Какие есть свойства арифметических действий
Сочетай, перемещай, свойства действий
узнавай
Напомним известные уже из арифметики главнейшие свойства действий сложения, вычитания, умножения и деления, так
как этими свойствами придется часто пользоваться и в алгебре.
Свойства сложения
Переместительный закон сложения
Сумма не изменяется от перестановки слагаемых .
Пример:
3 + 8 = 8 + 3; 5 + 2 + 4 = 2 + 5 + 4 = 4 + 2 + 5.
В общем случае:
a+b=b+a
a+b+c=c+a+b
Стоит иметь ввиду, что число слагаемых может быть и более трёх.
Сочетательный закон сложения
Сумма нескольких слагаемых не изменится, если какие-нибудь из них заменить их суммой .
Пример:
3 + 5 + 7 = 3 + (5 + 7) = 3 + 12 = 15;
4 + 7+11+6 + 5 = 7 +(4+ 5)+ (11+6) = 7 + 9+17 = 33.
В общем случае:
а + b + с = а+(b + с) = b+(а + с) и т. п.
Иногда этот закон выражают так: слагаемые можно соединять в какие угодно группы.
Чтобы прибавить к какому-либо числу сумму нескольких чисел, можно прибавить отдельно каждое слагаемое одно за другим.
Пример:
5 + (7 + 3) = (5 + 7) + 3 = 12 + 3 = 15.
В общем случае:
a+(b+c+d+…+x)=a+b+c+d+…+x
Свойства вычитания
Свойство вычитания суммы из числа
Чтобы вычесть из какого-нибудь числа сумму нескольких чисел, можно вычесть отдельно каждое слагаемое одно за другим.
Например:
20 — (5+ 8) = (20 — 5) — 8 = 15 — 8 = 7.
В общем случае:
а — (b + с + d+ …) = а — Ь — с — d — …
Свойство сложения разности чисел
Чтобы прибавить разность двух чисел, можно прибавить уменьшаемое и затем вычесть вычитаемое.
Пример:
8 + (11-5) = 8+ 11 -5= 14.
В общем случае:
а + (b — с) = а + Ь — с.
Свойство вычитания разности из числа
Чтобы вычесть разность, можно сначала прибавить вычитаемое и затем вычесть уменьшаемое.
Например:
18-(9-5) = 18 + 5-9= 14.
Вообще:
а — (Ь — с) = а + с — b.
Свойства умножения
Переместительный закон умножения
Произведение не изменится от перестановки сомножителей .
Так:
4·5 = 5·4; 3·2·5 = 2·3·5 = 5·3·2.
Вообще:
a*b = b*a; abc… =b*а*с*… = c*b*a* …
Сочетательный закон умножения
Произведение нескольких сомножителей не изменится, если какие-нибудь из них заменить их произведением .
Так:
7*3*5 = 5*(3*7) = 5*21 = 105.
Вообще:
abc = а(bс) = b(ас) и т. п.
Умножение числа на произведение чисел
Чтобы умножить какое-либо число на произведение нескольких сомножителей, можно умножить это число на
первый сомножитель, полученный результат умножить на второй сомножитель и т. д.
Так:
3*(5*4) = (3*5)*4= 15*4 = 60.
Вообще:
a•(bcd…) = {[(a·b)•c]•d}…
Чтобы умножить произведение нескольких сомножителей на какое-либо число, можно умножить на это число один
из сомножителей, оставив другие без изменения.
Так:
3 • 2 • 5 • 3 = (3 • 3) • 2 • 5 = 3 • (2 • 3) • 5 = 3 • 2 • (5 • 3).
Вообще:
(abc.. )m = (аm)bс… = а(bm)с… и т. п.
Умножение числа на сумму чисел
Чтобы умножить сумму на какое-либо число, можно каждое слагаемое умножить на это число и полученные ре-
результаты сложить.
Так:
(5 + 3)·7 = 5·7 + 3·7.
