Какие есть элементарные частицы их свойства

Элементарные частицы были впервые открыты и изучены в ходе исследования ядерных процессов. В связи с этим в течение долгого времени физика элементарных частиц являлась одним из разделов ядерной физики. И только с середины 20-го века физика элементарных частиц выделилась в отдельное, самостоятельное направление. Оба эти раздела физики до сих пор объединяются общностью изучаемых явлений и применяемых методов исследования. Но есть у этих направлений и отличия. Основной задачей физики элементарных частиц является исследование природы, свойств и взаимных превращений элементарных частиц.

Из истории вопроса

Первым из тех, кто задумался о существовании мельчайших частиц, из которых состоят все вещества и окружающие предметы, был древнегреческий философ Демокрит. Он был первым, кто высказал предположение о существовании фундаментальных частиц. Согласно письменным источникам, случилось это в 4 веке до нашей эры. Демокрит дал название атому и определил, что это неделимая частица материи.

В течение ряда веков понятие об атомах носило скорее философский, чем физический смысл. И только начиная с 19 века представление об атомах стали использовать сначала для объяснения химических, а затем и физических процессов.

В 30-е годы 19 столетия Макс Фарадей ввел в обиход понятие иона в рамках теории электролиза, а также выполнил изменение элементарного заряда. К концу столетия Антуан Анри Беккерель открыл явление радиоактивности, Джозеф Томсон установил существование электронов, Эрнест Резерфорд – α-частиц. В первые пять лет 20 века Альберт Эйнштейн разработал учение о фотонах (квантах электромагнитного поля). Все эти открытия были бы невозможны без понятия об атомах.

В течение первой трети 20 века было установлено, что атом имеет сложное строение, которое предполагает наличие ядра и расположенных вокруг него электронов. Эрнест Резерфорд предложил орбитальную модель строения атома, согласно которой электроны движутся вокруг ядра по определенным орбитам. Он же во время опытов по расщеплению ядер атомов установил существование протонов.

Открытие нейтронов принадлежит известному английскому физику Джеймсу Чедвику. Он установил, что ядра атомов имеют сложное строение. Так возникла протон-нейтронная теория строения ядер, разработкой которой занимались немецкий исследователь Вейнер Гейзенберг и наш соотечественник, физик-теоретик, лауреат Сталинской премии Дмитрий Дмитриевич Иваненко.

Существование позитрона было предсказано англичанином Полем Дираком. Эта положительно заряженная частица, имеющая такую же массу и такой же (по модулю) заряд, что и электрон, была открыта американским физиком-экспериментатором Карлом Дейвидом Андерсеном в космических лучах.

В тридцатых годах 20-го века были открыты взаимные превращения нейтронов и протонов. Было установлено, что элементарные частицы не являются неизменными. В это же время были открыты мюоны– частицы, масса которых составляет 207 электронных масс, а затем и пионы – частицы, которые обеспечивают взаимодействие между нуклонами в ядре атома.

До середины 20 века было открыто большое количество элементарных частиц. Это стало возможно благодаря широкому исследованию космических лучей, внедрению ускорительной техники, развитию ядерной физики.

Виды частиц

В наше время известно порядка 400 элементарных или субъядерных частиц. Большинство из них нестабильно: одни частицы могут самопроизвольно превращаться в другие с течением времени. Исключением из этого являются нейтрино, фотон, протон и электрон.

Время жизни нестабильных частиц значительно разнится. Дольше всех «живет» нейтрон: 15 минут. Существование μ-мезона ограничено отрезком времени в 2,2·10–6 секунды, нейтрального π-мезона – 0,87·10–16 с. Среднее время существования гиперонов, массивных частиц, составляет всего 10–10 с.

Определение 1

По продолжительности существования выделяют следующие группы частиц:

  • относительно стабильные, время жизни которых превосходит 10–17 с;
  • короткоживущие, время жизни которых порядка 10–22–10–23 с.

Основые свойства элементарных частиц

Одним из наиболее важных свойств элементарных частиц является их способность к взаимным превращениям. Частицы способны поглощаться (возникать) и испускаться (исчезать). Это относится как к стабильным, так и к нестабильным частицам. Разница лишь в том, что стабильные частицы могут превращаться не самопроизвольно, а в результате взаимодействия с другими частицами.

