Какие арифметические действия обладают свойством дистрибутивности
Известно, что сложение и умножение чисел обладает свойствами коммутативности, ассоциативности, умножение дистрибутивно относительно сложения. Аналогичными свойствами обладают объединение и пересечение множеств.
Рассмотрим свойства алгебраических операций, определив их в общем виде. При этом условимся алгебраические операции обозначать символами: * (читается – «звездочка») и о (читается – «кружок»).
Важнейшим свойством алгебраических операций является свойство ассоциативности.
Определение. Алгебраическая операция *, заданная на множествеX, называется ассоциативной, если для любых элементов х, у и z из множества X выполняется равенство
(x*y)*z=x*(y*z).
Если операция * обладает свойством ассоциативности, то можно опускать скобки и писать x*у*z вместо (х*у)*z и х*(у*z).
Например, ассоциативно сложение натуральных чисел: для любых натуральных чисел х, у и z выполняется равенство (х + у) + z = x + (у + z). Ассоциативно сложение рациональных и действительных чисел. Поэтому сумму нескольких чисел можно записывать без скобок.
Существуют алгебраические операции, не обладающие свойством ассоциативности. Так, не является ассоциативным вычитание целых чисел: существуют целые числа х, у и z, для которых (х – у) – z ≠ х – (у – z). Например, (12 – 7) – 3 ≠ 12 – (7 – 3).
Ассоциативность алгебраической операции * позволяет записывать без скобок все выражения, содержащие лишь эту операцию, но переставлять входящие в это выражение элементы, вообще говоря, нельзя. Перестановка элементов возможна лишь в случае, когда операция * коммутативна.
Определение. Алгебраическая операция * на множестве X называется коммутативной, если для любых двух элементов х и у из множества X выполняется равенство
х*у = у*х.
Примерами коммутативных операций могут служить сложение и умножение натуральных чисел, поскольку для любых натуральных чисел х и у выполняются равенства х + у = у + х, х · у = у · х. Эти равенства справедливы не только для натуральных чисел, но и для любых действительных чисел, следовательно, на множестве действительных чисел сложение и умножение тоже коммутативны.
Существуют алгебраические операции, не обладающие свойством коммутативности. Так, не является коммутативным вычитание целых чисел: существуют целые числа х и у, для которых х – у ≠ у – х. Например, 12-7≠7-12.
Если на множестве X заданы две алгебраические операции * и о, то они могут быть связаны друг с другом свойством дистрибутивности.
Определение. Алгебраическая операция оназывается дистрибутивной относительно алгебраической операции *, если для любых элементов х, у и z из множества X выполняются равенства:
1) (х*y)оz = (x o z)*(y o z) и 2) z o(х*у) = (z o х)*(z о у).
Если выполняется только равенство 1), то операцию о называют дистрибутивной справа относительно операции *; если же выполняется только равенство 2), то операцию о называют дистрибутивной слева относительно операции *.
Выясним, в каких случаях различают дистрибутивность справа и слева.
Рассмотрим на множестве натуральных чисел две операции: возведение в степень (она соответствует операции о в равенствах 1 и 2) и умножение (она соответствует операции * в равенствах 1 и 2). Тогда, согласно равенству 1, имеем: (х·у)z – = хz-уz. Как известно из алгебры, полученное равенство справедливо для любых натуральных чисел х, у и z, т.е. возведение в степень дистрибутивно справа относительно умножения. В соответствии с равенством 2, получаем х уz = ху-хz. Но это равенство выполняется не всегда, т.е. операция возведения в степень не является дистрибутивной слева относительно умножения. Такая ситуация является следствием того, что возведение в степень – операция, не обладающая свойством коммутативности.
Если взять сложение и умножение натуральных чисел, то, как известно, умножение дистрибутивно относительно сложения: для любых натуральных чисел х, у и z выполняются равенства
(x+y)·z + x·z + y·z и z·(x+y) = z·x + z·y
А так как умножение коммутативно, то не имеет значения, где писать множитель z – справа от суммы х + у или слева от нее. Поэтому в школьном курсе математики не различают дистрибутивность слева и справа, а говорят просто о дистрибутивности умножения относительно сложения.
