòâà êâàäðàòíûõ êîðíåé, äðîáíûå ñòåïåíè, êîðåíü n-íîé ñòåïåíè, ïðèìåðû âû÷èñëåíèÿ âûðàæåíèé ñ êîðíÿìè è äðóãîå.
Êâàäðàòíûé êîðåíü.
  

Ôîðìóëû ñòåïåíåé è êîðíåé.

Ôîðìóëû ñòåïåíåé èñïîëüçóþò â ïðîöåññå ñîêðàùåíèÿ è óïðîùåíèÿ ñëîæíûõ âûðàæåíèé, â ðåøåíèè óðàâíåíèé è íåðàâåíñòâ.
Ôîðìóëû ñòåïåíåé è êîðíåé.
  

Äåéñòâèÿ ñ êîðíÿìè

Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ìàòåìàòèêè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ
Äåéñòâèÿ ñ êîðíÿìè

Источник