Какая величина характеризует свойство тока возбуждать магнитное поле
Подобно тому, как в пространстве, окружающем электрические заряды, возникает электрическое поле, так и в пространстве окружающем токи, возникает особого вида поле, называемое магнитным полем.
Магнитное поле проявляется по силам, действующим на проводники с током, на движущиеся заряды или постоянные магниты.
Неподвижные электрические заряды не создают магнитное поле и постоянное магнитное поле не действует на неподвижные электрические заряды.
Опыт показывает, что неподвижный заряд и магнитная стрелка не влияют друг на друга.
При прохождении электрического тока по проводнику вокруг него возникает магнитное поле, действующее на магнитную стрелку, которая стремится занять положение поперек проводника при взгляде сверху.
Опыт Эрстеда (1820 г.), показывающий действие магнитного поля проводника с током на магнитную стрелку.
Характеристики магнитного поля
I. Вектор магнитной индукции (В) – совпадает по направлению с силой, действующей на северный полюс магнитной стрелки.
II. Линии магнитной индукции – кривые, в каждой точке которых, вектор магнитной индукции В направлен по касательной.
Свойства линий магнитной индукции
1. Линии магнитной индукции всегда замкнуты и охватывают проводники стоком.
2. Вблизи проводника линии магнитной индукции лежат в плоскости перпендикулярной проводнику с током.
3. Направление линий магнитной индукции определяется по правилу буравчика: если ввинчивать буравчик по направлению тока, то направление вращения его рукоятки укажет направление линий магнитной индукции.
Магнитное поле прямолинейного проводника с током.
Правило буравчика обратимо и для круговых токов его удобно применять в следующей формулировке: если вращать рукоятку буравчика по направлению кругового тока, то поступательное движение острия буравчика укажет направление линий магнитной индукции.
Линии магнитной индукции полей постоянного магнита, прямого тока, кругового тока и катушки с током.
Обратите внимание на аналогию магнитных полей постоянного магнита и катушки с током. Линии магнитной индукции всегда замкнуты, они нигде не обрываются. Это означает, что магнитное поле не имеет источников – магнитных зарядов. Силовые поля, обладающие этим свойством, называются вихревыми. Картину магнитной индукции можно наблюдать с помощью мелких железных опилок, которые в магнитном поле намагничиваются и, подобно маленьким магнитным стрелкам, ориентируются вдоль линий индукции.
III. Вектор напряженности магнитного поля H.
Согласно предположению французского физика А. Ампера, в любом теле существуют микроскопические (молекулярные) токи, обусловленные движением электронов в атомах и молекулах. Эти токи создают свое магнитное поле и могут поворачиваться в магнитных полях макроскопических токов (токов, текущих в проводниках). Так, если вблизи какого-то тела (среды) поместить проводник с током, то под действием его магнитного поля микротоки в атомах тела определенным образом ориентируются, создавая тем самым дополнительное магнитное поле. Поэтому вектор магнитной индукции B характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками, т.е. при одном и том же токе I и прочих равных условиях вектор B в различных средах будет иметь разные значения.
Магнитное поле, создаваемое макротоками, характеризуется вектором напряженности H. Для однородной изотропной среды связь между векторами индукции B и напряженности H магнитного поля определяется выражением
В =μ₀μН, где
магнитная постоянная, μ – магнитная проницаемость среды (безразмерная величина), показывающая, во сколько раз магнитное поле макротоков усиливается за счет поля микротоков данной среды.
Единица напряженности магнитного поля: 1 А/м – напряженность такого поля, магнитная индукция которого в вакууме равна 4π·10-7 Тл.
Источник
Хотя речь идёт о вещах скорее простых, чем сложных, почему-то их так объясняют, что обычно не очень понятно, что к чему. Попробую внести ясность. Своими словами и не строго.
Картинка для привлечения внимания, не для иллюстрации текста.