Выясним роль свойства дистрибутивности в преобразованиях выражений. Если операция о дистрибутивна относительно операции * и обе операции ассоциативны, то в любом выражении, содержащем лишь эти две операции, можно раскрыть все скобки, перед которыми (или за которыми) стоит знак °. Проиллюстрируем сказанное на примере преобразования выражения (x + у)·(z + р). Так как умножение дистрибутивно относительно сложения, то
(x + у)·(z + р)= x·(z + р) + у·(z + р)= (x·z + x·р) + (у·z + y·р).
А поскольку сложение ассоциативно, то последнюю запись можно записать без скобок. Следовательно, (x + у)·(z + р)= )=x·z + x·р +у·z + y·р.
Часто в множестве, на котором рассматривается алгебраическая операция, выделяются особые элементы, называемые в алгебре нейтральными и поглощающими.
Определение. Элемент е из множества X называется нейтральным относительно алгебраической операции *, если для любого элемента х из множества X выполняются равенства х*е=е*х =х.
Доказано, что если нейтральный элемент относительно алгебраической операции существует, то он единственный.
Определение. Элемент р из множества X называется поглощающим относительно алгебраической операции *, если для любого элемента х из множества X выполняются равенства х*р=р*х=р.
Если поглощающий элемент относительно алгебраической операции существует, то он единственный.
Так, в множестве Zо целых неотрицательных чисел нуль является нейтральным элементом относительно сложения, поскольку для любого х из множества Zо выполняются равенства х + 0 = 0 + х = х. Это же число нуль является поглощающим элементом относительно умножения: для любого x из множества Zо верны равенства: х·0 = 0·х = 0.
Как известно, вычитание чисел является операцией, обратной сложению. Но чтобы дать определение обратной операции в общем виде, надоопределить понятие сократимой операции.
Определение. Алгебраическая операция *, заданная на множестве X, называется сократимой, если из условий а*х =а*у и х*а =у*а следует, что х =у.
Например, сократимо сложение натуральных чисел: из равенств а+х=а+у и х+а=у+а следует, что х= у.
Определение. Пусть * – сократимая и коммутативная алгебраическая операция, заданная на множестве X. Тогда операция оназывается обратной для операции *, если х о у = z тогда и только тогда, когда у * z = х.
Тот факт, что вычитание на множестве целых чисел есть операция, обратная сложению, означает: z = х – у тогда и только тогда, когда у + z = х.
Множество X с заданными на нем алгебраическими операциями принято называть алгеброй. В начальном курсе математики в основном изучают множество Zо целых неотрицательных чисел, которое является объединением множества натуральных чисел и нуля: Zо = N U{0}. На этом множестве рассматриваются алгебраические операции сложения и умножения. Используя язык современной математики, можно сказать, что в начальной школе изучают алгебру (Zо, +, •). Ее основные характеристики:
1) Сложение и умножение на множестве Zоассоциативно и коммутативно, а умножение дистрибутивно относительно сложения, т. е.:
(V х,у € Zо) х + у = у + х;
(V х,у € Zо) х·у = у·х;
(V х,у,z € Zо) (х + у) + z = х + (у + z);
(V х,у,z € Zо) (х·у)·z = х·(у·z);
(V х,у,z € Zо) (х +у)·z = х·z +у· z.
2) Сложение и умножение сократимы (исключая сокращение произведения на нуль), т.е. для любых целых неотрицательных чисел х,у и а справедливы утверждения:
х + а= у + а => х = у
х·а = у·а => х = у.
3) Нуль является нейтральным элементом относительно сложения и поглощающим относительно умножения:
(V х € Zо) х + 0 = 0 + х = x:;
(V х € Zо) х· 0 = 0· x = 0.
Единица является нейтральным элементом относительно умножения:
(V х,у € Zо) х •1 = 1•x = x.
4) Сократимость сложения и умножения целых неотрицательных чисел позволяет определить в Zо частичные алгебраические операции вычитания и деления как обратные соответственно сложению и умножению (исключая деление на нуль):
x-у = z ó у + z = x
х:у~2 ó у-z = х.