Определение 2

В процессе аннигиляции (исчезновения) позитрона и электрона появляется фотон большой энергии.

При столкновении фотона, несущего достаточный заряд энергии, с ядром атома появляется электрон-позитронная пара.

Частицы и античастицы

Электрон является двойником позитрона. Антипротон отличается от протона наличием у него отрицательного электрического заряда. Нейтрон не имеет заряда. Антинейтрон отличается от нейтрона знаком магнитного момента и барионного заряда.

Наличие античастиц установлено для всех элементарных частиц. Встреча частицы и античастицы сопровождается аннигиляцией, в результате которой обе частицы превращаются в кванты излучения или частицы других видов.

Ученые предполагают существование антивещества. Теоретически, это возможно, если в ядре будут антинуклоны, а в оболочке атома позитроны. Взаимодействие вещества и антивещества может привести к выделению огромного количества энергии, которое будет превосходить энергию ядерных и термоядерных реакций.

Группы элементарных частиц

Информацию об основных элементарных частицах мы собрали в таблицу. Размещение частиц соответствует существующей ныне системе классификации элементарных частиц. Каждая из частиц имеет ряд характеристик: время жизни, масса, выраженная в электронных массах, электрический заряд в единицах элементарного заряда и спин, который также носит название момента импульса, выраженный в единицах постоянной Планка ħ = h2π.

ГруппаНазвание частицыСимволМасса (в электронных массах)Электрический зарядСпинВремя жизни (с)
ЧастицаАнтичастица
ФотоныФотонγ001Стабилен
ЛептоныНейтрино электронноеνeνe~0012Стабильно
Нейтрино мюонноеνμνμ~0012Стабильно
Электронe–e+1–1     112Стабилен
Мю-мезонμ–μ+206,8–1     1122,2·10–6
АдроныМезоныПи-мезоныπ0264,1000,87·10–16
π+π–273,11     –102,6·10–8
К-мезоныK+K–966,41     –101,24·10–8
K0K0~974,100≈ 10–10–10–8
Эта-нуль-мезонη0107400≈ 10–18
БарионыПротонpp~1836,11     –112Стабилен
Нейтронnn~1838,6012898
Лямбда-гиперонΛ0Λ0~2183,10122,63·10–10
Сигма-гипероныΣ+Σ+~2327,61     –1120,8·10–10
Σ0Σ0~2333,60127,4·10–20
Σ –Σ –~2343,1–1     1121,48·10–10
Кси-гипероныΞ 0Ξ 0~2572,80122,9·10–10
Ξ –Ξ –~2585,6–1     1121,64·10–10
Омега-минус-гиперонΩ–Ω–~3273–1     1120,82·10–11

Определение 3

Выделяют три основные группы элементарных частиц:

  • фотоны;
  • лептоны;
  • андроны.

Определение 4

Фотоны представлены одной частицей. Это фотон – носитель электромагнитного взаимодействия.

Определение 5

К лептонам относятся легкие частицы:

  • два сорта нейтрино (электронное и мюонное);
  • электрон;
  • μ-мезон.

Объединяет частицы из группы лептонов спин 12. В таблицу мы включили только основные лептоны. На самом деле их намного больше.

Определение 6

Андроны делятся на две основные подгруппы:

  • мезоны;
  • барионы.

Определение 7

К подгруппе мезонов относятся:

  • нейтральные, а также положительно и отрицательно заряженные π-мезоны, чья масса составляет порядка 250 электронных масс;
  • четыре K-мезона;
  • η0-мезон.

Спин всех мезонов равен нулю.

Подгруппа барионов по сравнению с мезонами является более обширной и состоит из более тяжелых элементарных частиц. Нуклоны являются самыми легкими из барионов, затем идут гипероны. Масса омега-минус-гиперона составляет 3273 электронных массы. Спин барионов составляет 12.