Вообще:
(а + b + с + .. .)n = an + bn + cn + …
В силу переместительного закона умножения это же свойство можно выразить так: чтобы умножить какое-либо число на
сумму нескольких чисел, можно умножить это число на каждое слагаемое отдельно и полученные результаты сложить.
Так:
5·(4 + 6) = 5·4 + 5·6.
Вообще:
r·(а + Ь + с +…) = rа + rb + rс + …
Это свойство называется распределительным законом умножения, так как умножение, производимое над суммой, распределяется на каждое слагаемое в отдельности.
Распределительный закон умножения для разности чисел
Распределительный закон можно применять и к разности.
Так:
(8 — 5) • 4 = 8 • 4 — 5 • 4;
7 • (9 — 6) = 7 • 9 — 7 • 6.
Вообще:
(а — b)с = ас — bc,
а(b — с) = ab — ас,
т. е. чтобы умножить разность на какое-либо число, можно умножить на это число отдельно уменьшаемое и вычитаемое
и из первого результата вычесть второй; чтобы умножить какое-либо число на разность, можно это число умножить
отдельно на уменьшаемое и вычитаемое и из первого результата вычесть второй.
Свойства деления
Деление суммы на число
Чтобы разделить сумму на какое-либо число, можно разделить на это число каждое слагаемое отдельно и полученные результаты сложить:
Например:
(30+12+5)/3=30/3+12/3+5/3
Вообще:
(a+b+c+…+v)/m= (a/m)+(b/m)+(c/m)+…(v/m)
Деление разности на число
Чтобы разделить разность на какое-либо число, можно разделить на это число отдельно уменьшаемое и вычитаемое
и из первого результата вычесть второй:
(20-8)/5= 20/5 — 8/5
Вообще:
(a-b)/c = (a/c) -(b/c)
Деление произведения на число
Чтобы разделить произведение нескольких сомножителей на какое-либо число, можно разделить на это число один
из сомножителей, оставив другие без изменения:
(40 • 12 • 8) : 4 = (40:4) • 12 • 8 = 10 • 12 • 8 = 40 • 12 • 2.
Вообще:
(a·b·c…) : t = (а : t)bс… = а(b : t)с… и т. д.
Деление числа на произведение
Чтобы разделить какое-либо число на произведение нескольких сомножителей, можно разделить это число на
первый сомножитель, полученный результат разделить на второй сомножитель и т.д.:
120 : (12 • 5 • 3) = [(120 : 2) : 5] : 3 = (60 : 5) : 3 = 12 : 3 = 4.
Вообще:
а : (bcd …) = [(а : b) : с] : d… и т. п.
Укажем еще следующее свойство деления:
Если делимое и делитель умножим (или разделим) на одно и то же число, то частное не изменится.
Поясним это свойство на следующих двух примерах:
1)8:3 = 8/3|,
умножим делимое и делитель, положим, на 5; тогда получим
новое частное: (8*5)/(3*5)
которое по сокращении дроби на 5 даст прежнее частное — 8/3
Вообще, какие бы числа a, b и m ни были, всегда
(am) : (bm) = а : b, что можно написать и так:
am/bm= a/b
Если частное не изменяется от умножения делимого и делителя на одно и то же число, то оно не изменяется и от деления делимого и делителя на одно и то же число, так как деление на какое-нибудь число равносильно умножению на обратное число.
Комментирование и размещение ссылок запрещено.
