Какая твердость обеспечивает упругие свойства пружин

Какая твердость обеспечивает упругие свойства пружин thumbnail

Механические, а соответственно эксплуатационные свойства пружин – очень серьезный вопрос из-за того, что ни один механизм в технике не может работать без упругих элементов и деталей.

Механические свойства пружинК таким деталям относятся не только пружины. Это могут быть распорные прокладки, контакты, растяжки. Самым знаменитым представителем пружинных изделий наверное являются шайбы Гровера, которые применяются в качестве прокладок в болтовых соединениях и благодаря упругим свойствам которых, создается некоторый перекос гайки, предотвращающий ее от саморазвинчивания. Такое название шайб происходит от фамилии Джона Гровера – английского инженера, который изобрел этот тип шайб.

Для того, чтобы эти изделия отлично справлялись со своей работой, они должны обладать рядом особых свойств.

  1. Высокая релаксационная стойкость – это стойкость против перераспределения напряжений путем микропластических сдвигов в условиях длительного нагружения. Проба на релаксационную стойкость – заневоливание, т.е. сжатие до соприкосновения витков и выдержка в этом состоянии определенное время. После снятия нагрузки пружина не должна изменять свои размеры. Как правило, требования по времени выдержки в заневоленном состоянии рагламентируются отраслевыми стандартами.
  2. Сопротивление микропластическим и малым пластическим деформациям – важнейшая характеристика качества пружинных сплавов, так как чем выше это сопротивление, тем меньше при данном приложенном напряжении неупругие и остаточные деформации и, следовательно, ниже все неупругие эффекты, определяющие свойства пружины. Как показывает практика, для получения высокого сопротивления малым пластическим деформациям стали должны иметь определенную микроструктуру. Хотя для разных пружинных сплавов используются различные методы обработки, все они имеют одну цель – обеспечение мелкозернистой микроструктуры, при которй все дислокации будут заблокированы.
  1. Материал для изготовления пружинных изделий должен обладать достаточной циклической стойкостью. Циклическая стойкость – способность материала сопротивляться действию знакопеременных циклических нагрузок. Характеристикой этой величины является предел выносливости, под которым понимают максимальное напряжение, которое не вызывает разрушения образца при любом числе циклов (физический предел выносливости) или заданном числе циклов (ограниченный предел выносливости). Предел выносливости при симметричном числе циклов обозначается σ-1.
  2. Определенный комплекс стандартных механических свойств в условиях статического нагружения, при испытаниях на растяжение, кручение, изгиб. Должна обеспечиваться высокая прочность, твердость и одновременно достаточная вязкость, во избежание хрупкого разрушения. Требуемые свойства обеспечиваются определенной микроструктурой и субструктурой. В микроструктуре пружинной стали должно присутствовать как можно больше препятствий для перемещения практически всех дислокаций, что создается мелкозернистым трением и равномерным распределением высоко дисперсных фаз, что характерно для структуры сорбита.

Методы торможения и блокировки дислокации в сплавах:

1) легирование твердого раствора, приводящее к повышению сопротивления кристаллической решетки движению дислокации;

2) дислокационный и фазовый наклеп, повышающие плотность дислокации;

3) создание сегрегаций на дислокациях, т.е. повышенная концентрация элементов внедрения и образование частиц выделения;

4) частицы карбидной фазы в повышенном количестве;

5) измельчение зерна.

Наиболее эффективный способ создания необходимых вышеперечисленных свойств это сочетание различных способов упрочнения:

– создание определенного химического состава сплава;

– создание определенной степени деформации, создающей благоприятную  дислокационную структуру (ячеистую), но не вызывающую перенаклепа;

– проведение определенной термической обработки, которая сохранит определенную дислокационную структуру.

Растворитель металлов – https://www.dcpt.ru

Источник

Как известно, существуют различные виды пружин, которые отличаются не только по конструкции, но еще и по способу взаимодействия с остальными механизмами в узлах. Так, например, пружины сжатия работают на сжатие, пружины растяжения — на растяжение, ну а пружины кручения, соответственно, на изгиб и скручивание. При этом данные виды пружин имеют витую форму, в отличии от той же тарельчатой пружины или от любого типа пружин-рессор. Само собой, технология изготовления пружин витого типа будет отличаться от того как происходит производство пружин с другой конструкцией.

В целом, технология изготовления пружин подразумевает под собой совокупность последовательного использования специальных технологических инструментов, например, станочного оборудования и каких-либо сырьевых материалов. При этом, само производство пружин может происходить за разное число этапов и с использованием различных способов, которые выбирает непосредственно сам завод-производитель, в зависимости от назначения конкретной пружины. Соответственно, технология меняется исходя из всех характеристик и конструкционных параметров у этого металлического изделия.

