Какие бывают свойства газов
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 октября 2019; проверки требуют 8 правок.
Перейти к навигации
Перейти к поиску
Список газов содержит вещества, являющиеся газами при стандартных условиях (+25 °C и давлении 760 мм рт. ст.). Вещества отсортированы по температуре кипения.
Газообразные вещества[править | править код]
Название | Формула | Температура кипения, °C | Температура плавления, °C | Примечания |
---|---|---|---|---|
Гелий-4 | 4He | −268.928 | не затвердевает при обычном давлении | |
Водород | H2 | −252.879 | −259.16 | есть орто- и пара-формы с разными температурами кипения |
Неон | Ne | −246.046 | −248.59 | |
Азот | N2 | −195.795 | −210.0 | |
Угарный газ | CO | −191.5 | −205.02 | |
Фтор | F2 | −188.11 | −219.67 | |
Аргон | Ar | −185.848 | −189.34 | |
Кислород | O2 | −182.962 | −218.79 | |
Метан | CH4 | −182.5 | −164.00 | |
Криптон | Kr | −153.415 | −157.37 | |
Оксид азота(II) | NO | −151.74 | −163.6 | |
Дифторид кислорода | F2O | −144.3 | −223.8 | |
Трифторид азота | NF3 | −128.74 | −206.79 | |
Тетрафторметан[1] | CF4 | −128,0 | −183.6 | |
Моносилан[2] | SiH4 | −111.9 | −185 | |
транс-Дифтордиазин | N2F2 | −111.45 | −172 | |
Озон | O3 | −111.35 | −193 | |
Ксенон | Xe | −108.099 | −111.75 | |
цис-Дифтордиазин | N2F2 | −105.75 | ||
этилен | CH2=CH2 | −103.7 | −169.2 | |
Фторид фосфора(III) | PF3 | −101.8 | −151.5 | |
Фторид хлора(I) | ClF | −101.1 | −155.6 | |
Трифторид бора | BF3 | −99.9 | −126.8 | |
Фторсилан | SiH3F | −98.6 | ||
Трифторсилан | SiHF3 | −95 | −131 | |
Трифторметилгипофторит[3] | CF3OF | −95 | ||
Оксид азота(I) (Веселящий газ) | N2O | −88,48 | −90,86 | |
Фосфин | PH3 | −87,75 | −133,8 | |
Трифторид-оксид азота | NOF3 | −87,5 | −161 | |
Тетрафторсилан | SiF4 | −86 | −90,2 | |
1,1-Дифторэтилен | CF2=CH2 | −85,5 | −144 | |
Хлороводород | HCl | −85 | −114,17 | |
Азидотрифторметан[4] | CF3N3 | −85 | −152 | |
Фторид фосфора(V) | PF5 | −84,6 | −93,8 | |
Карбонилфторид | COF2 | −84,5 | −111,2 | |
Нитрозотрифторметан (трифторнитрозометан)[5] | CF3NO | −84 | −196,6 | |
Трифторметан[1] | CHF3 | −82,2 | −155,15 | |
Трифторхлорметан[1] | CClF3 | −81,5 | −181,0 | |
Диоксид углерода | CO2 | −78,46 | сублимирует | |
Фторметан[6] | CH3F | −78,4 | −137,8 | |
Гексафторэтан[7] | CF3CF3 | −78,1 | −100 | |
Пентафторметиламин[8] | CF3NF2 | −78 | −130 | |
Дифторсилан | SiH2F2 | −77,8 | −122 | |
Тетрафторэтилен | CF2=CF2 | −76 | −131,14 | |
Фторацетилен[9] | FCCH | −74 | −196 | |
Тетрафторгидразин | N2F4 | −74 | −164,5 | |
Фторид нитрила | NO2F | −72,4 | −166 | |
Фторэтилен[10] | CH2=CHF | −72 | −160,5 | |
Трифторхлорсилан[11] | SiClF3 | −70 | −138 | |
Трифторацетонитрил[5] | CF3CN | −68,8 | ||
Дифторхлорамин[12] | NClF2 | −67 | −195 | |
Бромоводород | HBr | −66,38 | −86,80 | |
