Какие бывают свойства у элементов
Каждый элемент имеет свое строго уникальное строение, в соответствии с которым он и занимает свое постоянное, четко определенное место в периодической системе.
При рассмотрении периодической таблицы элементов, зная химические и физические свойства каждого элемента, можно сделать выводы о закономерностях изменения этих свойств.
Повторение свойств элементов
С увеличением атомной массы происходит периодическое повторение свойств элементов.
Так, одиннадцатый элемент ряда – натрий – имеет общие свойства с третьим химическим элементом – литием. В рамках ряда от лития до фтора металлические свойства соединений постепенно уменьшаются и при этом возрастают неметаллические свойства. И действительно, после активного щелочного металлического элемента лития четвертым размещен тоже металлический элемент бериллий, но уже с амфотерными свойствами соединений. Пятый, шестой, седьмой, восьмой, девятый и десятый элементы – неметаллические. Активность простых веществ и соединений этих элементов с увеличением порядкового номера возрастает и достигает максимума у фтора.
Причиной периодической повторяемости свойств химических элементов и образованных ими соединений является образование у элементов одинакового строения внешнего энергетического уровня (для элементов главных подгрупп) и предпоследнего энергетического уровня (для элементов побочных подгрупп).
Закономерности изменений свойств
Таким образом, рассмотрев свойства каждого из соединений и их изменения в группах и периодах можно составить определенные закономерности.
В рамках одного периода с увеличением порядковых номеров элементов (при движении вниз по периоду) прослеживаются закономерные изменения, характерные для всей таблицы.
При движении вниз по периоду металлические и основные свойства у простых веществ ослабляются, а неметаллические и кислотные – усиливаются.
Кроме размещения в горизонтальных рядах — периодах, элементы входят в состав вертикальных столбиков — групп. Рассмотренные свойства природных семей щелочных элементов, галогенов и инертных элементов дают возможность сделать вывод, что наиболее активные металлы размещены в группе под номером 1, то есть в начале периодов, а самые активные неметаллы — в группе под номером 7, то есть в конце периодов.
Инертным элементом 18 группы заканчивается каждый период.
Если провести воображаемую линию через элементы алюминий, германий, олово, стибий, свинец, полоний, которая разделит периодическую систему на две не равных части, то верхняя правая часть будет содержать неметаллы, нижняя левая — металлы, а элементы, образующие линию разделения, — это металлы с амфотерными свойствами оксидов и гидроксидов.
Зависимость от строения электронных оболочек атомов
На основе современной теории строения атома ученые объясняют, что характер химических свойств и его изменение в периодах находятся в зависимости от изменения строения электронных оболочек атомов. Чтобы понять, какие различия в строении электронных оболочек вызывают ослабление металлических и усиление неметаллических свойств, сравним электронные формулы атомов пары элементов — алюминия и фосфора.
Как видим, количество энергетических уровней у атомов алюминия и фосфора одинаково — их 3. Однако у каждого из них разное число электронов на внешнем (крайнем) энергетическом уровне, которое с увеличением порядкового номера элемента (13 у алюминия и 15 у фосфора) растет. Делаем вывод, что причиной ослабления металлических и усиления неметаллических свойств элементов одного периода является рост числа электронов на внешнем энергетическом уровне.
Итак, в зависимости от собственно строения атома элемента и, соответственно, в какой части периодической системы размещен этот элемент, его соединения проявляют или основные, или кислотные, или амфотерные химические свойства.
Рассмотренные зависимости еще раз подтверждают универсальный характер периодического закона и доказывают, что он является фундаментальным законом природы.
Источник
Еще в школе, сидя на уроках химии, все мы помним таблицу на стене класса или химической лаборатории. Эта таблица содержала классификацию всех известных человечеству химических элементов, тех фундаментальных компонентов, из которых состоит Земля и вся Вселенная. Тогда мы и подумать не могли, что таблица Менделеева бесспорно является одним из величайших научных открытий, который является фундаментом нашего современного знания о химии.