Источник
№ | Название свойства (правила) | Математическая запись | Формулировка свойства (правила) |
Переместительное свойство сложения | А + В = В + А | От перестановки слагаемых значение суммы не меняется (о перестановке слагаемых) | |
Прибавление нуля | А + 0 = А | ||
Сочетательное свойство сложения | (А + В) + С = А + (В + С) | Если при сложении нескольких чисел сумму рядом стоящих слагаемых заменить её значением, значение общей суммы не изменится (о группировке слагаемых, о перестановке скобок) | |
Переместительное свойство умножения | А * В = В * А | От перестановки множителей значение произведения не изменится (о перестановке множителей) | |
Умножение единицы и на единицу, деление на единицу | 1 * А = А А * 1 = А А : 1 = А | ||
Умножение нуля и на нуль | 0 * А = 0 А * 0 = 0 | ||
Сочетательное свойство умножения | (А * В) * С = А * (В * С) | Если при умножении нескольких чисел произведение рядом стоящих множителей заменить его значением, значение общего произведения не изменится (о группировке множителей, о перестановке скобок) | |
Невозможность деления на нуль | А : 0 | ||
Распределительное свойство умножения относительно сложения | А*(В + С) = А* В + А* С (А + В)*С = А*С + В*С | Значение произведения суммы на число не изменится, если на него умножить каждое слагаемое и полученные результаты сложить | |
Распределительное свойство умножения относительно вычитания | А* (В – С) + А*В – А*С (А – В)*С = А*С – В*С | ||
Монотонность сложения | А = В А + С = В + С | ||
Монотонность умножения | А = В А*С = В*С |
Приложение № 3
Программа М.И. Моро и др. УМК «Школа России», 2класс, концентр «Сотня», раздел: «Арифметические действия», тема: «Умножение и деление»
Логико–математический анализ темы урока: «Деление»
1.Определения смысла деления с позиции математики
В курсе математики существуют различные трактовки конкретного смысла действия деления. Это связано с тем, что трактовки определений смысла деления могут основываться на различных математических теориях: аксиоматической, теории множеств, теории скалярных величин. Рассмотрим эти определения:
а) при аксиоматическом построении теории натуральных чисел деление определяется как операция, обратная умножению. Поэтому между делением и умножением устанавливается тесная взаимосвязь. Если a*b=c, то, зная произведение c и один из множителей, можно при помощи деления найти другой множитель.
Определение: Делением натуральных чисел a и b называется операция, удовлетворяющая условию: a: b=c тогда и только тогда, когда b*c=a.
б) с точки зрения теории множеств деление чисел связывается с разбиением конечного множества на равночисленные попарно непересекающиеся подмножества и с его помощью решаются две задачи: отыскание числа элементов в каждом подмножестве разбиения (деление на равные части) и отыскание числа таких подмножеств (деление по содержанию).
Определение: Если a=n(A) и множество A разбито на попарно непересекающиеся равночисленные подмножества и если:
b – число элементов в каждом подмножестве, то частное a: b – это число таких подмножеств;
b – число подмножеств, то частное a: b – это число элементов в каждом подмножестве.
в) с точки зрения теории скалярных величин деление натуральных чисел связано с переходом в процессе измерения к новой единице величины, более крупной.
Определение: если натуральное число a – мера величины X при единице величины E , а натуральное число b – мера новой единицы величины E1 при единице величины E , то частное a: b – это мера величины X при единице величины E1:
a: b=mE(X): mE(E1)=mE1(X)
2. Анализ методического подхода к изучению конкретного смысла деления в начальном курсе математики
В программе М.И.Моро и др. УМК «Школа России» при изучении конкретного смысла деления за основу берется теоретико – множественный подход. С точки зрения этого подхода конкретный смысл деления раскрывается как связь между операцией разбиения конечного множества на равночисленные попарно непересекающиеся подмножества и действием деления. Изучение смысла действия деления осуществляется последовательно через анализ младшими школьниками разного рода ситуаций, связанных с выполнением операции разбиения конечного множества на равночисленные попарно непересекающиеся подмножества. Сначала ученикам предлагаются ситуации, связанные с выполнением операции разбиения конечного множества на равночисленные попарно непересекающиеся подмножества с заданным числом элементов и неизвестным количеством этих подмножеств (на примерах задач на деление по содержанию). Затем, предлагаются ситуации, связанные с выполнением операции разбиения конечного множества на равночисленные попарно непересекающиеся подмножества с неизвестным числом элементов и заданным количеством этих подмножеств (на примере задач на деление на равные части). В учебнике не дается явного определения смысла деления, авторы используют контекстуальный способ неявного определения (через анализ ситуаций). Такой способ определения позволяет учащимся понять, что деление – это арифметическое действие, которое связано с разбиением групп предметов поровну (на равные части). При ознакомлении со смыслом деления используется индуктивный путь познания, поэтому чтобы ученики смогли выделить и понять существенные признаки деления необходимо рассмотреть достаточное количество разнообразных ситуаций.