Бис(фторокси)дифторметан[3] | CF2(OF)2 | −64 | ||
Гексафторид серы (элегаз)[13] | SF6 | −63,8 | сублимирует | |
Арсин | AsH3 | −62,5 | −166 | |
Радон | Rn | −61,7 | −71 | |
Пентафтор-O-метилгидроксиламин[14] | CF3ONF2 | −60 | экстраполяция | |
Фторид нитрозила | NOF | −59,9 | −132,5 | |
Сероводород | H2S | −59,55 | −85,5 | |
Трифторацетилфторид[15] | CF3COF | −59 | −159,5 | |
Гексафтордиметиловый эфир[15] | CF3OCF3 | −59 | ||
Бромтрифторметан[1] | CF3Br | −57,75 | −167,78 | |
Метилсилан | CH3SiH3 | −57,5 | −156,5 | |
Диоксидифторид | O2F2 | −57 | −163,5 | кипит с разложением на кислород и фтор |
Сульфурилфторид | SO2F2 | −55,4 | −135,8 | |
Фтордихлорсилан | SiHCl2F | −54,3 | ||
Транс-1,2-дифторэтилен[16] | CHF=CHF | −53,1 | ||
Трифторэтилен[10] | CF2=CHF | −53 | ||
Пентафторид мышьяка | AsF5 | −52,8 | −79,8 | |
Сульфид-трифторид фосфора | PSF3 | −52,25 | −148,8 | |
Дифторметан (фреон-32) | CH2F2 | −52 | −136 | |
Дифторкарбамоилфторид | F2NCOF | −52 | −152,2 | |
Пентафторэтилгипофторит (пентафторфтороксиэтан)[3] | C2F5OF | −52 | −136 | |
Станнан | SnH4 | −51,8 | −146 | |
Тетрафторпропин | CF3C≡CF | −50,39 | ||
Оксид-сульфид углерода (карбонилсульфид) | COS | −50,2 | −138,8 | |
Кетен | CH2=C=O | −49,7 | −151 | |
Оксид-тетрафторид серы(VI) | SOF4 | −48,5 | −99,6 | |
Пентафторэтан | CF3CHF2 | −48,5 | −99,6 | |
3,3,3-Трифторпропин | CF3C≡CH | −48,1 | −100,6 | |
Пропен | CH3CH=CH2 | −47,6 | −185,2 | |
Дифторид-хлорид фосфора(III) | PClF2 | −47,3 | −164,8 | |
Оксид-фторид-хлорид углерода | COClF | −47,2 | −148 | |
1,1,1-Трифторэтан | CH3CF3 | −47 | −111,8 | |
Трифторметилгипохлорит | CF3OCl | −47 | −164 | |
Перхлорилфторид | ClO3F | −46,75 | −147 | |
Гексафторид селена | SeF6 | −46,6 | сублимирует | |
Фторциан | FCN | −46 | −82 | |
Нитрат фтора | FNO3 | −46 | −175 | |
Нитрозопентафторэтан | C2F5NO | −45,7 | ||
Цис-1,2-дифторэтилен | FCH=CHF | −45 | ||
1,1-Дифторпропен | CH3CH=CF2 | −44 | ||
Трифторметил(фтор)силан | CF3SiH2F | −44 | ||
Тионилфторид | SOF2 | −43,8 | −110,5 | |
Тетрафторид-хлорид фосфора(V) | PF4Cl | −43,4 | −132 | |
Метилдиборан | CH3B2H5 | −43 | ||
Трифторметилдифторфосфин | CF3PF2 | −43 | ||
N,N,1,1-Тетрафторметиламин | CHF2NF2 | −43 | ||
Пропан | C3H8 | −42,25 | −187,7 | |
Трифторметилтрифторсилан | CF3SiF3 | −42 | ||
Бромтрифторсилан | SiF3Br | −41,7 | −70,5 | |
Селеноводород | H2Se | −41,25 | −65,73 | |
Дифторхлорметан | CHF2Cl | −40,7 | −175,42 | |
Тетрафторид серы | SF4 | −40,45 | −125 | |
Цис-гексафтордиазометан | CF3NNCF3 | −40 | −127 | |
Оксид-трифторид фосфора | POF3 | −39,7 | Сублимирует | |
Пентафторхлорэтан | CF3CF2Cl | −39,1 | −99 | |
Трифторметилтетрафторфосфоран | CF3PF4 | −39 | −113 | |
Гексафторид теллура | TeF6 | −38,9 | Сублимирует | |
Винилдифторборан | CH2=CHBF2 | −38,8 | −133,4 | |
(Трифторметил)силан | CF3SiH3 | −38,3 | −124 | |
