Какие азотсодержащие соединения проявляют основные свойства
Амины
Амины – производные аммиака, в молекуле которого один, два или все три атома водорода замещены на углеводородные радикалы.
По количеству замещенных атомов водорода амины делят на:
По характеру углеводородных заместителей амины делят на
Общие особенности строения аминов
Также как и в молекуле аммиака, в молекуле любого амина атом азота имеет неподеленную электронную пару, направленную в одну из вершин искаженного тетраэдра:
По этой причине у аминов как и у аммиака существенно выражены основные свойства.
Так, амины аналогично аммиаку обратимо реагируют с водой, образуя слабые основания:
Связь катиона водорода с атомом азота в молекуле амина реализуется с помощью донорно-акцепторного механизма за счет неподеленной электронной пары атома азота. Предельные амины являются более сильными основаниями по сравнению с аммиаком, т.к. в таких аминах углеводородные заместители обладают положительным индуктивным (+I) эффектом. В связи с этим на атоме азота увеличивается электронная плотность, что облегчает его взаимодействие с катионом Н+.
Ароматические амины, в случае если аминогруппа непосредственно соединена с ароматическим ядром, проявляют более слабые основные свойства по сравнению с аммиаком. Связано это с тем, что неподеленная электронная пара атома азота смещается в сторону ароматической π-системы бензольного кольца в следствие чего, электронная плотность на атоме азота снижается. В свою очередь это приводит к снижению основных свойств, в частности способности взаимодействовать с водой. Так, например, анилин реагирует только с сильными кислотами, а с водой практически не реагирует.
Химические свойства предельных аминов
Как уже было сказано, амины обратимо реагируют с водой:
Водные растворы аминов имеют щелочную реакцию среды, вследствие диссоциации образующихся оснований:
Предельные амины реагируют с водой лучше, чем аммиак, ввиду более сильных основных свойств.
Основные свойства предельных аминов увеличиваются в ряду.
Вторичные предельные амины являются более сильными основаниями, чем первичные предельные, которые являются в свою очередь более сильными основаниями, чем аммиак. Что касается основных свойств третичных аминов, то то если речь идет о реакциях в водных растворах, то основные свойства третичных аминов выражены намного хуже, чем у вторичных аминов, и даже чуть хуже чем у первичных. Связано это со стерическими затруднениями, существенно влияющими на скорость протонирования амина. Другими словами три заместителя «загораживают» атом азота и мешают его взаимодействию с катионами H+.
Взаимодействие с кислотами
Как свободные предельные амины, так и их водные растворы вступают во взаимодействие с кислотами. При этом образуются соли:
Так как основные свойства предельных аминов сильнее выражены, чем у аммиака, такие амины реагируют даже со слабыми кислотами, например угольной:
Соли аминов представляют собой твердые вещества, хорошо растворимые в воде и плохо в неполярных органических растворителях. Взаимодействие солей аминов с щелочами приводит к высвобождению свободных аминов, аналогично тому как происходит вытеснение аммиака при действии щелочей на соли аммония:
2. Первичные предельные амины реагируют с азотистой кислотой с образованием соответствующих спиртов, азота N2 и воды. Например:
Характерным признаком данной реакции является образование газообразного азота, в связи с чем она является качественной на первичные амины и используется для их различения от вторичных и третичных. Следует отметить, что чаще всего данную реакцию проводят, смешивая амин не с раствором самой азотистой кислоты, а с раствором соли азотистой кислоты (нитрита) и последующим добавлением к этой смеси сильной минеральной кислоты. При взаимодействии нитритов с сильными минеральными кислотами образуется азотистая кислота, которая уже затем реагирует с амином:
Вторичные амины дают в аналогичных условиях маслянистые жидкости, так называемые N-нитрозаминами, но данная реакция в реальных заданиях ЕГЭ по химии не встречается. Третичные амины с азотистой кислотой взаимодействуют также как и с другими кислотами — с образованием соответствующих солей, в данном случае, нитритов.