5) Вычитание и деление обладают свойствами:
(a-c)+b, если а≥с
(а+b) – c= a+(b-c), если b≥c
а – (b + с) = (а – b) – с = (a – с) – b, если a ≥ b + с;
(a+b):c = a:c+b:c, если a:c и b:c;
(a:c)·b, если а:с
(а·b) : c= a·(b:c), если b:c
а:(b-с) = (а:b):с= (а:с):b, если a:b и a:c
Названные характеристики алгебры (Zо, +, •) присутствует (явно или неявно) в любом начальном курсе математики.
Упражнения
1. Запишите, используя символы, что сложение и умножение коммутативно и ассоциативно на множестве Q рациональных чисел, а умножение дистрибутивно относительно сложения и вычитания.
2.Коммутативны ли следующие алгебраические операции:
а) возведение в степень на множестве N;
6) деление на множестве Q;
в) нахождение наибольшего общего делителя натуральных чисел?
3. Сократимо ли вычитание и деление на множестве Qрациональных чисел?
4.Какое множество является поглощающим элементом относительно пересечения множеств? Ответ обоснуйте.
5.Сформулируйте определение деления как операции, обратной умножению.
6.Выясните, как формулируются свойства сложения и умножения в различных учебниках по математике для начальной школы.
7.Запишите все свойства действий, характеризующих алгебру (Zо, +, •).
53. Основные выводы § 11
Изучив материал данного параграфа, мы познакомились со следующими понятиями:
– алгебраическая операция на множестве;
– множество, замкнутое относительно алгебраической операции;
– частичная алгебраическая операция;
– нейтральный элемент относительно алгебраической операции;
– поглощающий элемент относительно алгебраической операции;
– обратная операция.
Мы выяснили, что алгебраические операции могут обладать свойствами:
– коммутативности;
– ассоциативности;
– дистрибутивности (слева и справа);
– сократимости.
Установили, что в начальном курсе математики изучают алгебру (Zо, +, •).
Источник
Основными свойствами бинарных алгебраических операций являются:
Коммутативность (переместительность)
Свойство бинарной алгебраической операции $ circ ,$ при котором выполняется условие: $ forall x,y in mathbb{P}: $ $ (xcirc y)=(ycirc x) ,$ где $ mathbb{P} $ — некоторое рассматриваемое множество.
Ассоциативность (сочетательность)
Свойство бинарной алгебраической операции $ circ ,$ при котором выполняется условие: $ forall x,y,z in mathbb{P}: $ $ (xcirc y)circ z=ycirc (xcirc z) ,$ где $ mathbb{P} $ — некоторое рассматриваемое множество.
Дистрибутивность (распределительный закон)
Свойство согласованности некоторых двух рассматриваемых алгебраических операций $ oplus $ и $ otimes $ на одном и том же некотором рассматриваемом множестве $ mathbb{P} ,$ при котором выполняется условие левой: $ forall x,y,z in mathbb{P}: $ $ xotimes (yoplus z) $ $ =(xotimes y)oplus(xotimes z) $; и/или правой: $ (yoplus z) otimes x $ $ =(yotimes x)oplus(zotimes x) $ дистрибутивности.
Примеры
- Проверить коммутативность умножения матриц над полем вещественных чисел.
Спойлер
Пусть $ small A in mathbb{M} _{m times p} ,B in mathbb{M} _{p times n}: $ $ small C=Atimes B; C in mathbb{M} _{mtimes n} Rightarrow $ $ small c_{ij}= underset{k=1} {overset{p} {sum}}a_{ik}b_{kj} .$ Очевидно, что для выполнения операции умножения, количество столбцов первой матрицы должно совпадать с количеством строк второй, следовательно, мы доказали, что коммутативность не выполняется для всех матриц, однако всё ещё может выполнятся для квадратных матриц. Проверим это: выполнение коммутативности для матриц будет выглядеть, как $ smallforall A,B in mathbb{M}_{n} Atimes B overset{?}{=} Btimes A,$ если рассматривать результирующую матрицу поэлементно, то это можно интерпретировать, как $ small underset{k=1} {overset{m} {sum }}a_{ik}b_{kj}overset {?}{=} underset{k=1}{ overset{m}{sum}}b_{ik}a_{kj},$ то есть в первой сумме мы перемножаем строку первой матрицы на столбец второй, а во второй строку второй матрицы на столбец первой. Ясно, что результаты таких действий будут равны тогда и только тогда, когда обе матрицы будут симметрическими (то есть будут совпадать с собой транспонированными $ small A^{T}=A$). Следовательно, коммутативность не выполняется даже для квадратных матриц.[свернуть]
- Доказать, что если ассоциативность выполняется для трёх элементов множества, то способ расстановки скобок не влияет на результат при любом количестве операндов, то есть если:
$ forall x,y,z in mathbb{P}: $ $ (xcirc y)circ z=ycirc (xcirc z) ,$ то в выражении $ a _{1} circ a _{2} circ … circ a _{n-1} circ a _{n}, ,a_{i} in mathbb{P} i=overline{1,n} $ результат не зависит от того, как мы расставим скобки.Спойлер
Докажем это утверждение математической индукцией по количеству операндов.