Гептафторэтиламин | CF3CF2NF2 | −38,1 | −183 | |
Тетрафтораллен | CF2=C=CF2 | −38 | ||
Гексафтороксетан | C3F6O | −38 | ||
Трифторметантиол | CF3SH | −37,99 | −157,11 | |
Фторэтан | CH3CH2F | −37,7 | −143,2 | |
Бис(трифторметил)пероксид | CF3OOCF3 | −37 | ||
Пентафторпропионитрил | CF3CF2CN | −37 | ||
Гептафтордиметиламин | (CF3)2NF | −37 | ||
Октафторпропан | CF3CF2CF3 | −36,8 | −147,7 | |
Тетрафторид германия | GeF4 | −36,5 | ||
Циклопропен | C3H4 | −36 | ||
Трифторметилфторформиат | CF3C(O)F | −36 | −120 | |
Трифторметилизоцианат | CF3NCO | −36 | ||
Тетрафтор-1,2-диазетидин | C2F4N2H2 | −36 | ||
Иодоводород | HI | −35,5 | −50,76 | |
Гипофторит-пентафторид серы(VI) | SOF6 | −35,1 | −86 | |
Трифторметил дифторметиловый эфир | CF3OCHF2 | −35,0 | −157 | |
Пропадиен (Аллен) | CH2=C=CH2 | −34,8 | −136 | |
Хлор | Cl2 | −34,04 | −101,5 | |
Трифторметилфторформиат | FCOOCF3 | −34 | ||
Тетрафтордиборан | B2F4 | −34 | −56 | |
Аммиак | NH3 | −33,33 | −77,73 | |
Нитротрифторметан | CF3NO2 | −32 | ||
Дифтордихлорсилан | SiCl2F2 | −32 | −44 | |
Дифтораминодифторацетонитрил | F2NCF2CN | −32 | ||
Дифторметилен-бис-дифторамин | CF2(NF2)2 | −31,9 | −161,9 | |
Транс-гексафтордиазометан | CF3NNCF3 | −31,1 | ||
Циклопропан | C3H6 | −31 | −127,6 | |
Монохлорсилан | SiHCl3 | −30,4 | −118 | |
Гексафторпропилен | CF3CF=CF2 | −30,2 | −156,6 | |
Хлорацетилен | CH≡CCl | −30 | −126 | |
Метилтрифторсилан | CH3SiF3 | −30 | −73 | |
Дифтордихлорметан | CCl2F2 | −29,8 | −157,7 | |
Тетрафтордиазиридин | CF4N2 | −29 | ||
Селена(VI) гипофторит-пентафторид | SeF5OF | −29 | ||
Тетрафтороксетан | C2F4O | −28,6 | −117 | |
Трифторхлорэтилен | C2F3Cl | −28,3 | −158,14 | |
2,3,3,3-Тетрафторпропен | CF3CF=CH2 | −28,3 | −152,2 | |
Метилдифторфосфин | CH3PF2 | −28 | −110 | |
Гексафторацетон | CF3COCF3 | −27,4 | −125,45 | |
Трифтор(трифторметил)оксиран | CF3C2F3O | −27,4 | ||
Тиазилтрифторид | N≡SF3 | −27,1 | −72,6 | |
Трифторацетилхлорид | CF3COCl | −27 | −146 | |
3,3,3-Трифторпропен | CF3CH=CH2 | −27 | ||
Формилфторид | HCOF | −26,5 | −142,2 | |
1,1,1,2-Тетрафторэтан | CF3CH2F | −26,1 | −103,3 | |
Перфторметилвиниловый эфир | CF3OCF=CF2 | −26 | ||
Метилтрифторметиловый эфир | CF3OCH3 | −25,2 | −149,1 | |
Бис(трифторметил)нитроксил | (CF3)2NO | −25 | −70 | |
Дифторхлорметилгипофторит[3] | CClF2OF | −25 | ||
Серы(VI) пентафторид-цианид | SF5CN | −25 | −107 | |
Диметиловый эфир | CH3OCH3 | −24,8 | −141,49 | |
Оксид серы(IV) (Сернистый газ) | SO2 | −10,01 | −75,5 | |
Фтордихлорметилгипофторит[3] | CFCl2OF | 0 | ||
Гептафторид иода | IF7 | +4,8 | ||
Фосген | COCl2 | +8.3 | −118 | |
Оксид азота(IV) | NO2 | +21,1 | -11,2 | |
2-Фторбутан | CH3CHFCH2CH3 | +25 | −121 |
Примечания[править | править код]
- ↑ 1 2 3 4 Химическая энциклопедия. – Т.5. – М.: Советская энциклопедия, 1999, с. 279.