Кварковая гипотеза

Количество уже открытых и вновь открываемых частиц позволяет предположить, что существуют какие-то более мелкие фундаментальные частицы. В середине 20 века американский физик Мюррей Гелл-Ман выдвинул гипотезу существования кварков, фундаментальных частиц, из которых построены тяжелые элементарные частицы.

Согласно теории Гелл-Мана существует три кварка и три антикварка. Они могут объединяться, образуя различные сочетания.

Определение 8

В состав бариона входит три кварка. Для того, чтобы получить антибарион, должны объединиться три антикварка. Мезон образует пара кварк и антикварк.

Эта теория позволила объяснить существование уже открытых частиц и существование других, еще неизвестных науке. При этом, ряд свойств предсказанных частиц оказался неожиданным для исследователей.

Электрический заряд кварков должен выражаться дробными числами, равными 23 и 13 элементарного заряда.

Поиски кварков в космических лучах и на современных ускорителях высоких энергий оказались безуспешными. Считается, что кварки обладают очень большой массой. В связи с этим, получить кварки при тех энергиях, которые можно получить в современных ускорителях, не получается. Тем не менее, установлено, что кварки существуют внутри тяжелых элементарных частиц, таких как андроны.

 Фундаментальные взаимодействия в природе

Определение 9

Фундаментальные взаимодействия – это процессы, сильно различающиеся по уровню энергии и времени протекания, в которые вступают элементарные частицы. Фундаментальными их называют потому, что их невозможно свести в другим, более простым взаимодействиям.

Определение 10

Выделяют 4 вида фундаментальных взаимодействий:

  • сильное;
  • электромагнитное;
  • слабое;
  • гравитационное.

Сильное взаимодействие

Это вид фундаментального взаимодействия также носит название ядерного, так как оно обуславливает прочную связь между нуклонами в ядре атома. Из числа элементарных частиц в сильном взаимодействии принимают участие андроны (мезоны и барионы).

Сильное взаимодействие считается короткодействующим, так как проявляется на расстоянии порядка 10–15 м и менее.

Электромагнитное взаимодействие

Благодаря этому виду взаимодействия возможно существование молекул и атомов. Оно определяет большинство свойств веществ, находящихся в трех агрегатных состояниях (твердом, жидком и газообразном). Оно обуславливает протекание процессов поглощения и излучения фотонов атомами и молекулами вещества, а также целый ряд других физических и химических процессов. Кулоновское отталкивание, существующее между протонами, объясняет неустойчивость ядер атомов с большими массовыми числами.

В электромагнитном взаимодействии могут участвовать любые частицы, которые обладают электрическим зарядом, а также кванты электромагнитного поля фотоны.

Слабое взаимодействие

Этот вид взаимодействия определяет ход наиболее медленных процессов, которые протекают в микромире, в том числе с участием нейтрино или антинейтрино.

В этом виде взаимодействия могут принимать участие любые элементарные частицы.

Пример 1

Примером слабого взаимодействия может служить β-распад нейтрона, который протекает с участием нейтрино или антинейтрино.

 10n→11ρ⇒0-1e+00v0~

Также сюда можно отнести процессы распада частиц с большим временем жизни (τ≥10–10 с), которые протекают без участия нейтрино.

Гравитационное взаимодействие

В связи с тем, что масса элементарных частиц мала, силами гравитационного воздействия между ними можно пренебречь. Гравитация имеет значение при взаимодействии космических объектов, чья масса огромна.

Теория обменного взаимодействия

В первой трети прошлого столетия у исследователей появилась гипотеза о том, что все взаимодействия в мире элементарных частиц осуществляются посредством обмена квантами какого-либо поля. Выдвинули эту гипотезу советские ученые И.Е. Тамм и Д.Д. Иваненко. Они провели параллели между взаимодействиями, которые возникают в результате обмена частицами, и обменом валентными электронами, которые при образовании ковалентной химической связи объединяются на незаполненных электронных оболочках.

Определение 11

Обменное взаимодействие – это взаимодействие, которое осуществляется путем обмена частицами.

Определение 12

Электромагнитное взаимодействие, которое наблюдается между заряженными частицами, сопровождается обменом фотонами, квантами электромагнитного поля.