Читайте также:  Какие свойствами обладает германий

Пожалуй, наиболее распространенными в промышленности и быту считаются как раз таки витые виды пружин, а именно, кручения, сжатия, растяжения. По этой причине нами сегодня будет рассмотрено, что представляет технология изготовления пружин из данной классификации. Вообще, наличие специальной навивки в конструкции позволяет подобным пружинам многократно воспринимать повторяющиеся нагрузки, проявляя высокую степень устойчивости к разным механическим воздействиям без потери своих характеристик, в числе которых имеются следующие физико-химические свойства:

  • Коэффициент упругости
  • Предел воспринимаемой нагрузки
  • Усталостная прочность

Именно эти параметры влияют на продолжительность, а главное, на качество работы пружин. Собственно, для того, чтобы обеспечить данным изделиям максимально возможную долгосрочность эксплуатации, производство пружин должно осуществляться из надежного сырьевого материала, посредством поэтапного применения разных технически процессов на специальном оборудовании. Как правило, навивка осуществляется оператором из стальной проволоки на токарных станках либо вручную, либо через автомат одним из двух основных способов: горячим методом или же холодным методом.

Холодная технология изготовления пружин

Производство пружин холодным способом в Российской Федерации выполняют чуть чаще, нежели горячим, ввиду наиболее низкой себестоимости производства. Для таких работ не требуются дополнительные дорогостоящие станки, кроме навивочного. Собственно, такой метод предполагает использование оборудования, оснащенного двумя основными валиками, через которые и происходит навивка. Верхний из валиков позволяет регулировать натяжение, а также задавать направление завивки, используя для этого специально установленный винт. Сам процесс изготовления выполняется примерно так:

  1. Подготавливается специальная сталь для изготовления пружин (стальная проволока).
  2. Проволока просовывается через планку в суппорте.
  3. Ее конец прочно закрепляется на оправке при помощи зажима.
  4. Через верхний валик устанавливается необходимое натяжение.
  5. В зависимости от диаметра проволоки выбирается скорость вращения.
  6. Запускается в работу валик, наматывающий пружину.
  7. По мере достижения необходимого числа витков, проволока обрезается.
  8. В завершении деталь обрабатывается механически и термически.

Несмотря на то, что форма изготавливаемого изделия может быть как бочкообразной, так и цилиндрической, или даже конической, холодная технология изготовления пружин не позволяет использовать для изготовления пружин сталь диаметром более 16 миллиметров. Механическая обработка проводится для устранения зазубрин, сколов или же любых других дефектов на поверхности метиза, полученных в результате предыдущего проката проволоки, либо во время непосредственного процесса навивки с целью обеспечения наиболее лучшего качества изделия и повышения срока его эксплуатации.

Кроме того, немаловажным этапом является последующая термическая обработка, за счет проведения которой заготовка сможет избавиться от всех полученных во время навивки внутренних напряжений. При этом сам метод обработки выбираю исходя из того, какая была использована сталь для изготовления пружин. В некоторых случаях используют и отпуск и закалку, в некоторых, например, в бронзе, только лишь низкотемпературный отпуск. Так или иначе, каждый из данных процессов позволяет изделию достичь основных своих критериев, в числе которых состоит их великолепная упругость.

Горячая технология изготовления пружин

В отличии от холодного способа, горячее производство пружин подразумевает лишь изготовление изделий с диаметром от 10 миллиметров. То есть метизы меньших габаритов не получится сделать таким способом априори. Горячая технология изготовления пружин для создания заготовок требует проводить процедуру равномерного нагрева. При этом сам нагрев производится очень быстро на специальном станке. После чего разогретый до красна пруток необходимо просунуть через фиксирующую планку в навивочный станок и закрепить концы заготовки в зажимах и выполнять следующие этапы:

  1. Задать необходимое натяжение через верхний валик.
  2. Выбрать скорость вращения, в зависимости от диаметра.
  3. Включить станок, начав процесс навивки проволоки.
  4. По окончании работ снять цельную заготовку.
  5. Отправить изделие на термическую обработку.
  6. Максимально охладить спираль в масле.
  7. Провести механическую обработку поверхности.
  8. Нанести защитный антикоррозийный слой.

Обратите внимание, что горячая технология изготовления пружин для экономичного расходования сырьевых материалов не предусматривает разрезание пружины по мере того, как будет достигнут необходимый размер изделия. Это значит, что навивка происходит сразу на всю длину заготовки, а уже потом от нее отрезают куски необходимой длины. Повторная термическая обработка изделия необходима для снятия внутреннего напряжения. Охлаждать заготовку в масле, а не в воде рекомендуется по причине того, что во время долгой закалки в воде горячая сталь может попросту пустить трещину.