- ↑ Химическая энциклопедия. – Т.4. – М.: Советская энциклопедия, 1995, с. 340.
- ↑ 1 2 3 4 5 Химическая энциклопедия. – Т.5. – М.: Советская энциклопедия, 1999, с. 204.
- ↑ Гринвуд Н., Эрншо А. Химия элементов. – Т.1. – М.: БИНОМ. Лаборатория знаний, 2008, с. 393.
- ↑ 1 2 Химическая энциклопедия. – Т.5. – М.: Советская энциклопедия, 1999, с. 9.
- ↑ Химическая энциклопедия. – Т.3. – М.: Советская энциклопедия, 1992, с. 67.
- ↑ Химия фтора. – Сб.1. – М.: ГИИЛ, 1948, с. 37.
- ↑ Химия фтора. – Сб.3. – М.: ИИЛ, 1952, с. 10-11.
- ↑ Рахимов А.И. Химия и технология фторорганических соединений. – М.: Химия, 1986, с. 167.
- ↑ 1 2 Химическая энциклопедия. – Т.5. – М.: Советская энциклопедия, 1999, с. 205.
- ↑ Рысс И.Г. Химия фтора и его неорганических соединений. – М., 1956, с. 311.
- ↑ Некрасов Б.В. Основы общей химии. – Т.1. – М.: Химия, 1973, с. 402.
- ↑ Химическая энциклопедия. – Т.4. – М.: Советская энциклопедия, 1995, с. 332.
- ↑ Inorganic Chemistry. – 1965. – Vol. 4, No. 9, с. 1342-1346.
- ↑ 1 2 Химия фтора. – Сб.3. – М.: ИИЛ, 1952, с. 12-13.
- ↑ CRC Handbook of Chemistry and Physics. – 90ed. – CRC Press, 2010, с. 3-172.
Источник
Природе известно три основных состояния любого вещества: твердое, жидкое и газообразное. Практически любая жидкость может обрести каждое из оставшихся двух. Многие твердые тела при плавлении, испарении или сгорании могут пополнить содержимое воздуха. Но не каждый газ может стать компонентом твердых материалов или жидкостей. Известны разные виды газов, которые отличаются между собой по свойствам, происхождению и особенностям применения.
Определение и свойства
Газ – это вещество, для которого характерно отсутствие или минимальное значение межмолекулярных связей, а также активная подвижность частиц. Основные свойства, которые имеют все виды газов:
- Текучесть, деформируемость, летучесть, стремление к максимальному объему, реакция атомов и молекул на понижение или повышение температуры, которая проявляется изменением интенсивности их движения.
- Существуют при температуре, в условиях которой повышение давления не приводит к переходу в жидкое состояние.
- Легко сжимаются, уменьшаясь в объеме. Это упрощает транспортировку и использование.
- Большинство сжижается путем сжатия в определенных границах давлений и критических значений теплоты.
В силу исследовательской труднодоступности описываются с помощью таких основных параметров: температура, давление, объем, молярная масса.
