Какая пищевая ценность отражает качество белковых компонентов продукта

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 июня 2019; проверки требуют 13 правок.

Пищевая ценность — понятие, отражающее всю полноту полезных свойств пищевого продукта, включая степень обеспечения физиологических потребностей человека в основных пищевых веществах, энергию и органолептические свойства.[источник не указан 171 день] Характеризуется химическим составом пищевого продукта с учётом его потребления в общепринятом количестве. Пищевая ценность продуктов питания определяется в первую очередь энергетической и биологической ценностью составляющих её компонентов, а также пропорциями отдельных видов компонентов в их общем количестве.
Пищевая ценность пищевой продукции, указываемая в её маркировке, включает следующие показатели:

  1. Энергетическую ценность (калорийность).
  2. Количество белков, жиров, углеводов.
  3. Количество витаминов и минеральных веществ[1].

Обычно пища содержит смесь различных компонентов, однако встречаются виды пищи, состоящие из какого-либо одного компонента или его явного преобладания, например, углеводистая пища.

Белки[править | править код]

Основная статья: Белки

Белки́ — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций дают большое разнообразие свойств молекул белков. Кроме того, аминокислоты в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул белков образуют специализированные комплексы, например, фотосинтетический комплекс.

Жиры[править | править код]

Жиры́, или с химической точки зрения триглицери́ды — природные органические соединения, полные сложные эфиры глицерина и одноосновных жирных кислот (входят в класс липидов). Наряду с углеводами и белками, жиры являются одним из основных источников энергии для млекопитающих, одним из главных компонентов питания. Эмульгирование жиров в кишечнике (необходимое условие их всасывания) осуществляется при участии солей жёлчных кислот. Энергетическая ценность жиров примерно в 2 раза выше, чем углеводов, при условии их биологической доступности и здорового усвоения организмом. В живых организмах жиры (липиды) выполняют важные структурные, энергетические и другие жизненноважные функции в составе мембранных образований клетки и в субклеточных органеллах. Жидкие жиры растительного происхождения обычно называют маслами. Кроме того, в кулинарии жир животного происхождения (полученный из молока животных) так же называют сливочное масло. Также в пищевой промышленности твёрдые жиры, полученные в результате трансформации (гидрирования или гидрогенизации) растительных масел называют саломасом, маргарином, комбинированным жиром или спредом.

В растениях жиры содержатся в сравнительно небольших количествах, за исключением семян масличных растений, в которых содержание жиров может быть более 50 %. Насыщенные жиры расщепляются в организме на 25—30 %, а ненасыщенные жиры расщепляются полностью.

Животные жиры чаще всего содержат стеариновую и пальмитиновую кислоты, ненасыщенные жирные кислоты представлены в основном олеиновой, линолевой и линоленовой кислотами. Физико-химические и химические свойства данной категории жиров в значительной мере определяются соотношением входящих в их состав насыщенных и ненасыщенных жирных кислот.

Углеводы[править | править код]

Углево́ды — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных[2]. Организмы животных не способны самостоятельно синтезировать углеводы из неорганических веществ. Они получают их из растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления. Таким образом, в суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом. Для человека главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70—80 % глюкозы и фруктозы.

В живых организмах углеводы выполняют следующие функции:

  1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих[2].
  2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
  3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК)[3].
  4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды[3].
  5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений[2].
  6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
  7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

Обмен углеводов в организме человека и высших животных складывается из нескольких процессов[4]:

  1. Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
  2. Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
  3. Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз — пути расщепления глюкозы в организме.
  4. Взаимопревращение гексоз.
  5. Аэробное окисление продукта гликолиза — пирувата (завершающая стадия углеводного обмена).
  6. Глюконеогенез — синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).

Незаменимые элементы пищи[править | править код]

Макроэлементы[править | править код]

Биологически значимые элементы[править | править код]

Микроэлементы[править | править код]

По современным данным более 30 микроэлементов считаются необходимыми для жизнедеятельности растений и животных. Среди них (в алфавитном порядке):

Витамины[править | править код]