Психолого – дидактический анализ знания
Предмет усвоения: знание конкретного смысла деления
Существенные признаки:
Термин: деление
Родовое отношение: арифметическое действие
Видовой признак: действие, связанное с разбиением групп предметов поровну (на равные части)
Несущественные признаки:
фабула (сюжет рассматриваемых ситуаций),
числовые характеристики (число элементов множества, число элементов в каждом из равночисленных подмножеств, количество подмножеств)
Средства усвоения:
знания: конкретного смысла вычитания, конкретного смысла умножения;
умения: практически выполнять операцию разбиения множества на равночисленные попарно непересекающиеся подмножества и находить численность разбиения.
Этап усвоения: восприятие, осмысление
Действие, направленное на формирование знания конкретного смысла деления:
умение устанавливать связь между операцией разбиения множества на равночисленные попарно непересекающиеся подмножества и действием деления.
Дата добавления: 2015-10-19; просмотров: 2911 | Нарушение авторских прав | Изречения для студентов
Читайте также:
Рекомендуемый контект:
Поиск на сайте:
© 2015-2020 lektsii.org – Контакты – Последнее добавление
Источник
Определение
Множество действительных чисел является объединением множеств рациональных и иррациональных чисел. Буква R является обозначением рассматриваемого множества. Множество R представляется промежутком вида (-∞;+∞).
Замечание
Стоит заметить, что любое рациональное число всегда может принимать вид бесконечной десятичной периодической дроби, любое иррациональное число бесконечной десятичной непериодической дроби, исходя из вышесказанного следует вывод, что множество, включающее в себя конечные и бесконечные периодические и непериодические десятичные дроби принадлежит множеству R.
Геометрическая модель действительных чисел
Координатная прямая непосредственно представляет собой геометрическую модель множества R. Следовательно, каждой точке на координатной прямой всегда можно поставить в соответствие некоторое действительное число.
Сравнение действительных чисел
Сравнение действительных чисел можно производить воспользовавшись либо геометрической моделью, либо их можно сравнивать аналитически. Рассмотрим оба способа сравнения. На координатной прямой расположено в произвольном порядке два числа. Определить, какое из них больше достаточно просто. Большее число всегда находится правее другого.
Аналитически определись какое число является большим или меньшим какого либо числа тоже возможно, для этого достаточно найти разность этих чисел и затем сравнить ее с нулем. Если полученная разность будет иметь положительный знак, то первое число (уменьшаемое разности) будет больше чем второе число (вычитаемое разности); если же разность будет иметь отрицательный знак, то первое число (уменьшаемое разности) будет меньше, чем второе число (вычитаемое разности).
Ниже рассмотрим примеры, демонстрирующие оба способа сравнения:
Пример 1
Сравнить числа frac185 и 4.
Решение
Для сравнения данных чисел найдем разность этих чисел.
frac185-4=frac185-frac205=-frac25 чтобы вычислить данную разность, надо привести данные числа к общему знаменателю, воспользовавшись правилом приведения к общему знаменателю. Проделав данную операцию, видим, что знаменатель в данном примере равен 5. После этого опираясь на правило вычитания дробей с одинаковым знаменателем, вычтем из числителя первой дроби числитель второй дроби, а знаменатель оставим прежним. Обратим внимание, что разность приведенных чисел является отрицательной, значит первое число (уменьшаемое) меньше второго (вычитаемого), т. е. frac185 <4.
Пример 2
Сравнить числа frac185 и 4 с помощью координатной прямой.