Полное сгорание любых аминов приводит к образованию углекислого газа, воды и азота:
Взаимодействие с галогеналканами
Примечательно, что абсолютно такая же соль получается при действии хлороводорода на более замещенный амин. В нашем случае, при взаимодействии хлороводорода с диметиламином:
Получение аминов:
1) Алкилирование аммиака галогеналканами:
В случае недостатка аммиака вместо амина получается его соль:
2) Восстановление металлами (до водорода в ряду активности) в кислой среде:
с последующей обработкой раствора щелочью для высвобождения свободного амина:
3) Реакция аммиака со спиртами при пропускании их смеси через нагретый оксид алюминия. В зависимости от пропорций спирт/амин образуются первичные, вторичные или третичные амины:
Химические свойства анилина
Анилин – тривиальное название аминобензола, имеющего формулу:
Как можно видеть из иллюстрации, в молекуле анилина аминогруппа непосредственно соединена с ароматическим кольцом. У таких аминов, как уже было сказано, основные свойства выражены намного слабее, чем у аммиака. Так, в частности, анилин практически не реагирует с водой и слабыми кислотами типа угольной.
Взаимодействие анилина с кислотами
Анилин реагирует с сильными и средней силы неорганическими кислотами. При этом образуются соли фениламмония:
Взаимодействие анилина с галогенами
Как уже было сказано в самом начале данной главы, аминогруппа в ароматических аминах , втянута в ароматическое кольцо, что в свою очередь снижает электронную плотность на атоме азота, и как следствие увеличивает ее в ароматическом ядре. Увеличение электронной плотности в ароматическом ядре приводит к тому, что реакции электрофильного замещения, в частности, реакции с галогенами протекают значительно легче, особенно в орто- и пара- положениях относительно аминогруппы. Так, анилин с легкостью вступает во взаимодействие с бромной водой, образуя белый осадок 2,4,6-триброманилина:
Данная реакция является качественной на анилин и часто позволяет определить его среди прочих органических соединений.
Взаимодействие анилина с азотистой кислотой
Анилин реагирует с азотистой кислотой, но в виду специфичности и сложности данной реакции в реальном ЕГЭ по химии она не встречается.
Реакции алкилирования анилина
С помощью последовательного алкилирования анилина по атому азота галогенпроизводными углеводородов можно получать вторичные и третичные амины:
Получение анилина
1. Восстановление маталлами нитробензола в присутствии сильных кислот-неокислителей:
C6H5-NO2 + 3Fe + 7HCl = [C6H5-NH3]+Cl- + 3FeCl2 + 2H2O
2. Далее полученную соль обрабатывают щелочью для высвобождения анилина:
[C6H5-NH3]+Cl— + NaOH = C6H5-NH2 + NaCl + H2O
В качестве металлов могут быть использованы любые металлы, находящиеся до водорода в ряду активности.
Реакция хлорбензола с аммиаком:
С6H5−Cl + 2NH3 → C6H5NH2 + NH4Cl
Химические свойства аминокислот
Аминокислотами называют соединения в молекулах которых присутствуют два типа функциональных групп – амино (-NH2) и карбокси- (-COOH) группы.
Другими словами, аминокислоты можно рассматривать как производные карбоновых кислот, в молекулах которых один или несколько атомов водорода замещены на аминогруппы.
Таким образом, общую формулу аминокислот можно записать как (NH2)xR(COOH)y, где x и y чаще всего равны единице или двум.
Поскольку в молекулах аминокислот есть и аминогруппа и карбоксильная группа, они проявляют химические свойства схожие как аминов, так и карбоновых кислот.