Классификация по месторождению
В природной среде все виды газов находятся в воздухе, земле и в воде.
- Составные воздуха: кислород, азот, углекислый газ, аргон, окись азота с примесями неона, криптона, водорода, метана.
- В земной коре азот, водород, метан и другие углеводороды, углекислый газ, оксид серыи прочие находятся в газообразном и жидком состоянии. Также существуют газовые залежи в твердой фракции в смеси с пластами воды при давлениях около 250 атм. при относительно низких температурах (до 20˚С).
- Водоемы содержат растворимые газы – хлороводород, аммиак и плохо растворимые – кислород, азот, водород, диоксид углеродаи др.
Природные запасы намного превышают возможное количество искусственно созданных.
Классификация по степени горючести
Все виды газов, в зависимости от поведенческих характеристик в процессах возгорания и горения, делятся на окислители, инертные и горючие.
- Окислители способствуют возгоранию и поддерживают горение, но сами не горят: воздух, кислород, фтор, хлор, окись и двуокись азота.
- Инертные не участвуют в горении, однако имеют свойство вытеснять кислород и влиять на снижение интенсивности процесса: гелий, неон, ксенон, азот, аргон, углекислый газ.
- Горючие загораются или взрываются, соединяясь с кислородом: метан, аммиак, водород, ацетилен, пропан, бутан, угарный газ, этан, этилен. Большинство из них характеризуется горением только в условиях определенного состава газовой смеси. Благодаря этому свойству, газ – вид топлива, на сегодняшний день самый распространенный. В этом качестве используются метан, пропан, бутан.
Углекислый газ и его роль
Является одним из наиболее распространенных газов в атмосфере (0,04 %). При нормальной температуре и атмосферном давлении имеет плотность 1,98 кг/м3. Может находится в твердом и жидком состоянии. Твердая фаза наступает при отрицательных показателях тепла и постоянном атмосферном давлении, она именуется «сухой лед». Жидкая фаза СО2 возможна при повышении давления. Это свойство используется для хранения, транспортировки и технологического применения. Сублимация (переход в газообразное состояние из твердого, без промежуточной жидкой фазы) возможна при -77 – -79˚С. Растворимость в воде в соотношении 1:1 реализуется при t=14-16˚С.
Виды углекислого газа различают в зависимости от происхождения:
- Продукты жизнедеятельности растений и животных, выбросы вулканов, газовые выделения из недр земли, испарения с поверхности водоемов.
- Результаты деятельности человека, в том числе выбросы в результате сгорания всех видов топлива.
Как полезное вещество, применяется:
- В углекислотных огнетушителях.
- В баллонах для дуговой сварки в соответствующей среде СО2.
- В пищевой промышленности как консервант и для газирования воды.
- Как хладагент для временного охлаждения.
- В химической промышленности.
- В металлургии.
Будучи незаменимой составляющей жизни планеты, человека, работы машин и целых заводов, диоксид углерода накапливается в нижних и верхних слоях атмосферы, задерживая выход тепла и создавая «парниковый эффект».
Сжиженный газ и его роль
Среди веществ природного происхождения и технологического назначения выделяют такие, которые имеют высокую степень горючести и теплотворности. Для хранения, транспортировки и применения используются следующие виды сжиженного газа: метан, пропан, бутан, а также пропан-бутановые смеси.
Бутан (С4Н10) и пропан являются компонентами нефтяных газов. Первый сжижается при -1 – -0,5˚С. Транспортировка и применение в морозную погоду чистого бутана не осуществляется по причине его замерзания. Температура сжижения для пропана (С3Н8) -41 – -42˚С, критическое давление – 4,27 МПа.
Метан (СН4) – основная составляющая природного газа. Виды источника газа – залежи нефти, продукты биогенных процессов. Сжижение происходит с помощью поэтапного сжатия и снижения теплоты до -160 – -161˚С. На каждом этапе сжимается в 5-10 раз.
Сжижение осуществляется на специальных заводах. Выпускаются пропан, бутан, а также их смесь для бытового и промышленного использования по отдельности. Метан применяется в промышленности и в виде топлива для транспорта. Последний также может выпускаться и в сжатом виде.