Подтверждением верности теории обменного взаимодействия стали теоретические выкладки японского физика Х. Юкавы, который доказал, что сильное взаимодействие между нуклонами можно объяснить обменом гипотетическими частицами, которые получили название мезонов. Юкава вычислил массу этих частиц. Она оказалась приблизительно равно 300 электронным массам.

Спустя несколько лет частицы с такой массой действительно были обнаружены. Они были названы π-мезонов (пионов). В настоящее время известны три вида пионов: π+, π- и π0.

Теория электрослабого взаимодействия рассматривает электромагнитное поле и поле слабого взаимодействия как две разные характеристики одного поля. В таком поле помимо квантов взаимодействие обеспечивают и векторные бозоны.

Теория Великого объединения

После того, как удалось объединить в одну модель слабое и электромагнитное взаимодействия, у исследователей появилась уверенность в том, что связаны между собой все виды взаимодействий. Единственное, чего не хватает для полноты картины, это физического подтверждения таких взаимодействий. До получения доказательств теория остается лишь привлекательной научной гипотезой.

Для того, чтобы объединить слабое, электромагнитное и гравитационное взаимодействия, физики-теоретики предположили существование гипотетической частицы под названием гравитон. Однако до настоящего времени существование такой частицы не было подтверждено в ходе экспериментов.

Предполагается, что получить подтверждение теории Великого объединения в современных ускорителях невозможно. А все потому, что единое поле, которое объединяет все виды взаимодействий, существует только при очень больших энергиях частиц. Такая энергия частицы могла наблюдаться только на самых ранних этапах существования вселенной, сразу после Большого взрыва.

Предполагается, что Большой взрыв произошел 18 миллиардов лет назад. В теории, сразу после Большого взрыва температура могла достигать 1032 К, а энергия частиц E = kT достигать значений 1019 ГэВ. В таких условиях материя могла существовать в форме кварков и нейтрино, а все виды взаимодействий были объединены в одно силовое поле.

По мере расширения вселенной энергия частиц уменьшается. Из единого поля при энергиях частиц ≤ 1019 ГэВ выделилось гравитационное взаимодействие. При энергиях порядка 1014 ГэВ разделились сильное и электрослабое взаимодействия. При энергиях порядка 103 ГэВ все четыре вида фундаментальных взаимодействий оказались разделенными. Параллельно этому началось формирование более сложных форм материи: нуклонов, ядер атомов, атомов, ионов.

Основываясь на законах физики, описывающих взаимодействие элементарных частиц, создана модель эволюции вселенной, на которую опирается вся современная космология.

Источник

Краткая история изучения элементарных частиц

Первой элементарной частицей, открытой учеными, был электрон. Электрон – это элементарная частица, носящая отрицательный заряд. Он был открыт в 1897 году Дж. Дж. Томсоном. Позднее, в 1919 году Э. Резерфордом было обнаружено, что среди выбитых из атомных ядер частиц есть протоны. Затем были открыты нейтроны и нейтрино.

В 1932 году К. Андерсоном при изучении космических лучей были открыты позитрон, мюоны, К-мезоны.

С начала 50-х годов основным инструментом изучения элементарных частиц стали ускорители, что позволило обнаружить большое количество новых частиц. Исследования показали, что мир элементарных частиц очень сложен, а их свойства носят неожиданный, непредсказуемый характер.

Элементарные частицы в физике микромира

Определение 1

В узком понимании, элементарные частицы – это такие частицы, которые не состоят из других частиц. Но, в современной физике используется более широкое понимание этого термина. Так, элементарные частицы – это мельчайшие частицы материи, не являющиеся атомами и атомными ядрами. Исключение из этого правила составляет протон. Именно поэтому элементарные частицы получили название субъядерных частиц. Преобладающая часть этих частиц являются составными системами.