Читайте также:  Какие свойства у совести

Тем не менее, если технология изготовления пружин требует проводить закалку как раз в воде, то необходимо соблюдать временной диапазон от 1 до 3 секунд, после чего так же опустить заготовку в масло. После этого пружину вынимают и очищают от масла. Далее уже идет аналогичный холодному методу навивки этап механической обработки изделия: заточка, шлифовка и другие технологические операции. Кроме того, для улучшения износостойкости изготовленных обеими способами пружин довольно часто производители применяют так же антикоррозионную обработку поверхностей изделия.

Сталь для изготовления пружин

Поскольку пружины зачастую используются для гашения каких-либо типов нагрузок, сталь для изготовления пружин должна иметь очень высокие технические характеристики. В зависимости от предназначения итоговых изделий, для их создания могут использоваться самые различные марки стали. Однако, наиболее часто, производство пружин выполняется из углеродистой и высоколегированной стали. Как правило, заводы-изготовители используют такие марки, как 50ХФА, 50ХГФА, 55ХГР, 55С2, 60С2, 60С2А, 60С2Н2А, 65Г, 70СЗА, У12А, 70Г, а также ещё множество других стальных сплавов.

Среднеуглеродистые и высокоуглеродистые марки стали, а также низколегированные стальные сплавы, которые задействует любое производство пружин, называются рессорно-пружинными. Зачастую, сталь для изготовления пружин обозначается еще как пружинная сталь. Стандартом для ее производства считают ГОСТ 14959-79, который предписывает все допуски и требования к техническим характеристикам. По госстандарту, пружинная сталь должна иметь очень качественную поверхность без наличия каких-либо дефектов, способных привести к частичному или же полному разрушению.

Дело в том, что при наличии, например, трещин на поверхности изделий, в процессе их эксплуатации при тяжелых различных тяжелых условиях, все усталостные явления будут концентрироваться как раз в наименее устойчивых дефектных местах. Именно поэтому вся пружинная сталь до того, как началось непосредственное производство пружин, должна пройти процедуру проверки на соответствие установленным требованиям ГОСТ 14959-79. Кроме того, сталь для изготовления пружин должна иметь хорошую упругость и проявлять высокую устойчивость к агрессивным воздействиям.

Достичь этого помогает, во-первых, химический состав того или иного сплава, так как под конкретные рабочие условия подбирается конкретная сталь для изготовления пружин. Во-вторых, противостоять напряжению и разрушению позволяют процесс закалки и отпуска изделий. Проведение данных технологических процессов подразумевает любая технология изготовления пружин, однако для каждой марки стали есть свои нюансы. В частности, этим нюансом является среда закаливания, в роли которой выступают масло или вода, а также еще и сама температура, при которой идет закаливание.

Собственно, температура при которой закаливается сталь для изготовления пружин, варьируется в пределах от +800°С до +900°, в зависимости от конкретного сплава. А отпуск проводится уже при диапазоне от +300°С до +480°С. Это обусловлено тем, что именно при подобных температурах возможно достичь одного из самых важных параметров пружинной стали — наибольшего предела упругости стали. Твердость получаемой продукции равняется 35 — 45 единицам твердости по Шору, что равнозначно значению от 1300 до 1600 килограмм на один квадратный миллиметр поверхности.