Решение
Чтобы сравнить данные числа, следует определить геометрическое место точек этих чисел на координатной прямой. Т.е. сравниваемые действительные числа будут соответствовать определенным координатам на координатной прямой, а именно числам frac185 и 4 . Для начала преобразуем неправильную дробь frac185 в смешанное число т.е. выделим целую часть, следовательно, получим 3frac35.
Далее на координатной прямой отметим точки, координаты которых будут равны 3frac35 и 4. frac185 содержит в себе 3 целых, значит данное число расположено левее 4. Как уже известно, меньшее число лежит левее, исходя из этого напрашивается вывод, что frac185 <4.
Можно сделать вывод, что вне зависимости от внешнего вида сравнения действительных чисел можно реализовать все арифметические операции, а именно сложение, вычитание, умножение и деление. Однако перед выполнением действий с действительными числами следует учитывать исходные знаки данных чисел т.е. определить является каждое число положительными или отрицательными.
Сложение действительных чисел
Чтобы сложить два действительных числа с одинаковыми знаками следует сначала сложить их модули и затем перед суммой поставить их общий знак. Например:
(+8)+(+2)=+10; (-5)+(-4)=-9.
Чтобы сложить два действительных числа с разными знаками следует для начала обратить внимание на знак числа, если знак одного из чисел отрицательный, тогда это число следует вычитать из другого, если положительный – сложить с другим. Далее нужно сложить либо вычесть данные числа и поставить знак большего модуля. Например
(+2)+(-7)=-5; (+10)+(-4)=+6.
Вычитание действительных чисел
Вычитание действительных чисел можно представить в виде сложения: a-b = a + (-b), то есть, чтобы вычесть из числа а число b, достаточно к уменьшаемому прибавить число, противоположное вычитаемому.
Например: (+5)-(-7)=(+3)+(+7)=12; (+6)-(+4)=(+6)+(-4)=+2.
Умножение действительных чисел
Чтобы умножить (разделить) два действительных числа необходимо умножить (разделить) их модули. И затем перед результатом поставить знак по приведенному в таблице правилу знаков ниже.
При умножении и делении действительных чисел желательно помнить пословицу: «Друг моего друга — мой друг, враг моего врага — мой друг, друг моего врага — мой враг, враг моего друга — мой враг».
Например:
(+2)(+7) = +14 ; (-2)(+6) = -12 ;(-2)(-8) = 16 ;
Свойства арифметических действий над действительными числами (основные законы алгебры)
В алгебре существуют так называемые основные законы алгебры. Они практически всегда принимаются за истину (случаи ложности данных законов не рассматриваем) и сформулированы в виде следующих свойств-тождеств:
- a + b = b + a ;
- (a + b) + c = a + (b + c) ;
- a + 0 = a ;
- a + (-a) = 0 ;
- ab = ba ;
- (ab)c = a(bc) ;
- a(b + c) =ab + ac ;
- a·1=a ;
- a·0=0 ;
- a · 1a = 1, (a≠0).
Свойства 1 и 5 выражают переместительный закон (коммутативность) сложения и умножения соответственно;
Cвойства 2 и 6 выражают сочетательный закон (ассоциативность);
Cвойство 7 — распределительный закон (дистрибутивность) умножения относительно сложения;
Cвойства 3 и 8 указывают на наличие нейтрального элемента для сложения и умножения соответственно;
Cвойства 4 и 10 – на наличие нейтрализующего элемента соответственно.
Источник
Сидоркина Анна Владимировна
Учитель начальных классов
I категории
ГУ «Средняя школа № 1 г. Есиль»
Урок математики «Свойства арифметических действий. Рациональные вычисления.»
4 класс
Цели и задачи:
Закрепить навыки применения свойств арифметических действий с числами в пределах 1 000 000. Развивать навыки рациональных вычислений.
Развивать математическую речь, логическое мышление, наблюдательность, внимание, интерес к предмету, навыки самостоятельной работы и творческие способности учащихся.