Кислотные свойства аминокислот
Образование солей с щелочами и карбонатами щелочных металлов
Этерификация аминокислот
Аминокислоты могут вступать в реакцию этерификации со спиртами:
NH2CH2COOH + CH3OH → NH2CH2COOCH3+ H2O
Основные свойства аминокислот
1. Образование солей при взаимодействии с кислотами
NH2CH2COOH + HCl → [NH3CH2COOH]+Cl—
2. Взаимодействие с азотистой кислотой
NH2-CH2-COOH + HNO2 → НО-CH2-COOH + N2↑ + H2O
Примечание: взаимодействие с азотистой кислотой протекает так же, как и с первичными аминами
3. Алкилирование
NH2CH2COOH + CH3I → [CH3NH2CH2COOH]+I—
4. Взаимодействие аминокислот друг с другом
Аминокислоты могут реагировать друг с другом образуя пептиды – соединения, содержащие в своих молекулах пептидную связь –C(O)-NH-
При этом, следует отметить, что в случае проведения реакции между двумя разными аминокислотами, без соблюдения некоторых специфических условий синтеза, одновременно протекает образование разных дипептидов. Так, например, вместо реакции глицина с аланином выше, приводящей к глицилананину, может произойти реакция приводящая к аланилглицину:
Кроме того, молекула глицина не обязательно реагирует с молекулой аланина. Протекают также и реакции пептизации между молекулами глицина:
И аланина:
Помимо этого, поскольку молекулы образующихся пептидов как и исходные молекулы аминокислот содержат аминогруппы и карбоксильные группы, сами пептиды могут реагировать с аминокислотами и другими пептидами, благодаря образованию новых пептидных связей.
Отдельные аминокислоты используются для производства синтетических полипептидов или так называемых полиамидных волокон. Так, в частности с помощью поликонденсации 6-аминогексановой (ε-аминокапроновой) кислоты в промышленности синтезируют капрон:
Получаемая в результате этой реакции капроновая смола используется для производства текстильных волокон и пластмасс.
Образование внутренних солей аминокислот в водном растворе
В водных растворах аминокислоты существуют преимущественно в виде внутренних солей — биполярных ионов (цвиттер-ионов):
Получение аминокислот
1) Реакция хлорпроизводных карбоновых кислот с аммиаком:
Cl-CH2-COOH + 2NH3 = NH2-CH2-COOH + NH4Cl
2) Расщепление (гидролиз) белков под действием растворов сильных минеральных кислот и щелочей.
Источник
Как видно из названия, азотсодержащие соединения содержат хотя бы один атом азота в молекуле. К таким соединениям относятся, в частности, амины, аминокислоты и белки.
Амины
Амины — это производные аммиака, в молекуле которого один или более атомов водорода замещены на радикал:
Группа –NH2, которая входит в состав первичных аминов, называется «аминогруппа». К первичным аминам относятся:
Амины с небольшим числом атомов углерода в молекуле очень похожи на аммиак. Поэтому, описывая свойства аминов, полезно вспоминать аналогичные свойства аммиака (см. урок 14.2) Так, метиламин, как и аммиак — ядовитый газ с резким запахом, хорошо растворимый в воде.
Вопрос. Какую реакцию среды имеет раствор аммиака в воде?
Сравним взаимодействие аммиака с водой и амина с водой:
Вопрос. Какие свойства: основные или кислотные — проявляют растворы аммиака и аминов?
Совет. Составляя уравнения реакций первичного амина с водой (см. выше) или с кислотами (см. ниже), нужно прибегать к работе по аналогии. Посмотрите, чем отличается молекула первичного амина от молекулы аммиака? Одним радикалом. Поэтому замените и в молекуле амина, и в продуктах реакции один атом водорода в аммиаке на радикал. И всё получится. Так же поступайте и с более сложными аминами.
Поскольку амины, как и аммиак, проявляют свойства оснований, — они реагируют с кислотами:
Отметьте, как изменился состав аминогруппы.
Обратите внимание: в этих реакциях атом водорода кислоты добавляется к NH2-группе.
Амины могут вступать в реакцию и за счёт углеводородного радикала. Так, анилин вступает в реакцию замещения с бромом (аналогично реакции фенола или толуола с бромом):
Анилин необходим для синтеза многих красителей. Поэтому его в больших количествах получают восстановлением нитробензола при помощи реакции Зинина*:
* Зинин Николай Николаевич (25.08.1812–18.02.1880) — русский химик-органик, открыл (1842) реакцию восстановления ароматических нитросоединений, получив таким способом анилин (1842). В числе его учеников были А. М. Бутлеров, Н. Н. Бекетов и А. П. Бородин (по совместительству композитор).