Магнитное поле в любом случае создаётся током, других вариантов нет. Поэтому когда внезапно оказывается, что две физические величины характеризующие силу магнитного поля, с одной стороны напряжённость магнитного поля H, с другой стороны магнитная индукция B имеют в системе СИ разную размерность, поначалу испытываешь эмм… недоумение. H измеряется в Амперах/Метр, B измеряют в Теслах.
В системе СГС размерность у них одинаковая и коэффициент перевода 1:1, однако называются они по-разному. Н измеряют в Эрстедах, а B в Гауссах. Тоже недоумение, почему так получилось.
Из-за этого смотрите, какая подстава. Переводим одни единицы в другие:
1 А/м = 0,01256637 Э
1 Т = 10000 Гс
Слева цифры одинаковые, а справа разные. Помните, да, что Гауссы в Эрстеды в системе СГС переводятся 1:1? А теслы в амеры на метр переводятся с коэффициентом мю_ноль. Который есть “магнитная постоянная” или “магнитная проницаемость вакуума”.
Поэтому возьмём систему СГС, она ближе к здравому смыслу.
Магнитная индукция (B) это магнитная сила, которую мы измеряем. В буквальном смысле сила, которая будет поворачивать, например, магнитную стрелку компаса вдоль магнитных линий. Величина первичная, измеряется только она. Всё остальное вычисляется.
Если мы (1) возьмём какое-то магнитное поле, измерим индукцию. Потом (2) поместим в поле железяку, и ещё раз измерим индукцию. Результат будет разный, на него повлияет намагниченность тела. Как правило намагниченность нас и интересует, потому что она характеризует наш образец. Но в данной заметке я хотел бы сосредоточится на терминологии, а намагниченность оставить в покое.
Так вот, условно можно сказать, что “напряжённость магнитного поля (H)” это результат первого измерения. То магнитное поле, которое есть изначально. “Магнитная индукция (B)” это результат второго измерения. То магнитное поле, которое получается после помещения в изначальное поле образца.
Пробное поле обычно создают катушкой с током (а не постоянным магнитом, например). На это есть две причины. Во-первых, удобство в том, что магнитное поле, создаваемое катушкой, прямо пропорционально току, который мы через катушку пропускаем. То есть его легко менять, регулируя ток. Во-вторых нам его не нужно каждый раз измерять, достаточно знать ток и геометрию намотки. Из этих данных можно посчитать какая будет напряжённость магнитного поля при заданном токе в любой точке системы.
Далее мы помещаем образец в известное, только что нами приготовленное поле, и измеряем магнитную индукцию. Вычитаем из неё напряжённость и получаем намагниченность. Или точнее величину магнитного поля от условных “магнитных зарядов”, индуцированных на образце напряжённостью. Коэффициент в СГС тоже есть, но к счастью безразмерный. Разность индукции и напряжённости надо разделить на 4_пи.
Совсем коротко можно сказать так: “сигнальная часть” это напряжённость, а “отклик” это индукция. Разница — намагниченность.
Коэффициенты и прочие подробности есть в википедии и учебниках.
Источник
Электрический ток связан с магнитным полем. Основными величинами, характеризующими магнитное поле, являются: магнитный поток, магнитная индукция и напряженность магнитного поля.
В качестве силовой характеристики магнитного поля вводится векторная величина В, называемая индукцией магнитного поля или просто индукцией. Модуль вектора индукции магнитного поля равен отношению магнитной силы F, направленной вдоль радиуса-вектора, соединяющего точечные заряды, к произведению заряда Q на его скорость v при условии, что заряд движется перпендикулярно вектору индукции:
B =F/(Qv)
Единица индукции магнитного поля – Тесла (Тл): 1 Тл – это индукция поля, которое действует на заряд 1 Кл, движущийся со скоростью 1 м/с перпендикулярно вектору индукции, с поперечной силой 1 Н.
Напряженностью Н магнитного поля называют величину:
Другой важной характеристикой магнитного поля является величина, называемая магнитным потоком.