Витами́ны (от лат. vita — «жизнь») — группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы. Это разнородная по химической природе группа органических веществ, объединённая по признаку абсолютной необходимости их для гетеротрофного организма в качестве составной части пищи. Автотрофные организмы также нуждаются в витаминах, получая их либо путём синтеза, либо из окружающей среды. Так, витамины входят в состав питательных сред для выращивания организмов фитопланктона[5]. Витамины содержатся в пище (или в окружающей среде) в очень малых количествах, и поэтому относятся к микронутриентам. Витамины не являются для организма поставщиком энергии, однако витаминам отводится важнейшая роль в обмене веществ. Витамины участвуют во множестве биохимических реакций, выполняя каталитическую функцию в составе активных центров большого количества разнообразных ферментов либо выступая информационными регуляторными посредниками, выполняя сигнальные функции экзогенных прогормонов и гормонов. Известно около полутора десятков витаминов. Исходя из растворимости, витамины делят на жирорастворимые — A, D, E, незаменимые жирные кислоты, K и водорастворимые — все остальные (B, C и другие). Жирорастворимые витамины накапливаются в организме, причём их депо являются жировая ткань и печень. Водорастворимые витамины в существенных количествах не депонируются (не накапливаются) и при избытке выводятся с водой.

Снижение пищевой ценности продуктов питания[править | править код]

Существуют множество причин снижения пищевой ценности продуктов питания. Большинство из них связано со снижением количества макронутриентов и особенно микронутриентов в сырье (например, содержание железа и витаминов группы B в говядине и в мясе птицы за последние 30 лет снизилось на 30—70 %), агрессивными методами, используемых в технологии выращивания и производства продукции (пестициды, стимуляторы роста/гормональная терапия для набора веса животных, антибиотики и т.д.)[6], а также с контаминацией несвойственными для продуктов биологическими агентами (бактерии, микромицеты, простейшие, их метаболиты и т.д.), химическими (ксенобиотики) или радиоактивными соединениями (радионуклиды).

Читайте также:  Какие продукты окрашивают в зеленый цвет

См. также[править | править код]

  • Пищевая энергетическая ценность
  • Биологически значимые элементы
  • Органолептика

Примечания[править | править код]

  1. ↑ ТР ТС 022/2011 «Пищевая продукция в части её маркировки» 4.9. 1
  2. 1 2 3 Н. А. АБАКУМОВА, Н. Н. БЫКОВА. 9. Углеводы // Органическая химия и основы биохимии. Часть 1. — Тамбов: ГОУ ВПО ТГТУ, 2010. — ISBN 978-5-8265-0922-7.
  3. 1 2 А. Я. Николаев. 9. Обмен и функции углеводов // Биологическая химия. — М.: Медицинское информационное агентство, 2004. — ISBN 5-89481-219-4.
  4. Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 235—238. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8.
  5. Гайсина Л. А., Фазлутдинова А. И., Кабиров Р. Р. Современные методы выделения и культивирования водорослей. — Учебное пособие. — Уфа: БГПУ, 2008. — 152 с. — 100 экз. — ISBN 978-5-87978-509-8.
  6. Спиричев В.Б. Научное обоснование применения витаминов в лечебных и профилактических целях // Вопросы питания. — 2010. — № 5.

Источник

Белок – наиболее важный компонент пищи человека. Основные источники пищевого белка: мясо, молоко, рыба, продукты переработки зерна, хлеб, овощи.

Потребность человека в белке зависит от его возраста, пола, характера трудовой деятельности. В организме здорового взрослого человека должен быть баланс между количеством поступающих белков и выделяющимися продуктами распада. Для оценки белкового обмена введено понятие азотного баланса. В зрелом возрасте у здорового человека существует азотное равновесие, т. е. количество азота, полученного с белками пищи, равно количеству выделяемого азота. В молодом растущем организме идет накопление белковой массы, образуется ряд нужных для организма соединений, поэтому азотный баланс будет положительным – количество поступающего азота с пищей превышает количество выводимого из организма. У людей пожилого возраста, а также при некоторых заболеваниях, недостатке в рационе питания белков, незаменимых аминокислот, витаминов, минеральных веществ наблюдается отрицательный азотный баланс – количество выделенного из организма азота превышает его поступление в организм. Длительный отрицательный азотный баланс ведет к гибели организма. На белковый обмен влияют биологическая ценность и количество поступающего с пищей белка.

Биологическая ценность белков определяется сбалансированностью аминокислотного состава и атакуемостью белков ферментами пищеварительного тракта.

В организме человека белки расщепляются до аминокислот, часть из них (заменимые) являются строительным материалом для создания новых аминокислот, однако имеется 8 аминокислот  (незаменимые, эссенциальные), которые не образуются в организме взрослого человека, они должны поступать с пищей. Снабжение организма человека необходимым количеством аминокислот – основная функция белка в питании. В белке пищи должен быть сбалансирован не только состав незаменимых аминокислот, но и должно быть определенное соотношение незаменимых и заменимых аминокислот, в противном случае часть незаменимых будет расходоваться не по назначению.