Сжатый газ и его роль
В последнее время популярность приобрел сжатый природный газ. Если для пропана и бутана применяется исключительно сжижение, то метан может выпускаться как в сжиженном, так и в сжатом состоянии. Газ в баллонах под высоким давлением в 20 МПа имеет ряд преимуществ перед общеизвестным сжиженным.
- Высокая скорость испарения, в том числе при отрицательных температурах воздуха, отсутствие негативных явлений накопления.
- Более низкий уровень токсичности.
- Полное сгорание, высокий КПД, отсутствие негативного влияния на оборудование и атмосферу.
Все чаще находит применение не только для грузовых, но и для легковых автомобилей, а также для котельного оборудования.
Газ – малозаметное, но незаменимое вещество для жизнедеятельности человека. Высокая теплотворная способность некоторых из них оправдывает широкое использование различных компонентов природного газа в качестве топлива для промышленности и транспорта.
Источник
На сегодняшний день известно о существовании более чем 3 миллионов различных веществ. И цифра эта с каждым годом растет, так как химиками-синтетиками и другими учеными постоянно производятся опыты по получению новых соединений, обладающих какими-либо полезными свойствами.
Часть веществ – это природные обитатели, формирующиеся естественным путем. Другая половина – искусственные и синтетические. Однако и в первом и во втором случае значительную часть составляют газообразные вещества, примеры и характеристики которых мы и рассмотрим в данной статье.
Агрегатные состояния веществ
С XVII века принято было считать, что все известные соединения способны существовать в трех агрегатных состояниях: твердые, жидкие, газообразные вещества. Однако тщательные исследования последних десятилетий в области астрономии, физики, химии, космической биологии и прочих наук доказали, что есть еще одна форма. Это плазма.
Что она собой представляет? Это частично или полностью ионизированные газы. И оказывается, таких веществ во Вселенной подавляющее большинство. Так, именно в состоянии плазмы находятся:
- межзвездное вещество;
- космическая материя;
- высшие слои атмосферы;
- туманности;
- состав многих планет;
- звезды.
Поэтому сегодня говорят, что существуют твердые, жидкие, газообразные вещества и плазма. Кстати, каждый газ можно искусственно перевести в такое состояние, если подвергнуть его ионизации, то есть заставить превратиться в ионы.
Газообразные вещества: примеры
Примеров рассматриваемых веществ можно привести массу. Ведь газы известны еще с XVII века, когда ван Гельмонт, естествоиспытатель, впервые получил углекислый газ и стал исследовать его свойства. Кстати, название этой группе соединений также дал он, так как, по его мнению, газы – это нечто неупорядоченное, хаотичное, связанное с духами и чем-то невидимым, но ощутимым. Такое имя прижилось и в России.
Можно классифицировать все газообразные вещества, примеры тогда привести будет легче. Ведь охватить все многообразие сложно.
По составу различают:
- простые,
- сложные молекулы.
К первой группе относятся те, что состоят из одинаковых атомов в любом их количестве. Пример: кислород – О2, озон – О3, водород – Н2, хлор – CL2, фтор – F2, азот – N2 и прочие.
Ко второй категории следует относить такие соединения, в состав которых входит несколько атомов. Это и будут газообразные сложные вещества. Примерами служат:
- сероводород – H2S;
- хлороводород – HCL;
- метан – CH4;
- сернистый газ – SO2;
- бурый газ – NO2;
- фреон – CF2CL2;
- аммиак – NH3 и прочие.
Классификация по природе веществ
Также можно классифицировать виды газообразных веществ по принадлежности к органическому и неорганическому миру. То есть по природе входящих в состав атомов. Органическими газами являются:
- первые пять представителей предельных углеводородов (метан, этан, пропан, бутан, пентан). Общая формула CnH2n+2;
- этилен – С2Н4;
- ацетилен или этин – С2Н2;
- метиламин – CH3NH2 и другие.
К категории газов неорганической природы относятся хлор, фтор, аммиак, угарный газ, силан, веселящий газ, инертные или благородные газы и прочие.