Ф = ВS
Единицу магнитного потока – вебер (Вб): 1 Вб – магнитный поток, пронизывающий поверхность площадью 1 метр кв., расположенную перпендикулярно силовым линиям однородного магнитного поля с индукцией 1 Тл.
Напряженность магнитного поля связана с магнитной индукцией соотношением
Магнитная проницаемость вещества
Относительная магнитная проницаемость
Магнитная проницаемость в вакууме
Магнитная проницаемость – безразмерная величина. Таким образом, каждое данное вещество может характеризоваться присущей ему магнитной проницаемостью, так же как диэлектрик – диэлектрической проницаемостью.
Все тела, помещаемые в магнитное поле, изменяют его индукцию.
В 50-х годах прошлого столетия Фарадей обнаружил, что все тела обладают магнитными свойствами, но степень и характер их взаимодействия с полем у различных веществ различны. В связи с этим различают вещества с парамагнитными, диамагнитными и ферромагнитными свойствами.
· диамагнетики (висмут, вода, водород, медь, стекло);
· парамагнетики (кислород, платина, вольфрам, алюминий);
· ферромагнетики (железо, кобальт, чугун, никель).
У диамагнетиков, как и у парамагнетиков, зависимость В(Н) (кривая намагничивания рис.11.1) является линейной, отличие только в угле наклона графика.
Рис.11.1. Кривая намагничивания
Кривая намагничивания показывает связь между магнитной индукцией и напряженностью магнитного поля. У ферромагнетиков эта связь существенно нелинейная. Индукция поля в намагниченном ферромагнетике сначала быстро нарастает с ростом напряженности внешнего магнитного поля. Затем рост индукции поля замедляется. В стали потери на перемагничивание пропорциональны площади, ограниченной кривой намагничивания.
Материалы с большой площадью кривой намагничивания называются магнитотвердыми, с малой площадью кривой намагничивания – магнитомягкими, например, электротехническая сталь. Важное отличие ферромагнетиков также заключается в том, что если пара- или диамагнитные свойства вещества проявляются у газов и жидкостей, то ферромагнитные свойства наблюдают только у кристаллов.
Рис.11.2. Петля гистерезиса
Характерным свойством ферромагнетиков является гистерезис (рис.11.2). Явление заключается в том, что индукция ферромагнетика В зависит не только от напряженности намагничивающего поля в данный момент, но и от предварительного намагничивания образца. Поэтому вообще нельзя указать, какая индукция ферромагнетика соответствует данному значению напряженности намагничивающего поля, если неизвестно, в каком состоянии он до этого находился. То же, естественно, относится к значениям магнитной проницаемости.
Участок ОС кривой на графике характеризует ход первоначальной намагниченности, т. е. случая, когда ферромагнетик был сначала нагрет выше точки Кюри и тем самым полностью размагничен, а затем охлажден и подвергнут намагничиванию. Совершенно иной вид будет иметь кривая намагничивания, если ферромагнетик был уже ранее намагничен.
Изготовим сердечник в форме тороида из размагниченного ферромагнетика и обмотаем его равномерно проводником. Меняя силу тока в обмотке, мы тем самым меняем напряженность намагничивающего поля. Пусть напряженность поля возрастет до значения Hs. Этому значению поля соответствует индукция насыщения, равная Bs. Будем уменьшать силу тока в обмотке, уменьшая тем самым напряженность намагничивающего поля. Мы убедимся, что индукция сердечника в процессе размагничивания остается все время большей, чем в процессе намагничивания. Когда сила тока в обмотке станет равной нулю, исчезнет и намагничивающее поле. Но индукция ферромагнетика не обратится в нуль – сердечник сохранит некоторую остаточную индукцию Вr. И только в том случае, когда по обмотке будет пропущен ток обратного направления и возникнет поле с напряженностью – Нc, индукция сердечника обратится в нуль. Напряженность размагничивающего поля Нc называют коэрцитивной силой.