Периодическая система химических элементов Д. И. Менделеева
На первый взгляд, ее идея выглядит обманчиво просто: организовать химические элементы в порядке возрастания веса их атомов. Причем в большинстве случаев оказывается, что химические и физические свойства каждого элемента сходны с предыдущим ему в таблице элементом. Эта закономерность проявляется для всех элементов, кроме нескольких самых первых, просто потому что они не имеют перед собой элементов, сходных с ними по атомному весу. Именно благодаря открытию такого свойства мы можем поместить линейную последовательность элементов в таблицу, очень напоминающую настенный календарь, и таким образом объединить огромное количество видов химических элементов в четкой и связной форме. Разумеется, сегодня мы пользуемся понятием атомного числа (количества протонов) для того, чтобы упорядочить систему элементов. Это помогло решить так называемую техническую проблему «пары перестановок», однако не привело к кардинальному изменению вида периодической таблицы.
В периодической таблице Менделеева все элементы упорядочены с учетом их атомного числа, электронной конфигурации и повторяющихся химических свойств. Ряды в таблице называются периодами, а столбцы группами. В первой таблице, датируемой 1869 годом, содержалось всего 60 элементов, теперь же таблицу пришлось увеличить, чтобы поместить 118 элементов, известных нам сегодня.
Периодическая система Менделеева систематизирует не только элементы, но и самые разнообразные их свойства. Химику часто бывает достаточно иметь перед глазами Периодическую таблицу для того, чтобы правильно ответить на множество вопросов (не только экзаменационных, но и научных).
The YouTube ID of 1M7iKKVnPJE is invalid.
Периодический закон
Существуют две формулировки периодического закона химических элементов: классическая и современная.
Классическая, в изложении его первооткрывателя Д.И. Менделеева: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.
Современная: свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).
Графическим изображением периодического закона является периодическая система элементов, которая представляет собой естественную классификацию химических элементов, основанную на закономерных изменениях свойств элементов от зарядов их атомов. Наиболее распространёнными изображениями периодической системы элементов Д.И. Менделеева являются короткая и длинная формы.
Группы и периоды Периодической системы
Группами называют вертикальные ряды в периодической системе. В группах элементы объединены по признаку высшей степени окисления в оксидах. Каждая группа состоит из главной и побочной подгрупп. Главные подгруппы включают в себя элементы малых периодов и одинаковые с ним по свойствам элементы больших периодов. Побочные подгруппы состоят только из элементов больших периодов. Химические свойства элементов главных и побочных подгрупп значительно различаются.
Периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров. В периодической системе имеются семь периодов: первый, второй и третий периоды называют малыми, в них содержится соответственно 2, 8 и 8 элементов; остальные периоды называют большими: в четвёртом и пятом периодах расположены по 18 элементов, в шестом — 32, а в седьмом (пока незавершенном) — 31 элемент. Каждый период, кроме первого, начинается щелочным металлом, а заканчивается благородным газом.
Физический смысл порядкового номера химического элемента: число протонов в атомном ядре и число электронов, вращающихся вокруг атомного ядра, равны порядковому номеру элемента.
Свойства таблицы Менделеева
Напомним, что группами называют вертикальные ряды в периодической системе и химические свойства элементов главных и побочных подгрупп значительно различаются.
Свойства элементов в подгруппах закономерно изменяются сверху вниз:
- усиливаются металлические свойства и ослабевают неметаллические;
- возрастает атомный радиус;
- возрастает сила образованных элементом оснований и бескислородных кислот;
- электроотрицательность падает.
Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения, существует всего восемь форм кислородных соединений. В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где символом R обозначают элемент данной группы. Формулы высших оксидов относятся ко всем элементам группы, кроме исключительных случаев, когда элементы не проявляют степени окисления, равной номеру группы (например, фтор).
Оксиды состава R2O проявляют сильные основные свойства, причём их основность возрастает с увеличением порядкового номера, оксиды состава RO (за исключением BeO) проявляют основные свойства. Оксиды состава RO2, R2O5, RO3, R2O7 проявляют кислотные свойства, причём их кислотность возрастает с увеличением порядкового номера.
Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения. Существуют четыре формы таких соединений. Их располагают под элементами главных подгрупп и изображают общими формулами в последовательности RH4, RH3, RH2, RH.