Водород, необходимый для восстановления, получают при помощи реакции металла с кислотой:
Аминокислоты
Как видно из названия, молекулы аминокислот содержат две функциональные группы:
Простейшей аминокислотой является глицин:
Функциональные группы аминокислот могут находиться на разном «расстоянии» друг от друга. Так, в ω-аминокапроновой кислот они находятся на противоположных концах молекулы:
Эта кислота и её производные используются для получения синтетического волокна «капрон» (см. урок 28). Гораздо большее значение имеют α-аминокислоты, в молекулах которых функциональные группы разделены одним атомом углерода:
Эти α-аминокислоты входят в состав белков. Всего в состав белков входит постоянно 20 аминокислот. Все они имеют особые названия, и все они α-аминокислоты.
Аминокислоты — это кристаллические вещества, хорошо растворимые в воде.
Вопрос. Какую реакцию среды имеет такой раствор?
Аминокислоты диссоциируют в растворе:
Ион водорода H+ тут же вступает в реакцию с анионом:
В результате в растворе нет избытка ни ионов водорода, ни ионов гидроксила, т. е. среда нейтральная (рН = 7).
Вопрос. Какие свойства проявляет аминогруппа? карбоксильная группа?
Вопрос. Будет ли аминокислота реагировать с кислотой? с основанием?
Поскольку в состав аминокислоты входит оснОвная группа –NH2 и кислотная –СООН, аминокислоты могут реагировать и с кислотами:
и с основаниями:
Вопрос. Как называются вещества, реагирующие и с кислотами и с основаниями, если в результате образуется соль?
Таким образом, аминокислоты — амфотерные соединения, именно поэтому они могут реагировать друг с другом.
Вопрос. Какие вещества получаются при взаимодействии кислоты и основания?
В результате этой реакции отщепляется молекула воды. Для того чтобы составить уравнение такой реакции, записывайте формулы аминокислот так, чтобы СООН-группа одной молекулы находилась рядом с NH2-группой другой молекулы:
В эту реакцию может вступать и большее число молекул аминокислот. В результате образуется полипептид — основа любого белка.
Аминокислоты в живых организмах образуются при гидролизе белков или синтетическим путем из других соединений, например, их можно получить из галогенпроизводных кислот:
Задание 27.1. Назовите полученную аминокислоту.
Белки
Белки — это природные полимеры (высокомолекулярные вещества), состоящие из остатков α-аминокислот.
Эти остатки соединены в длинную цепь за счёт пептидных связей:
Атомы С–N образуют пептидную связь, которая соединяет остатки аминокислот в молекулах всех белков.
Эта полипептидная цепь определяет первичную структуру белка. Любое изменение первичной структуры белка влечёт за собой изменение всех свойств белка, так как формируется уже другой белок.
Длинная полипептидная цепь скручивается за счёт водородных связей в спираль:
Формируется вторичная структура белка. Внутри этих спиралей за счёт радикалов происходят сложнейшие химические реакции. В результате молекулы белка изменяют свою форму, образуя нити (фибриллы) или «шарики» (глобулы):
Любой белок имеет столь сложную структуру, что всякое изменение её становится необратимым (белок не может «вспомнить» свою прежнюю структуру и восстановить её). Такие необратимые изменения происходят при нагревании свыше 40…60 °C, под действием кислот, щелочей, солей тяжёлых металлов, радиации и т. д. В результате этих и некоторых других воздействий происходит денатурация белка. При этом белок теряет свои природные (натуральные) свойства, так как изменилась вторичная и третичная структуры его:
Денатурация белка является причиной гибели микроорганизмов при стерилизации медицинских инструментов, консервов. Она же является причиной тяжёлых отравлений солями меди, ртути, свинца и другими ядами. Денатурация происходит и при варке мяса, яиц.
Более глубокие изменения, затрагивающие первичную структуру белка (полипептидную цепь) происходят при гидролизе белка: белок + Н2О → смесь аминокислот.
Белок входит в состав всех живых организмов и, значит, в состав многих пищевых продуктов: мясо, молоко, яйца, хлеб, картофель и т. д.
Обнаружить белок в растворе можно при помощи биуретовой реакции: раствор белка + CuSO4 + NaOH → фиолетовая окраска.
Большинство белков дают и ксантопротеиовую реакцию: так, если при неосторожном обращении с концентрированной азотной кислотой, капля её попадёт на кожу — появится несмываемое жёлтое пятно.
Биуретовая и ксантопротеиновая реакции — качественные реакции на белки.