Если увеличивать в обмотке силу тока обратного направления, то индукция магнитного поля в сердечнике будет возрастать тоже в противоположном направлении до насыщения.
Магнитной цепью называется часть электротехнического устройства, предназначенная для создания в его рабочем объеме магнитного поля заданной величины и конфигурации.
Магнитная цепь электрических реле, трансформаторов, электрических машин состоит из источников, возбуждающих магнитное поле, и магнитопровода, в котором магнитный поток концентрируется и практически весь замыкается.
При расчете магнитной цепи может быть поставлена задача определения намагничивающей силы (н.с.) при заданном магнитном потоке или индукции – это прямая задача. Обратная задача – определить магнитный поток по намагничивающей силе.
В обеих задачах должны быть известны размеры участков магнитной цепи и кривая намагничивания материала.
Расчет магнитной цепи производится на основании первого закона Кирхгофа, по которому алгебраическая сумма магнитных потоков в узле магнитной цепи равна 0:
и второго закона Кирхгофа для магнитной цепи или закона полного тока
Циркуляция вектора напряженности магнитного поля Н по замкнутому контуру равна алгебраической сумме токов, охватываемых этим контуром.
Если контур интегрирования охватывает W витков, то
– намагничивающая сила или магнитодвижущая сила (МДС), измеряется в ампер-витках (ав).
В общем случае
11.3.Закон Ома для участка магнитной цепи длиной lсрплощадью S.
При напряжении Uм между концами участка связь между напряженностью магнитного поля Н и индукцией В выражается формулой:
В этом выражении Ф аналогичен току электрической цепи, а магнитное напряжение – электрическому напряжению.
Тогда магнитное сопротивление
Магнитное сопротивление определяется воздушным зазором. При наличии воздушного зазора для создания соответствующей индукции требуется большой ток. При отсутствии воздушного зазора для создания соответствующей индукции требуется небольшой ток.
Нелинейность кривой намагничивания обусловливает нелинейность индуктивного сопротивления катушки на магнитном сердечнике.
Катушки индуктивности на ферромагнитном магнитопроводе считаются нелинейными элементами как в цепи постоянного тока, так и при синусоидальном напряжении.
Для электрических цепей с нелинейным индуктивным и линейным емкостным сопротивлениями характерны явления феррорезонанса. При последовательном соединении различают феррорезонанс напряжений, а при параллельном – феррорезонанс токов. Для изменения индуктивного сопротивления катушки с ферромагнитным сердечником используют подмагничивание сердечника дополнительной катушкой, питаемой постоянным током. В этом случае она называется дросселем насыщения и используется для регулирования скорости вращения двигателей, регулирования освещения, а также в выпрямительных установках с регулируемым напряжением.
Источник
Магнитная индукция.Интенсивность магнитного поля характеризуется магнитной индукцией В. Чем сильнее магнитное поле, созданное постоянным магнитом или электромагнитом, тем большую индукцию оно имеет. Направление действия электромагнитной силы Fна проводник определяется правилом левой руки (рис.3).
Если расположить левую руку так, чтобы магнитные линии пронизывали ладонь, а вытянутые четыре пальца указывали направление тока в проводнике, то отогнутый большой палец укажет направление действия электромагнитной силы.
По этой силе можно судить об интенсивности магнитного поля, т. е. о его магнитной индукции. Если на проводник длиной 1 м с током 1 А, расположенный перпендикулярно магнитным линиям в равномерном магнитном поле, действует сила в 1 Н, то магнитная индукция такого поля равна 1 Тл (тесла).
Запомните
Магнитная индукция — векторная величина: в каждой точке поля вектор магнитной индукции направлен по касательной к магнитным силовым линиям.