Соединения RH4 имеют нейтральный характер; RH3 — слабоосновный; RH2 — слабокислый; RH — сильнокислый характер.
Напомним, что периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.
В пределах периода с увеличением порядкового номера элемента:
- электроотрицательность возрастает;
- металлические свойства убывают, неметаллические возрастают;
- атомный радиус падает.
Элементы таблицы Менделеева
Щелочные и щелочноземельные элементы
К ним относятся элементы из первой и второй группы периодической таблицы. Щелочные металлы из первой группы — мягкие металлы, серебристого цвета, хорошо режутся ножом. Все они обладают одним-единственным электроном на внешней оболочке и прекрасно вступают в реакцию. Щелочноземельные металлы из второй группы также имеют серебристый оттенок. На внешнем уровне помещено по два электрона, и, соответственно, эти металлы менее охотно взаимодействуют с другими элементами. По сравнению со щелочными металлами, щелочноземельные металлы плавятся и кипят при более высоких температурах.
Показать / Скрыть текст
Щелочные металлы | Щелочноземельные металлы |
Литий Li 3 | Бериллий Be 4 |
Натрий Na 11 | Магний Mg 12 |
Калий K 19 | Кальций Ca 20 |
Рубидий Rb 37 | Стронций Sr 38 |
Цезий Cs 55 | Барий Ba 56 |
Франций Fr 87 | Радий Ra 88 |
Лантаниды (редкоземельные элементы) и актиниды
Лантаниды — это группа элементов, изначально обнаруженных в редко встречающихся минералах; отсюда их название «редкоземельные» элементы. Впоследствии выяснилось, что данные элементы не столь редки, как думали вначале, и поэтому редкоземельным элементам было присвоено название лантаниды. Лантаниды и актиниды занимают два блока, которые расположены под основной таблицей элементов. Обе группы включают в себя металлы; все лантаниды (за исключением прометия) нерадиоактивны; актиниды, напротив, радиоактивны.
Показать / Скрыть текст
Лантаниды | Актиниды |
Лантан La 57 | Актиний Ac 89 |
Церий Ce 58 | Торий Th 90 |
Празеодимий Pr 59 | Протактиний Pa 91 |
Неодимий Nd 60 | Уран U 92 |
Прометий Pm 61 | Нептуний Np 93 |
Самарий Sm 62 | Плутоний Pu 94 |
Европий Eu 63 | Америций Am 95 |
Гадолиний Gd 64 | Кюрий Cm 96 |
Тербий Tb 65 | Берклий Bk 97 |
Диспрозий Dy 66 | Калифорний Cf 98 |
Гольмий Ho 67 | Эйнштейний Es 99 |
Эрбий Er 68 | Фермий Fm 100 |
Тулий Tm 69 | Менделевий Md 101 |
Иттербий Yb 70 | Нобелий No 102 |
Галогены и благородные газы
Галогены и благородные газы объединены в группы 17 и 18 периодической таблицы. Галогены представляют собой неметаллические элементы, все они имеют семь электронов во внешней оболочке. В благородных газахвсе электроны находятся во внешней оболочке, таким образом с трудом участвуют в образовании соединений. Эти газы называют «благородными, потому что они редко вступают в реакцию с прочими элементами; т. е. ссылаются на представителей благородной касты, которые традиционно сторонились других людей в обществе.
Показать / Скрыть текст
Галогены | Благородные газы |
Фтор F 9 | Гелий He 2 |
Хлор Cl 17 | Неон Ne 10 |
Бром Br 35 | Аргон Ar 18 |
Йод I 53 | Криптон Kr 36 |
Астат At 85 | Ксенон Xe 54 |
— | Радон Rn 86 |
Переходные металлы
Переходные металлы занимают группы 3—12 в периодической таблице. Большинство из них плотные, твердые, с хорошей электро- и теплопроводностью. Их валентные электроны (при помощи которых они соединяются с другими элементами) находятся в нескольких электронных оболочках.