База индукции:
Минимальное количество переменных равно трём, следовательно, из условия имеем: $ small forall ,a_{1}, a_{2}, a_{3} in mathbb{P}: $ $ small ( a_{1}circ a_{2})circ a_{3}= a_{2}circ (a_{1}circ a_{3}) .$ База индукции доказана.
Предположение индукции:
$ small forall ,n in mathbb{N}: $результат выражения $ small a _{1} circ a _{2} circ … circ a _{n-1} circ a _{n} ,$ не зависит от порядка расстановки скобок.
Шаг индукции:
Пусть предположение индукции справедливо для $ small forall , n in mathbb{N} ,$ докажем, что тогда оно справедливо и для $ small n+1 .$
Пусть $ small 1leq pleq m< n+1 .$ То есть можно задать справедливое разбиение: $ small a _{1} circ a _{2} circ … circ a _{n-1} circ a _{n} = $ $ small (a _{1} circ a _{2} circ … circ a _{p-1} circ a _{p}) circ $ $ small (a _{p+1} circ … circ a _{m-1} circ a _{m})circ $ $ small (a _{m+1} circ … circ a _{n-1} circ a _{n} circ a _{n+1}) .$ Произведём замену:
$ small (a _{1} circ a _{2} circ … circ a _{p-1} circ a _{p}) = a $
$ small (a _{p+1} circ … circ a _{m-1} circ a _{m}) = b $
$ small (a _{m+1} circ … circ a _{n} circ a _{n+1}) = c $
По базе индукции имеем $ small (a circ b) circ c = a circ (b circ c ),$ то есть $ small [ (a _{1} circ a _{2} circ … $ $ circ a _{p-1} circ a _{p}) circ $ $ small (a _{p+1} circ … $ $ circ a _{m-1} circ a _{m}) ] circ $ $ small (a _{m+1} circ … $ $ circ a _{n-1} circ a _{n} circ a _{n+1})=$ $ small (a _{1} circ a _{2} circ … $ $ circ a _{p-1} circ a _{p}) circ $ $ small [ (a _{p+1} circ … $ $ circ a _{m-1} circ a _{m}) circ $ $ small (a _{m+1} circ … $ $ circ a _{n-1} circ a _{n} circ a _{n+1}) ].$
В силу свободы выбора $ small p, m,$ и свободы количества замен такого рода теорема доказана.[свернуть]
- Проверить дистрибутивность сложения матриц над полем вещественных чисел относительно умножения.
Спойлер
Пусть $ A in mathbb{M} _{mtimes n}; B,C in mathbb{M} _{ntimes m},$ докажем, что $ Acdot (B+C)=Acdot B+Acdot C.$ Заметим, что $ A=left | a_{ij} right |,$ $ B=left | b_{ji} right |,$ $ C=left | c_{ji} right |,$ $ i=overline{1,m},$ $ j =overline{1,n}$, тогда $ Acdot (B+C)=$ $ left | a_{ij} right |cdot (left | b_{ji} right | + left | c_{ji} right |)=$ $ left | a_{ij} right |cdot (left | b_{ji} + c_{ji} right |) = $ $ left | underset{i=1}{ overset{m}{sum}} a_{ij} cdot (b_{ji} + c_{ji})right | = $ $ left | underset{i=1}{ overset{m}{sum}} a_{ij} cdot b_{ji} + underset{i=1}{ overset{m}{sum}} a_{ij} cdot c_{ji}right |=$ $ left | underset{i=1}{ overset{m}{sum}} a_{ij} cdot b_{ji} right | + left | underset{i=1}{ overset{m}{sum}} a_{ij} cdot c_{ji}right | = $ $ Acdot B+Acdot C.$
Правая дистрибутивность доказывается аналогично.[свернуть]
Источники:
- В. В. Воеводин «Линейная алгебра» Издание 2, 1980 года, стр. 9-13
- А. И. Кострыкин «Введение в алгебру. Основы алгебры», 1994 года, стр. 155-160
- А. Г. Курош «Курс высшей алгебры» издание 9, 1968 года, стр. 147-161
- Белозеров Г.С. Конспект лекций
Таблица лучших: Основные свойства бинарных алгебраических операций.