Биологическая ценность белка по аминокислотному составу может быть оценена при сравнении его с аминокислотным составом «идеального» белка. Для взрослого человека в качестве «идеального белка» применяют аминокислотную шкалу Комитета ФАО/ВОЗ.

Расчет аминокислотного скора,  для установления биологической ценности проводят следующим образом.  

Аминокислотный скор каждой незаменимой аминокислоты в идеальном белке принимают за 100 %, а в природном белке определяют процент соответствия.

Содержание аминокислоты (в мг) в 1 г испытуемого. Содержание этой же аминокислоты ( в мг) в I г белка  по аминокислотной шкале.

В результате определяют лимитирующую кислоту в исследуемом белке с наименьшим скором.

Например: в 1 г исследуемого белка пищевого продукта содержится (в мг): изолейцина – 45, лейцина – 75, лицина – 40, метионина и цистина (в сумме) – 25, фенилаланина и тирозина (в сумме) – 70, треонина – 38, триптофана – 11, валина – 50. При сравнении со стандартной шкалой находим, что скоры (в %) соответственно равны: 113, 107, 73, 71, 95, 113, 100. Следовательно, лимитирующими аминокислотами в белке данного продукта являются лизин (скор 73 %), сумма метионина и цистина (скор 71 %) и треонин (скор 95 %).

Наиболее близки к «незаменимому» белку животные белки. Большинство растительных белков содержат недостаточное количество незаменимых аминокислот (одной или нескольких). Так, например, белки злаковых культур, а следовательно, и полученные из них продукты неполноценны по лизину, метионину, треонину. В белке картофеля, ряда бобовых не хватает метионина и цистина (60-70 % оптимального количества).

В то же время необходимо помнить, что некоторые аминокислоты при тепловой обработке, длительном хранении продуктов могут образовать не усвояемые организмом соединения, т. е. становиться «недоступными». Это снижает ценность белка.

Биологическая ценность белков может быть увеличена добавлением лимитирующей аминокислоты или внесением компонента с ее повышенным содержанием. Так, биологическая ценность белка пшеницы может быть повышена приблизительно в два раза Добавлением 0,3-0,4 % лизина, белка кукурузы – 0,4 % лизина и 0,7 % триптофана.

Аминокислоты получают, гидролизуя белки, химическим или биологическим синтезом. Отдельные микроорганизмы при выращивании на специальных средах продуцируют в процессе своей жизнедеятельности определенные аминокислоты. Этот способ используют для промышленного получения лизина, глутаминовой кислоты и некоторых других аминокислот.

Животные и растительные белки усваиваются организмом неодинаково. Если белки молока, молочных продуктов, яиц усваиваются на 96 %, мяса и рыбы – на 93-95%, то белки хлеба – на 62-86%, овощей – на 80%, картофеля и некоторых бобовых – на 70 %. Однако смесь этих продуктов может быть биологически более полноценной.

На степень усвоения организмом белков оказывает влияние технология получения пищевых продуктов и их кулинарная  обработка. Анализируя воздействие различных видов обработки пищевого сырья и продуктов (измельчение, действие температуры, брожение и т. д.) на усвояемость содержащихся в них белков, следует отметить, что в большинстве пищевых производств  при соблюдении технологии не происходит деструкции аминокислот. При умеренном нагревании пищевых продуктов, особенно; растительного происхождения, усвояемость белков несколько возрастает, так как частичная денатурация белков облегчает доступ протеаз к пептидным связям. При интенсивной тепловой! обработке усвояемость снижается. Такое же влияние оказывает наличие в продуктах редуцирующих Сахаров и продуктов окисления липидов за счет их взаимодействия с белковыми компонентами пищи.

Суточная потребность взрослого человека в белке разного вида 1 -1,5 г белка на 1 кг массы тела (детей 4-1,5 г), т. е. примерно 85-100 г. Доля животных белков должна составлять приблизительно 55 % от общего его количества в рационе.

Для повышения пищевой ценности продуктов питания необходимо увеличение доли белкового компонента, сбалансированности его аминокислотного состава. Один из путей решения этой задачи – получение белковых продуктов из белоксодержащих отходов пищевых производств, например семян масличных после удаления масла (шрот), отходов мясной и молочной промышленности, и их использование для улучшения биологической ценности существующих продуктов или создание новых продуктов питания.