Магнитный поток. Величина, измеряемая произведением магнитной индукции
Вна площадь S, перпендикулярную вектору магнитной индукции, называется магнитным потоком Ф:
Магнитную индукцию выражают в теслах, а площадь — в квадратных метрах, поэтому единица магнитного потока — вебер:
Магнитодвижущая сила. Способность тока возбуждать магнитное поле характеризуется магнитодвижущей силой (МДС), Действующей вдоль замкнутой магнитной силовой линии. Магнитодвижущая сила равна току, создающему магнитное поле, и выражается в амперах.
Рис. 3. Определение направления действия
электромагнитной силы на проводник с током
согласно правилу левой руки
Для проводника с током I МДС равна току I. В общем случае, когда замкнутый контур магнитной силовой линии охватывает несколько токов, суммарная МДС равна сумме токов.
Для катушки с числом витков w и током I (рис. 4) МДС равна:
Напряженность магнитного поля. Магнитодвижущая сила, приходящаяся на единицу длины магнитной силовой линии, называется напряженностью магнитного поля Н и выражается в амперах на метр (А/м).
Если физические условия вдоль всей длины магнитной линии одинаковы, то
Например, вокруг прямолинейного проводника с током Iлинии магнитного поля представляют собой концентрические окружности переменного радиуса х, длина каждой из которых = 2 х. В этом случае напряженность
Запомните
По мере удаления от проводника напряженность поля снижается.
Магнитная проницаемость. Магнитная индукция зависит не только от силы тока, проходящего по прямолинейному проводнику или индуктивной катушке,
но и от свойств среды, в которой создается магнитное поле. Величиной, характеризующей магнитные свойства среды служит абсолютная магнитная проницаемость .Она определяется отношением магнитной индукции В к напряженности магнитного поля Н и измеряется в генри на метр (Гн/м):
Рис. 4.Тороидальная катушка
Абсолютная магнитная проницаемость вакуума для воздуха и других неферромагнитных материалов она незначительно отличается от магнитной проницаемости вакуума и при технических расчетах принимается равной Так как абсолютная магнитная проницаемость для вакуума и указанных ранее материалов практически одинакова, то называется магнитной постоянной.
Абсолютная магнитная проницаемость ферромагнитных материалов непостоянна и во много раз превышает магнитную проницаемость вакуума.
Число, показывающее, во сколько раз абсолютная магнитная проницаемость ферромагнитного материала больше магнитной постоянной, называется относительной магнитной проницаемостью , или (сокращенно) магнитной проницаемостью:
Пример .1. Сталь при определенных условиях обладает абсолютной магнитной проницаемостью , равной 0,0008792 Гн/м. Определить относительную магнитную проницаемость этой стали.
Решение
Относительная магнитная проницаемость
Рис.5. Семейство кривых намагничивания: 1- технически чистого железа;
2 — электротехнической стали; 3 — пермаллоя
Семейство кривых намагничивания технически чистого железа (1), электротехнической стали (2) и пермаллоя (3) приведено на рис. 5. Эти материалы широко применяются в трансформаторах, электротехнических машинах и аппаратах.
Как видно из кривых намагничивания (см. рис..5), способность материалов намагничиваться (их магнитная проницаемость) в слабых полях велика, а затем с ростом индукции постепенно уменьшается.
Магнитная проницаемость магнитных материалов — величина изменяющаяся, зависящая от степени их намагничивания. При одной и той же напряженности магнитного поля (см. рис..5) магнитная индукция в чистом железе больше, чем в электротехнической стали. Это объясняется тем, что магнитная проницаемость чистого железа больше магнитной проницаемости электротехнической стали.
Пример..2. Напряженность магнитного поля катушки Н = 750 А/м, абсолютная проницаемость сердечника , = 0,0008792 Гн/м. Определить магнитную индукцию сердечника.
Решение
Магнитная индукция сердечника
КОНТРОЛЬНЫЕ ВОПРОСЫ
1. От каких величин зависит напряженность магнитного поля?
2. В каких единицах измеряется магнитная индукция?
3. Что называется относительной магнитной проницаемостью ц?
4. От каких параметров зависит магнитная индукция?
5. В каких единицах измеряется магнитный поток?
Источник