Показать / Скрыть текст
Переходные металлы |
Скандий Sc 21 |
Титан Ti 22 |
Ванадий V 23 |
Хром Cr 24 |
Марганец Mn 25 |
Железо Fe 26 |
Кобальт Co 27 |
Никель Ni 28 |
Медь Cu 29 |
Цинк Zn 30 |
Иттрий Y 39 |
Цирконий Zr 40 |
Ниобий Nb 41 |
Молибден Mo 42 |
Технеций Tc 43 |
Рутений Ru 44 |
Родий Rh 45 |
Палладий Pd 46 |
Серебро Ag 47 |
Кадмий Cd 48 |
Лютеций Lu 71 |
Гафний Hf 72 |
Тантал Ta 73 |
Вольфрам W 74 |
Рений Re 75 |
Осмий Os 76 |
Иридий Ir 77 |
Платина Pt 78 |
Золото Au 79 |
Ртуть Hg 80 |
Лоуренсий Lr 103 |
Резерфордий Rf 104 |
Дубний Db 105 |
Сиборгий Sg 106 |
Борий Bh 107 |
Хассий Hs 108 |
Мейтнерий Mt 109 |
Дармштадтий Ds 110 |
Рентгений Rg 111 |
Коперниций Cn 112 |
Металлоиды
Металлоиды занимают группы 13—16 периодической таблицы. Такие металлоиды, как бор, германий и кремний, являются полупроводниками и используются для изготовления компьютерных чипов и плат.
Показать / Скрыть текст
Металлоиды |
Бор B 5 |
Кремний Si 14 |
Германий Ge 32 |
Мышьяк As 33 |
Сурьма Sb 51 |
Теллур Te 52 |
Полоний Po 84 |
Постпереходными металлами
Элементы, называемые постпереходными металлами, относятся к группам 13—15 периодической таблицы. В отличие от металлов, они не имеют блеска, а имеют матовую окраску. В сравнении с переходными металлами постпереходные металлы более мягкие, имеют более низкую температуру плавления и кипения, более высокую электроотрицательность. Их валентные электроны, с помощью которых они присоединяют другие элементы, располагаются только на внешней электронной оболочке. Элементы группы постпереходных металлов имеют гораздо более высокую температуру кипения, чем металлоиды.
Показать / Скрыть текст
Постпереходные металлы |
Алюминий Al 13 |
Галлий Ga 31 |
Индий In 49 |
Олово Sn 50 |
Таллий Tl 81 |
Свинец Pb 82 |
Висмут Bi 83 |
Неметаллы
Из всех элементов, классифицируемых как неметаллы, водород относится к 1-й группе периодической таблицы, а остальные — к группам 13—18. Неметаллы не являются хорошими проводниками тепла и электричества. Обычно при комнатной температуре они пребывают в газообразном (водород или кислород) или твердом состоянии (углерод).
Показать / Скрыть текст
Неметаллы |
Водород H 1 |
Углерод C 6 |
Азот N 7 |
Кислород O 8 |
Фосфор P 15 |
Сера S 16 |
Селен Se 34 |
Флеровий Fl 114 |
Унунсептий Uus 117 |
А теперь закрепите полученные знания, посмотрев видео про таблицу Менделеева и не только.
Отлично, первый шаг на пути к знаниям сделан. Теперь вы более-менее ориентируетесь в таблице Менделеева и это вам очень даже пригодится, ведь Периодическая система Менделеева является фундаментом, на котором стоит эта удивительная наука.
Источник
В предыдущих частях мы, во-первых, ввели понятие атомного радиуса, к которому не раз сегодня обратимся. Во-вторых, ввели понятие о металлических и неметаллических свойствах. И, в-третьих, научились отличать металлы от неметаллов по таблице Менделеева.
Сегодня поговорим о том, какие закономерности можно выделить в рамках таблицы Менделеева благодаря всем вышеперечисленным знаниям.
Обо всём по порядку
Напомню:
Атомный радиус – условная величина, характеризующая удалённость электронов на внешнем энергетическом уровне от ядра атома.
Условное изображение атомного радиуса атома не примере атома углерода
Металлические свойства – способность атомов химических элементов отдавать электроны
Неметаллические свойства – способность атомов химических элементов эти электроны принимать.