Место | Имя | Записано | Баллы | Результат |
---|---|---|---|---|
Таблица загружается |
Навигация по записям
Источник
Пусть N — множество всех натуральных чисел.
Умножение натуральных чисел определяется следующими условиями (аксиомами):
V. для каждого из N.
VI. для любых из
Из зтих условий следует, что
Таким образом, умножение является повторным сложением числа с самим собой.
ТЕОРЕМА 2.10 (ПРАВЫЙ ЗАКОН ДИСТРИБУТИВНОСТИ УМНОЖЕНИЯ ОТНОСИТЕЛЬНО СЛОЖЕНИЯ). Для любых натуральных а, b и с
Доказательство. Зафиксируем произвольные значения а и b. Определяемый при этом формулой (1) предикат обозначим через А (с). Доказательство проводится индукцией по натуральной переменной с. По аксиоме V справедлива формула
Предположим, что для какого-нибудь натурального числа верна формула
Тогда имеем:
(по аксиоме VI);
(по индуктивному предположению);
(в силу ассоциативности и коммутативности сложения);
(по аксиоме VI),
т. е. верна формула Согласно принципу индукции верно для любого натурального с.
Поскольку фиксировались произвольные значения а и b, то формула (1) верна для любых натуральных а, b и с.
ЛЕММА 2.11. Для любого натурального числа а Доказательство (проводится индукцией по а). По аксиоме V, имеем Предположим, что для какого-нибудь натурального числа . Тогда Согласно принципу индукции, формула верна для любого натурального числа а.
ТЕОРЕМА 2.12. Умножение натуральных чисел коммутативно, т. е. для любых натуральных а и b
Доказательство. Используя индукцию по с, покажем, что для любого а верна формула
Зафиксируем в формуле (1) произвольное значение а. Обозначим через предикат, определяемый равенством (1). Предположим, что для какого-нибудь натурального числа верна формула
Тогда имеем:
(по аксиоме VI);
(по предположению индукции);
(по лемме 2.11);
(по дистрибутивности умножения относительно сложения),
т. е. выполняется формула Согласно принципу индукции, верно для любого натурального b. Поскольку фиксировалось произвольное значение а, то формула (1) верна для любых натуральных а и b.
Из теорем 2.10 и 2.12 вытекает следующая теорема. ТЕОРЕМА 2.13 (ЛЕВЫЙ ЗАКОН ДИСТРИБУТИВНОСТИ УМНОЖЕНИЯ ОТНОСИТЕЛЬНО СЛОЖЕНИЯ). Для любых натуральных а, b, и с выполняется равенство
ТЕОРЕМА 2.14. Умножение натуральных чисел ассоциативно, т. е. для любых натуральных а, b и с
Доказательство (проводится индукцией по с). Пусть обозначает предикат, определяемый формулой (1) при фиксированных значениях По аксиоме V, имеем: Следовательно, верна формула
Предположим, что для какого-нибудь натурального числа я верна формула
Тогда имеем:
(по аксиоме VI);
(по теореме 2.13);
(по предположению индукции);
(по аксиоме V);
(по теореме 2.13),
т. е. верна формула Согласно принципу индукции, формула верна при любом натуральном с. Поскольку фиксировались произвольные значения а и b, то формула (1) верна для любых натуральных а, b и с.
ОПРЕДЕЛЕНИЕ. Алгебра называется мультипликативным моноидом натуральных чисел.