Характеристики стали для изготовления пружин

Марка сплава

Термический режим

Характеристики

σ т

σ в

δ5

φ

Температура закалки

Среда закалки

Температура отпуска

Не менее

65

840°С

Масло

480°С

80кгс/мм2

100кгс/мм2

10%

35%

70

830°С

85кгс/мм2

105кгс/мм2

9%

30%

75

820°С

90кгс/мм2

110кгс/мм2

85

100кгс/мм2

115кгс/мм2

8%

60Г

840°С

80кгс/мм2

100кгс/мм2

65Г

830°С

80кгс/мм2

100кгс/мм2

70Г

85кгс/мм2

105кгс/мм2

7%

25%

55ГС

820°С

80кгс/мм2

100кгс/мм2

8%

30%

50С2

870°С

Масло или вода

460°С

110кгс/мм2

120кгс/мм2

6%

30%

55С2

120кгс/мм2

130кгс/мм2

55С2А

60С2

Масло

25%

60С2А

420°С

140кгс/мм2

160кгс/мм2

20%

70С3А

860°С

460°С

160кгс/мм2

180кгс/мм2

25%

50ХГ

840°С

440°С

110кгс/мм2

130кгс/мм2

7%

35%

50ХГА

120кгс/мм2

55ХГР

830°С

450°С

125кгс/мм2

140кгс/мм2

5%

30%

50ХФА

850°С

520°С

110кгс/мм2

130кгс/мм2

8%

35%

50ХГФА

120кгс/мм2

6%

60С2ХФА

410°С

170кгс/мм2

190кгс/мм2

5%

20%

50ХСА

520°С

120кгс/мм2

135кгс/мм2

6%

30%

65С2ВА

420°С

170кгс/мм2

190кгс/мм2

5%

20%

60С2Н2А

880°С

160кгс/мм2

175кгс/мм2

6%

60С2ХА

870°С

180кгс/мм2

5%

60СГА

860°С

460°С

140кгс/мм2

160кгс/мм2

6%

25%

Читайте также:  Финики обладают каким свойством

 Условные обозначения:

σ т — предел текучести

σ в — предел кратковременной прочности

δ5 — относительное удлинение при разрыве

φ — относительное сужение

Источник

Пружины изготовляют из специальных углеродистых и легированных сталей, а также из специальных цветных сплавов.
Исходным материалом для изготовления пружин служат проволока, лента, прутки, полоса.
Для изготовления витых пружин очень распространено применение высокоуглеродистой пружинной проволоки диаметром до 8 мм (ГОСТ 9389—75)

Материал пружины после соответствующей термообработки должен иметь устойчивые во времени упругие свойства, значительную прочность и большое сопротивление ударным нагрузкам. Кроме того, иногда при выборе материала пружины приходится принимать во внимание его электропроводность, коэффициент температурного расширения и другие специфические условия, в которых должна работать пружина.
В приборостроении применяют пружины, изготовленные из стали и других металлов, например, из фосфористой и бериллиевой бронзы, нейзильбера, латуни и т. п. В зависимости от конструкции, способа изготовления и условий работы пружины можно изготовлять из твердого термически обработанного или отожженного материала с последующей термообработкой.

Характеристика пружинных материалов приведена в таблице:

Свойства пружинных материалов

Наименование материала и маркаХарактеристика и применение материала
Проволока I-классаВысокая разрывная прочность и большие остаточные напряжения после волочения и навивки.
Проволока классов II и IIАОтличается от проволоки I класса уменьшенной прочностью при разрыве и повышенной пластичностью. Применяют для пружин, работающих при низких температурах, а также для пружин растяжения со сложными конструкциями зацепов. Проволока класса IIА отличается от проволоки II класса более высокой точностью размеров
Марганцовистая сталь 65ГУсталостная прочность обычная. После термической обработки имеет пружинящие свойства и высокую прочность, плохо сопротивляется ударным нагрузкам, имеет повышенную склонность к образованию закалочных трещин. Применяют для пружин любого типа. Предел рабочих температур от —40 до +120° С
Хромоваиадиевая сталь 60ХФАТеплоустойчивость повышенная (до температуры 400° С). Накаливается до твердости не более HRC 52. Очень плохо воспринимает ударные нагрузки, может работать без покрытий в атмосфере нормальной влажности, имеет высокие упругие и вязкие свойства, является лучшим материалом для пружин I класса
Кремнистая сталь 60С2АВысокий предел усталости, очень хорошо воспринимает резкие ударные нагрузки, имеет высокие упругие и вязкие свойетва, склонна к обезуглероживанию при нагреве, может работать без покрытия в среде нормальной влажности. Устойчива до температуры 250°С. Применяют для пружин I и II классов
Кремнистая сталь 70СЗАПосле термической обработки имеет высокие упругие и пружинящие свойства при достаточной пластичности, склонна к обезуглероживанию поверхностного слоя
Бериллиевая бронза Бр. Б2Имеет усталостную прочность; предназначена специально для работы в магнитных полях и агрессивных средах при нормальной температуре и без резких ударов. Применяют для пружин любого типа
Кремнисто-марганцевая бронза Бр. КМцЗ-1Имеет усталочную прочность; предназначена специально для работы в магнитных полях и агрессивных средах при нормальной температуре без реаких ударов. Применяют для пружин любого типа

Для пружин, изготовляемых из ленточной стали по ГОСТ 2614—65, применяют сталь марок У8А, У10А, У12А, 65Г, а для особо ответственных пружин—сталь марок 60С2А и 70СЗА. Для токопроводящих пружин или пружин, работающих в магнитном поле, можно применять проволоку из кремнисто-марганцевой бронзы Бр.КМцЗ-1 и для особо ответственных пружин бронзу Бр-Б2.

Источник