Кроме того, реактивом на белок являются растворимые соли свинца, которые в щелочной среде образуют чёрный осадок.
И наконец, признаком присутствия белка в каком-либо материале может служить также появление характерного запаха при сжигании — запах палёного волоса, рога. Этот запах появляется, если поджечь волос, шерстяную нитку или кусочек натурального меха.
Значение белков огромно: из них состоят все клетки нашего организма, они помогают нам дышать, обеспечивают организм энергией, защищают от вредных воздействий окружающей среды иммунитет, «запоминают» и воспроизводят наследственную информацию. Ни одна биохимическая реакция невозможна без ферментов, а любой фермент имеет белковую основу. Лучше всего значение белков подчеркнул Ф. Энгельс: «Жизнь — есть способ существования белковых тел».
Выводы
Белки — это природные высокомолекулярные соединения, состоящие из остатков α-аминокислот. Аминокислоты содержат две функциональные группы, противоположные по свойствам, поэтому они могут реагировать друг с другом, образуя полипептиды. Аминокислоты образуются при гидролизе белков пищи (мясо, молоко, яйца, рыба), а затем из них образуются белки нашего организма (белки входят в состав всех органов и тканей нашего организма).
Источник
11. Азотсодержащие органические соединения
11.1. Нитросоединения. Амины
Очень важны в народном хозяйстве азотсодержащие органические вещества. Азот может входить в органические соединения в виде нитрогруппы NO2, аминогруппы NH2 и амидогруппы (пептидной группы) – C(O)NH, причем всегда атом азота будет непосредственно связан с атомом углерода.
Нитросоединения получают при прямом нитровании предельных углеводородов азотной кислотой (давление, температура) или при нитровании ароматических углеводородов азотной кислотой в присутствии серной кислоты, например:
Низшие нитроалканы (бесцветные жидкости) используются как растворители пластмасс, целлюлозного волокна, многих лаков, низшие нитроарены (желтые жидкости) – как полупродукты для синтеза аминосоединений.
Амины (или аминосоединения) можно рассматривать как органические производные аммиака. Амины могут быть первичными R – NH2, вторичными RR’NH и третичными RR’R” N, в зависимости от числа атомов водорода, которые замещены на радикалы R, R’, R”. Например, первичный амин — этиламин C2H5NH2, вторичный амин — дижетиламин (CH3)2NH, третичный амин – триэтиламин (C2H5)3N.
Амины, как и аммиак, проявляют основные свойства, они в водном растворе гидратируются и диссоциируют как слабые основания:
а с кислотами образуют соли:
Третичные амины присоединяют галогенпроизводные с образованием солей четырехзамещенного аммония:
Ароматические ажины (в которых аминогруппа связана непосредственно с бензольным кольцом) являются более слабыми основаниями, чем алкиламины, из-за взаимодействия неподеленной пары электронов атома азота с ?-электронами бензольного кольца. Аминогруппа облегчает замещение водорода в бензольном кольце, например на бром; из анилина образуется 2,4,6-триброманилин:
Получение: восстановление нитросоединений с помощью атомарного водорода (получают либо непосредственно в сосуде по реакции Fe + 2НCl = FeCl2 + 2Н0, либо при пропускании водорода Н2 над никелевым катализатором Н2 = 2Н0) приводит к синтезу первичных аминов:
a)
б) реакция Зинина
Амины используются в производстве растворителей для полимеров, лекарственных препаратов, кормовых добавок, удобрений, красителей. Очень ядовиты, особенно анилин (желто-коричневая жидкость, всасывается в организм даже через кожу).
11.2. Аминокислоты. Белки
Аминокислоты – органические соединения, содержащие в своем составе две функциональные группы – кислотную СООН и аминную NH2; являются основой белковых веществ.
Примеры:
Аминокислоты проявляют свойства и кислот, и аминов. Так, они образуют соли (за счет кислотных свойств карбоксильной группы):
и сложные эфиры (подобно другим органическим кислотам):
С более сильными (неорганическими) кислотами они проявляют свойства оснований и образуют соли за счет основных свойств аминогруппы:
Реакцию образования глицинатов и солей глициния можно объяснить следующим образом. В водном растворе аминокислоты существуют в трех формах (на примере глицина):
Поэтому глицин в реакции со щелочами переходит в глицинат-ион, а с кислотами – в катион глициния, равновесие смещается соответственно в сторону образования анионов или катионов.