Воспитывать умение работать самостоятельно, в парах, в группах, воспитывать умение вести диалог, оказывать взаимопомощь.
Ожидаемый результат:
Учащиеся знают свойства арифметических действий.
Умеют применять приемы рациональных вычислений.
Понимают важность взаимопомощи, умение работать в группах, парах.
Ход урока
I. Организационный момент. 1 мин.
Посадка. Проверка готовности.
II. Психологический настрой. 2 мин.
Игра «Я желаю тебе сегодня…»
III. Математический диктант. 5 мин.
1. Увеличите число 263 в 10 000 раз.
2. Найдите частное от 9000 и 20.
3. Найдите сумму чисел 7100 и 2900. Уменьшите сумму в 1000 раз.
4. Найдите произведение чисел 350 и 50.
5. Найдите 2/3 от суммы чисел 160 и 440.
6. Сколько сантиметров в 8 метрах и 3 дм?
Самопроверка.
– Проверьте правильность выполненного задания.
– Кто выполнил правильно?
– Кто допустил ошибки? Почему?
– Что общего у этих заданий?
Обменяйтесь тетрадями в паре. (взаимопроверка)
Все задания выполнены верно – 10 баллов.
Допущены 1-2 ошибки – 8 баллов
Допущены 3 ошибки – 5 баллов.
Допущены 4 ошибки – 3 балла.
Только одно верное задание – 1 балл.
IV. Повторение.
1. Работа в паре. 5 мин.
Обсудите, как удобнее произвести вычисление. Найдите результат записывая решение столбиком.
324 000 + 272 000 + 128 000 + 276 000
– Какой получили результат? (1 000 000)
– Какое арифметическое действие использовали? (сложение)
– Как быстро найти результат? (применить сочетательное свойство сложения)
– Можно назвать этот способ рациональным? (да)
-Оцените работу:
Применено сочетательное свойство сложения – 10 баллов.
Действия выполнены по порядку – 5 баллов.
Еще раз внимательно посмотрите на задание и попробуйте определить тему нашего урока. Тема урока «Свойства арифметических действий. Рациональные приемы вычисления чисел в пределах 1 000 000.
Поставьте задачи на сегодняшний урок.
2. Работа в группе. (Учащиеся первых парт поворачиваются к учащимся за вторыми партами. Учащиеся третьих парт 1 и 2 рядов подходят к учащимся третий парты второго ряда.) 12 мин.
1 группа: вспомнить и записать на листе А4 свойства сложения;
2 группа: свойства вычитания;
3 группа: свойства умножения;
4 группа: свойства деления.
Защита работ.
Проверка правильности выполнения задания.
Учитель вывешивает на доску таблицу свойств арифметических действий.
Переместительное свойство сложения: a + b = b + a
От перемены мест слагаемых сумма не меняется.
Сочетательное свойство сложения: a +b + c = a + (b + c)
Сумма не меняется, если какую-нибудь группу рядом стоящих слагаемых заменить их суммой.
Вычитание суммы из числа: a – (b + c) = a – b – c.
Чтобы вычесть сумму из числа, можно вычесть из этого числа одно слагаемое, из полученной разности – второе слагаемое.
Вычитание числа из суммы: (a + b) – c = (a – c) + b = a + (b – c).
Чтобы вычесть число из суммы, можно вычесть это число из какого-нибудь одного слагаемого и полученную разность прибавить к сумме остальных слагаемых.
Прибавление разности к числу: а + (b – c) = a + b – c.
Чтобы прибавить разность к числу, можно прибавить к нему уменьшаемое и из полученной суммы вычесть вычитаемое.
Переместительное свойство умножения: а · b = b · а.
От перемены мест множителей произведение не меняется
Сочетательное свойство умножения: а · b · c = а · (b · c).
Произведение не изменится, если какую-нибудь группу рядом стоящих множителей заменить их произведением.
Распределительное свойство умножения относительно сложения: (а + b) · с = ас + bс.