Элементарные частицы принимают участие во всех фундаментальных видах взаимодействия – сильном, гравитационном, слабом, электромагнитном. Гравитационное взаимодействие, ввиду малых масс элементарных частиц, часто не учитывается. Все существующие на данный момент элементарные частицы разделяются на три большие группы:

  • бозоны. Это элементарные частицы, переносящие электрослабые взаимодействия. К ним относится квант электромагнитного излучения фотон, имеющий массу покоя, равную нулю, чем обусловливается то, что скорость распространения электромагнитных волн в вакууме является предельной скоростью распространения физического воздействия. Скорость света одна из фундаментальных физических постоянных, ее значение равно 299 792 458 м/с.
  • лептоны. Эти элементарные частицы принимают участие в электромагнитных и слабых взаимодействиях. На данный момент существует 6 лептонов: электрон, мюон, мюонное нейтрино, электронное нейтрино, тяжелый τ-лептон и соответствующее нейтрино. Все лептоны имеют спин ½. Каждому лептону соответствует античастица, которая имеет ту же массу, тот же спин и другие характеристики, но отличается знаком электрического заряда. Существуют позитрон, являющийся античастицей электрона, мюон, положительно заряженный и три антинейтрино, имеющие лептонный заряд.
  • адроны. Эти элементарные частицы принимают участие в сильном, слабом и электромагнитном взаимодействиях. Адроны – это тяжелые частицы, масса которых в 200 000 раз больше массы электрона. Это самая многочисленная группа элементарных частиц. Адроны в свою очередь подразделяются на барионы – элементарные частицы со спином ½, мезоны, имеющие целочисленный спин. Кроме того, существуют так называемые резонансы. Так называют короткоживущие возбужденные состояния адронов.

Свойства элементарных частиц

Любой элементарной частице присущ набор дискретных значений и квантовых чисел. Общими характеристиками абсолютно всех элементарных частиц являются следующие:

  • масса
  • время жизни
  • электрический заряд
  • спин

Замечание 1

По времени жизни элементарные частицы являются стабильными, квазистабильными, нестабильными.

Стабильными элементарными частицами являются: электрон, время жизни которого составляет 51021 лет, протон – более 1031 лет, фотон, нейтрино.

Квазистабильные – это частицы, которые распадаются в результате электромагнитного и слабого взаимодействий, время жизни квазистабильных элементарных частиц составляет более 10-20 с.

Нестабильные элементарные частицы (резонансы) распадаются в ходе сильного взаимодействия и их время жизни составляет $10^{-22} – 10^{-24}$ с.

Квантовыми числами элементарных частиц являются лептонный и барионный заряды. Эти числа являются строго постоянными величинами для всех видов фундаментальных взаимодействий. Для лептонных нейтрино и их античастиц лептонные заряды имеют противоположные знаки. Для барионов барионный заряд равен 1, для соответствующих им античастиц барионный заряд составляет -1.

Характерным для адронов является присутствие особых квантовых чисел: «странности», «красоты», «очарования». Обычными адронами являются нейтрон, протон, π-мезон.

Внутри разных групп адронов существуют семейства частиц, имеющих близкую по значению массу и сходные свойства по отношению к сильному взаимодействию, но отличающиеся электрическим зарядом. Примером этого является протон и нейтрон.

Способность элементарных частиц к взаимовпревращениям, которые происходят в результате электромагнитных и других фундаментальных взаимодействий, является их важнейшим свойством. Таким видом взаимопревращений является рождение пары, то есть образование частицы и античастицы одновременно. В общем случае, происходит образование пары элементарных частиц с противоположными барионными и лептонными зарядами.

Возможен процесс образования позитронно-электронных пар, мюонных пар.
Еще одним видом взаимных превращений элементарных частиц является аннигиляция пары в результате столкновения частиц с образованием конечного числа фотонов. Как правило, происходит образование двух фотонов при суммарном спине сталкивающихся частиц, равном нулю, и трех фотонов при суммарном спине, равном 1. Данный пример является проявлением закона сохранения зарядовой четности.

При некоторых определенных условиях возможно образование связанной системы позитрония е-е+ и мюония µ+е-. таким условием может быть невысокая скорость сталкивающихся частиц. Такие нестабильные системы получили название водородоподобных атомов. Время жизни водородоподобных атомов зависит от конкретных свойств вещества. Эта особенность дает возможность использования их в ядерной химии для подробного изучения конденсированного вещества и для исследования кинетики быстрых химических реакций.

Источник