ТЕОРЕМА 2.15. Для любых натуральных чисел а и b, если то
Доказательство. Предположим, что . По теореме 2.6, существуют такие натуральные числа , что . В силу аксиом VI и IV имеем
По аксиоме Следовательно,
ТЕОРЕМА 2.16 (ЗАКОН СОКРАЩЕНИЯ ДЛЯ УМНОЖЕНИЯ). Для любых натуральных а, b, с, если , то
Доказательство. По условию,
Допустим, что . По теореме 2.8, либо существует такое k, что либо существует такое , что . В первом случае и в силу (1), что (по следствию 2.5) невозможно, так как и (по теореме
Во втором случае аналогичные рассуждения показывают, что допущение ведет к противоречию.
Упражнения
1. Докажите формулы:
2. Докажите, что число подмножеств из k элементов множества из элементов выражается формулой
3. Докажите, что для
4. Докажите, что для любого натурального
5. Докажите, что
6. Докажите, что
7. Докажите, что для любых натуральных чисел а, b, с и d сумма а не зависит от порядка слагаемых.
Источник
Сочетай, перемещай, свойства действий
узнавай
Напомним известные уже из арифметики главнейшие свойства действий сложения, вычитания, умножения и деления, так
как этими свойствами придется часто пользоваться и в алгебре.
Свойства сложения
Переместительный закон сложения
Сумма не изменяется от перестановки слагаемых .
Пример:
3 + 8 = 8 + 3; 5 + 2 + 4 = 2 + 5 + 4 = 4 + 2 + 5.
В общем случае:
a+b=b+a
a+b+c=c+a+b
Стоит иметь ввиду, что число слагаемых может быть и более трёх.
Сочетательный закон сложения
Сумма нескольких слагаемых не изменится, если какие-нибудь из них заменить их суммой .
Пример:
3 + 5 + 7 = 3 + (5 + 7) = 3 + 12 = 15;
4 + 7+11+6 + 5 = 7 +(4+ 5)+ (11+6) = 7 + 9+17 = 33.
В общем случае:
а + b + с = а+(b + с) = b+(а + с) и т. п.
Иногда этот закон выражают так: слагаемые можно соединять в какие угодно группы.
Чтобы прибавить к какому-либо числу сумму нескольких чисел, можно прибавить отдельно каждое слагаемое одно за другим.
Пример:
5 + (7 + 3) = (5 + 7) + 3 = 12 + 3 = 15.
В общем случае:
a+(b+c+d+…+x)=a+b+c+d+…+x
Свойства вычитания
Свойство вычитания суммы из числа
Чтобы вычесть из какого-нибудь числа сумму нескольких чисел, можно вычесть отдельно каждое слагаемое одно за другим.
Например:
20 — (5+ 8) = (20 — 5) — 8 = 15 — 8 = 7.
В общем случае:
а — (b + с + d+ …) = а — Ь — с — d — …
Свойство сложения разности чисел
Чтобы прибавить разность двух чисел, можно прибавить уменьшаемое и затем вычесть вычитаемое.
Пример:
8 + (11-5) = 8+ 11 -5= 14.
В общем случае:
а + (b — с) = а + Ь — с.
Свойство вычитания разности из числа
Чтобы вычесть разность, можно сначала прибавить вычитаемое и затем вычесть уменьшаемое.
Например:
18-(9-5) = 18 + 5-9= 14.
Вообще:
а — (Ь — с) = а + с — b.
Свойства умножения
Переместительный закон умножения
Произведение не изменится от перестановки сомножителей .
Так:
4·5 = 5·4; 3·2·5 = 2·3·5 = 5·3·2.
Вообще:
a*b = b*a; abc… =b*а*с*… = c*b*a* …
Сочетательный закон умножения
Произведение нескольких сомножителей не изменится, если какие-нибудь из них заменить их произведением .
Так:
7*3*5 = 5*(3*7) = 5*21 = 105.
Вообще:
abc = а(bс) = b(ас) и т. п.
Умножение числа на произведение чисел
Чтобы умножить какое-либо число на произведение нескольких сомножителей, можно умножить это число на
первый сомножитель, полученный результат умножить на второй сомножитель и т. д.