Еще одной классификацией, которой можно подвергнуть рассматриваемые соединения, является деление на основе входящих в состав частиц. Именно из атомов состоят не все газообразные вещества. Примеры структур, в которых присутствуют ионы, молекулы, фотоны, электроны, броуновские частицы, плазма, также относятся к соединениям в таком агрегатном состоянии.
Свойства газов
Характеристики веществ в рассматриваемом состоянии отличаются от таковых для твердых или жидких соединений. Все дело в том, что свойства газообразных веществ особенные. Частицы их легко и быстро подвижны, вещество в целом изотропное, то есть свойства не определяются направлением движения входящих в состав структур.
Можно обозначить самые главные физические свойства газообразных веществ, которые и будут отличать их от всех остальных форм существования материи.
- Это такие соединения, которые нельзя увидеть и проконтролировать, ощутить обычными человеческими способами. Чтобы понять свойства и идентифицировать тот или иной газ, опираются на четыре описывающих их все параметра: давление, температура, количество вещества (моль), объем.
- В отличие от жидкостей газы способны занимать все пространство без остатка, ограничиваясь лишь величиной сосуда или помещения.
- Все газы между собой легко смешиваются, при этом у этих соединений нет поверхности раздела.
- Существуют более легкие и тяжелые представители, поэтому под действием силы тяжести и времени, возможно увидеть их разделение.
- Диффузия – одно из важнейших свойств этих соединений. Способность проникать в другие вещества и насыщать их изнутри, совершая при этом совершенно неупорядоченные движения внутри своей структуры.
- Реальные газы электрический ток проводить не могут, однако если говорить о разреженных и ионизированный субстанциях, то проводимость резко возрастает.
- Теплоемкость и теплопроводность газов невысока и колеблется у разных видов.
- Вязкость возрастает с увеличением давления и температуры.
- Существует два варианта межфазового перехода: испарение – жидкость превращается в пар, сублимация – твердое вещество, минуя жидкое, становится газообразным.
Отличительная особенность паров от истинных газов в том, что первые при определенных условиях способны перейти в жидкость или твердую фазу, а вторые нет. Также следует заметить способность рассматриваемых соединений сопротивляться деформациям и быть текучими.
Подобные свойства газообразных веществ позволяют широко применять их в самых различных областях науки и техники, промышленности и народном хозяйстве. К тому же конкретные характеристики являются для каждого представителя строго индивидуальными. Мы же рассмотрели лишь общие для всех реальных структур особенности.
Сжимаемость
При разных температурах, а также под влиянием давления газы способны сжиматься, увеличивая свою концентрацию и снижая занимаемый объем. При повышенных температурах они расширяются, при низких – сжимаются.
Под действием давления также происходят изменения. Плотность газообразных веществ увеличивается и, при достижении критической точки, которая для каждого представителя своя, может наступить переход в другое агрегатное состояние.
Основные ученые, внесшие вклад в развитие учения о газах
Таких людей можно назвать множество, ведь изучение газов – процесс трудоемкий и исторически долгий. Остановимся на самых известных личностях, сумевших сделать наиболее значимые открытия.
- Амедео Авогадро в 1811 году сделал открытие. Неважно, какие газы, главное, что при одинаковых условиях их в одном объеме их содержится равное количество по числу молекул. Существует рассчитанная величина, имеющая название по фамилии ученого. Она равна 6,03*1023 молекул для 1 моль любого газа.
- Ферми – создал учение об идеальном квантовом газе.
- Гей-Люссак, Бойль-Мариотт – фамилии ученых, создавших основные кинетические уравнения для расчетов.
- Роберт Бойль.
- Джон Дальтон.
- Жак Шарль и многие другие ученые.
Строение газообразных веществ
Самая главная особенность в построении кристаллической решетки рассматриваемых веществ, это то, что в узлах ее либо атомы, либо молекулы, которые соединяются друг с другом слабыми ковалентными связями. Также присутствуют силы ван-дер-ваальсового взаимодействия, когда речь идет о ионах, электронах и других квантовых системах.
Поэтому основные типы строения решеток для газов, это:
- атомная;
- молекулярная.