Выделять закономерности в пределах таблицы Менделеева мы будем в двух направлениях:
В пределах подгруппы (сверху – вниз)
Сделаю акцент на том, что работать мы будем исключительно в пределах главных подгрупп
О том, почему атомный радиус в пределах подгруппы (сверху вниз) возрастает, мы говорили здесь.
- А почему же в пределах подгруппы (сверху вниз) усиливаются металлические свойства?
Дело в том, что с в пределах подгруппы с увеличением атомного радиуса возрастает удалённость электронов на внешнем энергетическом уровне от ядра, а чем более электроны удалены от ядра, тем выше запас их свободной энергии, тем менее прочно они связаны с ядром (об этом здесь) – это значит, что тем проще эти электроны будет отдать! А металлические свойства как раз-таки характеризуют способность атомов химических элементов отдавать электроны.
Ещё раз. Чем больше электроны удалены от ядра, тем менее прочно они связаны с ядром, тем проще их оказывается отдать. Я думаю, Вы интуитивно чувствуете эту простую логику, согласно которой прочность связи обратно пропорциональна расстоянию.
- Почему же в пределах подгруппы (сверху вниз) неметаллические свойства ослабевают?
Всё очень просто, неметаллические свойства – прямо противоположное понятие металлическим свойствам, и если одно усиливается, то другое ослабевает.
Как можно проследить данные закономерности? Посмотрим в таблицу Менделеева, а именно в главную подгруппу четвёртой группы.
Белый, зелёный – металлы, красный – неметаллы.
В пределах главной подгруппы четвёртой группы мы видим, как неметаллы углерод (C) и кремний (Si) в какой-то момент сменяет металл германий (Ge), и это неслучайно! Мы знаем, что металлические свойства в пределах подгруппы усиливаются, а неметаллические – ослабевают, и именно поэтому в какой-то момент при движении в пределах подгруппы сверху вниз металлические свойства усилились настолько, а неметаллические свойства ослабли настолько, что неметаллы в какой-то момент уступают место металлам.
И данную закономерность Вы можете пронаблюдать в пределах главной подгруппы любой группы!
Почему именно главные подгруппы? Дело в том, что классический вариант таблицы Менделеева, с которым мы чаще всего и работаем, в угоду компактности размещает элементы побочных подгрупп, которые, мы знаем, являются исключительно металлами, таким образом, что они, кажется, игнорируют рассматриваемые нами закономерности, то есть, попросту говоря оказываются исключениями. Ради интереса можете посмотреть на развёрнутый вариант таблицы.
В пределах периода (слева – направо)
Здесь попроще. здесь никаких подгрупп.
Итак, мы знаем, что в пределах периода (слева направо) атомный радиус убывает (об этом здесь). Так что же из этого вытекает?
А то, что металлические свойства будут убывать, а неметаллические – возрастать! Судите сами:
чем меньше атомный радиус, тем ближе электроны на внешнем энергетическом уровне оказываются к ядру, то есть тем более прочно эти электроны оказываются связаны с ядром и тем труднее их оказывается отдать, то есть тем менее выражены оказываются металлические свойства и более выражены неметаллические.
Мы легко можем проследить данную закономерность по таблице Менделеева, пользуясь тем же способом размышления, что и выше:
Белый, зелёный – металлы, красный – неметаллы.
В переделах любого периода (слева – направо) металлы закономерно начинают сменяться неметаллами, так как металлические свойства ослабевают, а неметаллические – возрастают.
Осталось сделать последний штрих – ввести понятие электроотрицательности.
Электроотрицательность – способность атомов химических элементов оттягивать на себя электронную плотность.
Электроотрицательность – понятие тождественное по смыслу неметаллическим свойствам и используется для характеристики неметаллических свойств атома. Оно даже изменяется в пределах таблицы Менделеева аналогичным образом! То есть, в пределах подгруппы (сверху вниз) убывает, а в пределах периода (слева – направо) возрастает.
Таблица электроотрицательности по Полингу
А на этом у меня всё. В следующий раз продолжим обозревать типы химической связи. Спасибо. Пока.
Источник