Так:
3*(5*4) = (3*5)*4= 15*4 = 60.
Вообще:
a•(bcd…) = {[(a·b)•c]•d}…
Чтобы умножить произведение нескольких сомножителей на какое-либо число, можно умножить на это число один
из сомножителей, оставив другие без изменения.
Так:
3 • 2 • 5 • 3 = (3 • 3) • 2 • 5 = 3 • (2 • 3) • 5 = 3 • 2 • (5 • 3).
Вообще:
(abc.. )m = (аm)bс… = а(bm)с… и т. п.
Умножение числа на сумму чисел
Чтобы умножить сумму на какое-либо число, можно каждое слагаемое умножить на это число и полученные ре-
результаты сложить.
Так:
(5 + 3)·7 = 5·7 + 3·7.
Вообще:
(а + b + с + .. .)n = an + bn + cn + …
В силу переместительного закона умножения это же свойство можно выразить так: чтобы умножить какое-либо число на
сумму нескольких чисел, можно умножить это число на каждое слагаемое отдельно и полученные результаты сложить.
Так:
5·(4 + 6) = 5·4 + 5·6.
Вообще:
r·(а + Ь + с +…) = rа + rb + rс + …
Это свойство называется распределительным законом умножения, так как умножение, производимое над суммой, распределяется на каждое слагаемое в отдельности.
Распределительный закон умножения для разности чисел
Распределительный закон можно применять и к разности.
Так:
(8 — 5) • 4 = 8 • 4 — 5 • 4;
7 • (9 — 6) = 7 • 9 — 7 • 6.
Вообще:
(а — b)с = ас — bc,
а(b — с) = ab — ас,
т. е. чтобы умножить разность на какое-либо число, можно умножить на это число отдельно уменьшаемое и вычитаемое
и из первого результата вычесть второй; чтобы умножить какое-либо число на разность, можно это число умножить
отдельно на уменьшаемое и вычитаемое и из первого результата вычесть второй.
Свойства деления
Деление суммы на число
Чтобы разделить сумму на какое-либо число, можно разделить на это число каждое слагаемое отдельно и полученные результаты сложить:
Например:
(30+12+5)/3=30/3+12/3+5/3
Вообще:
(a+b+c+…+v)/m= (a/m)+(b/m)+(c/m)+…(v/m)
Деление разности на число
Чтобы разделить разность на какое-либо число, можно разделить на это число отдельно уменьшаемое и вычитаемое
и из первого результата вычесть второй:
(20-8)/5= 20/5 — 8/5
Вообще:
(a-b)/c = (a/c) -(b/c)
Деление произведения на число
Чтобы разделить произведение нескольких сомножителей на какое-либо число, можно разделить на это число один
из сомножителей, оставив другие без изменения:
(40 • 12 • 8) : 4 = (40:4) • 12 • 8 = 10 • 12 • 8 = 40 • 12 • 2.
Вообще:
(a·b·c…) : t = (а : t)bс… = а(b : t)с… и т. д.
Деление числа на произведение
Чтобы разделить какое-либо число на произведение нескольких сомножителей, можно разделить это число на
первый сомножитель, полученный результат разделить на второй сомножитель и т.д.:
120 : (12 • 5 • 3) = [(120 : 2) : 5] : 3 = (60 : 5) : 3 = 12 : 3 = 4.
Вообще:
а : (bcd …) = [(а : b) : с] : d… и т. п.
Укажем еще следующее свойство деления:
Если делимое и делитель умножим (или разделим) на одно и то же число, то частное не изменится.
Поясним это свойство на следующих двух примерах:
1)8:3 = 8/3|,
умножим делимое и делитель, положим, на 5; тогда получим
новое частное: (8*5)/(3*5)
которое по сокращении дроби на 5 даст прежнее частное — 8/3
Вообще, какие бы числа a, b и m ни были, всегда
(am) : (bm) = а : b, что можно написать и так:
am/bm= a/b
Если частное не изменяется от умножения делимого и делителя на одно и то же число, то оно не изменяется и от деления делимого и делителя на одно и то же число, так как деление на какое-нибудь число равносильно умножению на обратное число.
Комментирование и размещение ссылок запрещено.
Источник