Произведение суммы чисел на какое-нибудь число равно сумме произведений каждого слагаемого на это число
а · 1 = 1 · а = а.
При умножении числа на единицу получаем само число.
а · 0 = 0 · а = 0.
При умножении числа на нуль получаем нуль.
a : 1 = a.
При делении числа на единицу получаем само число.
0 : a = 0.
При делении нуля на любое число, не равное нулю, получаем нуль.
На нуль делить нельзя!
a : a = 1.
При делении числа, не равного нулю, на само себя, получаем единицу.
Деление суммы на число: (a + b) : c = a : c + b : c.
Чтобы разделить сумму на какое-нибудь число, можно разделить на это число каждое слагаемое отдельно (если это возможно) и полученные частные сложить.
Деление разности на число: (a – b) : c = a : c – b : c.
Чтобы разделить разность на какое-нибудь число, можно разделить на это число уменьшаемое и вычитаемое отдельно (если это возможно) и из первого частного вычесть второе.
Деление произведения на число: (a · b) : c = (a : c) · b = a · (b : c).
Чтобы разделить произведение двух множителей на число, можно разделить на это число любой из множителей (если деление выполнимо) и частное умножить на второй множитель.
Оцените себя.
Я вспомнил все свойства – 5 баллов.
Я вспомнил лишь некоторые свойства – 2 балла.
3. Работа со свойствами арифметических действий. 10 мин.
Выполнить задание индивидуально. Свериться в паре. Свериться в группе. При несовпадении ответов объяснить в группе последовательность выполнения действий.
1 группа:
(66 000 х 9) : 600 = (66 000 : 60) х 9 = 110 х 9 = 990
(54 500 + 7 500) : 5= 54 500 : 5 + 7 500 : 5 = 10 900 + 1500 = 12 400
2 группа:
390 х 250 х 40 = 390 х (250 х 40) = 390 х 10 000 = 3 900 000
(750 + 120) х 4 = 750 х 4 + 120 х 4 = 3000 + 480 = 3 480
3 группа:
18 300 – (4300 + 190) = 18 300 – 4300 -190 = 14 000 – 190 = 13 810
(14 300 + 2700) – 3300 = (14 300 – 3300) + 2700 = 11 000 + 27 000 = 13 700
4 группа:
197 + 2300 + 7700 = 197 + (2300 + 7700) = 197 + 10000 = 10 197
(63 300 – 9900) : 3 = 63 300 : 3 + 9900 : 3 = 21 100 + 3300 = 24 400
Проверка по таблице ответов.
Оба примера выполнены верно – 10 баллов.
Один пример – 5 баллов.
4. Решение задачи. 6 мин.
Решите задачу используя распределительное свойство умножения.
Два поезда одновременно выехали навстречу друг другу из двух населенных пунктов. Скорость первого поезда 85 км/ч, а второго – 65 км/ч. Через 4 часа они встретились. Каково расстояние между населенными пунктами, из которых выехали поезда?
85 км/ч 4ч 65 км/ч
? км
Решение:
(85 + 65) х 4 = 85 х 4 + 65 х 4 = 340 + 260 = 600 (км)
Ответ: 600 км расстояние между населенными пунктами.
Оцените себя.
Условие – 2 балла
Решение – 7 баллов
Ответ – 1 балл
V. Итог урока 2 мин.
Давайте вспомним какие цели мы перед собой ставили?
Удалось нам достичь поставленных целей?
Рефлексия. 2 мин.
Закончите предложения.
Я знаю …
Я умею …
Я понимаю …
Подсчитайте баллы, накопленные за урок. Выставляем отметки.
Наибольшее количество баллов за урок – 45
«5» – 36-45 баллов. Поставленная цель достигнута.
«4» – 27-35 баллов. На пути достижения.
«3» – 14 – 26 баллов. Необходимо повторить свойства арифметических действий.
Д/ з. Составить по одному примеру на каждое из арифметических свойств.
Источник