Связи внутри легко рвутся, поэтому эти соединения не имеют постоянной формы, а заполняют весь пространственный объем. Это же объясняет отсутствие электропроводности и плохую теплопроводность. А вот теплоизоляция у газов хорошая, ведь, благодаря диффузии, они способны проникать в твердые тела и занимать свободные кластерные пространства внутри них. Воздух при этом не пропускается, тепло удерживается. На этом основано применение газов и твердых тел в совокупности в строительных целях.
Простые вещества среди газов
Какие по строению и структуре газы относятся к данной категории, мы уже оговаривали выше. Это те, что состоят из одинаковых атомов. Примеров можно привести много, ведь значительная часть неметаллов из всей периодической системы при обычных условиях существует именно в таком агрегатном состоянии. Например:
- фосфор белый – одна из аллотропных модификаций данного элемента;
- азот;
- кислород;
- фтор;
- хлор;
- гелий;
- неон;
- аргон;
- криптон;
- ксенон.
Молекулы этих газов могут быть как одноатомными (благородные газы), так и многоатомными (озон – О3). Тип связи – ковалентная неполярная, в большинстве случаев достаточно слабая, но не у всех. Кристаллическая решетка молекулярного типа, что позволяет этим веществам легко переходить из одного агрегатного состояния в другое. Так, например, йод при обычных условиях – темно-фиолетовые кристаллы с металлическим блеском. Однако при нагревании сублимируются в клубы ярко-фиолетового газа – I2.
К слову сказать, любое вещество, в том числе металлы, при определенных условиях могут существовать в газообразном состоянии.
Сложные соединения газообразной природы
Таких газов, конечно, большинство. Различные сочетания атомов в молекулах, объединенные ковалентными связями и ван-дер-ваальсовыми взаимодействиями, позволяют сформироваться сотням различных представителей рассматриваемого агрегатного состояния.
Примерами именно сложных веществ среди газов могут быть все соединения, состоящие из двух и более разных элементов. Сюда можно отнести:
- пропан;
- бутан;
- ацетилен;
- аммиак;
- силан;
- фосфин;
- метан;
- сероуглерод;
- сернистый газ;
- бурый газ;
- фреон;
- этилен и прочие.
Кристаллическая решетка молекулярного типа. Многие из представителей легко растворяются в воде, образуя соответствующие кислоты. Большая часть подобных соединений – важная часть химических синтезов, осуществляемых в промышленности.
Метан и его гомологи
Иногда общим понятием “газ” обозначают природное полезное ископаемое, которое представляет собой целую смесь газообразных продуктов преимущественно органической природы. Именно он содержит такие вещества, как:
- метан;
- этан;
- пропан;
- бутан;
- этилен;
- ацетилен;
- пентан и некоторые другие.
В промышленности они являются очень важными, ведь именно пропан-бутановая смесь – это бытовой газ, на котором люди готовят пищу, который используется в качестве источника энергии и тепла.
Многие из них используются для синтеза спиртов, альдегидов, кислот и прочих органических веществ. Ежегодное потребление природного газа исчисляется триллионами кубометров, и это вполне оправданно.
Кислород и углекислый газ
Какие вещества газообразные можно назвать самыми широко распространенными и известными даже первоклассникам? Ответ очевиден – кислород и углекислый газ. Ведь это они являются непосредственными участниками газообмена, происходящего у всех живых существ на планете.
Известно, что именно благодаря кислороду возможна жизнь, так как без него способны существовать только некоторые виды анаэробных бактерий. А углекислый газ – необходимый продукт “питания” для всех растений, которые поглощают его с целью осуществления процесса фотосинтеза.
С химической точки зрения и кислород, и углекислый газ – важные вещества для проведения синтезов соединений. Первый является сильным окислителем, второй чаще восстановитель.
Галогены
Это такая группа соединений, в которых атомы – это частицы газообразного вещества, соединенные попарно между собой за счет ковалентной неполярной связи. Однако не все галогены – газы. Бром – это жидкость при обычных условиях, а йод – легко возгоняющееся твердое вещество. Фтор и хлор – ядовитые опасные для здоровья живых существ вещества, которые являются сильнейшими окислителями и используются в синтезах очень широко.
Источник