Белки – органические природные соединения; представляют собой биополимеры, построенные из остатков аминокислот. В молекулах белков азот присутствует в виде амидогруппы – С(О) – NH– (так называемая пептидная связь С – N). Белки обязательно содержат С, Н, N, О, почти всегда S, часто Р и др.
При гидролизе белков получают смесь аминокислот, например:
По числу остатков аминокислот в молекуле белка различают дипептиды (приведенный выше глицилаланин), трипептиды и т. д. Природные белки (протеины) содержат от 100 до 1 105 остатков аминокислот, что отвечает относительной молекулярной массе 1 • 104 – 1 • 107.
Образование макромолекул протеинов (биополимеров), т. е. связывание молекул аминокислот в длинные цепи, происходит при участии группы СООН одной молекулы и группы NH2 другой молекулы:
Физиологическое значение белков трудно переоценить, не случайно их называют «носителями жизни». Белки – основной материал, из которого построен живой организм, т. е. протоплазма каждой живой клетки.
При биологическом синтезе белка в полипептидную цепь включаются остатки 20 аминокислот (в порядке, задаваемом генетическим кодом организма). Среди них есть и такие, которые не синтезируются вообще (или синтезируются в недостаточном количестве) самим организмом, они называются незаменимыми аминокислотами и вводятся в организм вместе с пищей. Пищевая ценность белков различна; животные белки, имеющие более высокое содержание незаменимых аминокислот, считаются для человека более важными, чем растительные белки.
Примеры заданий частей А, В, С
1—2. Класс органических веществ
1. нитросоединения
2. первичные амины
содержит функциональную группу
1) – О – NO2
2) – NO2
3) – NH2
4) – NO3-
3. Водородные связи образуются между молекулами
1) формальдегида
2) пропанола-1
3) циановодорода
4) этиламина
4. Число структурных изомеров из группы предельных аминов для состава C3H9N равно
1) 1
2) 2
3) 3
4) 4
5. В водном растворе аминокислоты CH3CH(NH2)COOH химическая среда будет
1) кислотной
2) нейтральной
3) щелочной
4) любой
6. Двойственную функцию в реакциях выполняют (по отдельности) все вещества набора
1) глюкоза, этановая кислота, этиленгликоль
2) фруктоза, глицерин, этанол
3) глицин, глюкоза, метановая кислота
4) этилен, пропановая кислота, аланин
7—10. Для реакции в растворе между глицином и
7. гидроксидом натрия
8. метанолом
9. хлороводородом
10. аминоуксусной кислотой продуктами будут
1) соль и вода
2) соль
3) дипептид и вода
4) сложный эфир и вода
11. Соединение, которое реагирует с хлороводородом, образуя соль, вступает в реакции замещения и получается восстановлением продукта нитрования бензола, – это
1) нитробензол
2) метиламин
3) анилин
4) фенол
12. При добавлении лакмуса к бесцветному водному раствору 2-аминопропановой кислоты раствор окрашивается в цвет:
1) красный
2) желтый
3) синий
4) фиолетовый
13. Для распознавания изомеров со строением СН3—СН2—СН2—NO2 и NH2—СН(СН3) – СООН следует использовать реактив
1) пероксид водорода
2) бромная вода
3) раствор NaHCO3
4) раствор FeCl3
14. При действии концентрированной азотной кислоты на белок появляется… окрашивание:
1) фиолетовое
2) голубое
3) желтое
4) красное
15. Установите соответствие между названием соединения и классом, к которому оно относится
16. Анилин действует в процессах:
1) нейтрализация муравьиной кислотой
2) вытеснение водорода натрием
3) получение фенола
4) замещение с хлорной водой
17. Глицин участвует в реакциях
1) окисления с оксидом меди (II)
2) синтеза дипептида с фенилаланином
3) этерификации бутанолом-1
4) присоединения метиламина
18—21. Составьте уравнения реакций по схеме
18.
19.
20.
21.
Источник