Создание белковых продуктов из масличных семян дает возможность не только расширить белковую сырьевую базу пищевой промышленности, но и значительно сократить потери белка, заменяя трехстадийную цепочку (растение – организм животного – организм человека) на двухстадийную (растение – организм человека).

Читателей:
209

Источник

Реферат по курсу органической химии на тему:

Пищевая и биологическая ценность белков.

Содержание.

Введение………………………………………………3

Пищевая ценность белков …………………………………4

Биологическая ценность белка.……………………..6

Заключение……………………………………..…….8

Литература…………………………………………..10

Введение.

Организм человека нуждается в регулярном поступлении энергии из внешней среды. Источниками энергии служат пищевые вещества (белки, жиры, углеводы), попадающие в организм с продуктами питания. Кроме того, в пищевых продуктах содержатся витамины, минеральные вещества, вода, органические кислоты, дубильные и другие компоненты. Не являясь источниками энергии, они необходимы для обменных процессов в организме. Пищевой рацион человека представляет собой сочетание пищевых продуктов животного происхождения (мясо, молоко, рыба, яйца) и продуктов их переработки (колбасы, масло, сыр, творог и др.) и растительного происхождения: изделия из злаковых растений (мука, хлеб, крупы, макаронные изделия), овощи, ягоды, фрукты, грибы. Содержание пищевых веществ во всех этих продуктах различное.

Читайте также:  Какие продукты помогают при головокружении

Характер питания населения складывается постепенно в зависимости от уровня экономического и культурного развития. Научные достижения биологической химии, физиологии, гигиены питания, витаминологии позволили установить и научно обосновать физиологические потребности человека в пищевых веществах в зависимости от возраста, профессии, пола, климатических особенностей, степени коммунального обслуживания и других факторов. Следует отметить, что характер питания определяется физиологическими и профессиональными особенностями организма и влиянием факторов внешней среды.

Образующуюся в организме в процессе превращения углеводов, жиров и белка энергию принято измерять в единицах тепловой энергии — килокалориях или единицах энергии — килоджоулях. В процессе сгорания 1 г белка в организме образуется 4 ккал, или 16,74 килоджоулей (кДж), 1 г жира — 9 ккал, или 37,67 кДж, 1 г углеводов — 3,75 ккал, или 15,7 кДж.

Энергетические затраты человеческого организма складываются из следующих компонентов:

1) основной обмен — энергия, расходуемая на биохимические процессы, обеспечивающие функции внутренних органов, систем и тканей, что в среднем составляет 1400—1700 ккал;

2) специфически-динамическое действие пищи — энергия, расходуемая на процессы пищеварения и превращения пищевых веществ, что составляет 10—15% от основного обмена;

3) энергетические затраты на выполнение работы по профессии, домашнего труда, активного отдыха, самообслуживания, спортивную деятельность и т. д.

Таким образом, суточные затраты энергии человека в среднем составляют 2700—4500 ккал и более. Для составления сбалансированного рациона питания необходимо прежде всего вычислить знергозатраты человека. Для этого применяются методы прямой и непрямой калориметрии. Наиболее точный метод – прямая калориметрия. Этот метод базируется на измерении количества тепловой энергии, которая освобождается во время выполнения той или иной работы в специальных камерах с высокой степенью теплоизоляции. Однако этот метод требует длительных наблюдений и не позволяет делать измерения при многих видах деятельности.

Пищевая ценность белков.

Белки относятся к жизненно необходимым веществам, без которых невозможны жизнь, рост и развитие организма. В процессе жизнедеятельности происходят распад и обновление белковых компонентов клеток. Для поддержания этих процессов организму необходимо ежедневно поступление полноценного белка с пищей. Белок входит в состав ядра и цитоплазмы клеток.

Белки выполняют целый ряд важнейших функций в организме.

* Пластическая функция. Белки (протеины) необходимы каждой клетке организма. Белки – структурная основа всех тканей организма. Это основной материал для построения растущих и воспроизводства разрушающихся тканей – от мышц и костей, до волос и ногтей. Такие структурные белки, как коллаген и кератин, служат главными компонентами костной ткани, волос и ногтей. Сократительные белки мышц обладают способностью изменять свою длину, используя химическую энергию для выполнения механической работы.

*Гормональная функция. Гормоны, регулирующие физиологические процессы, тоже являются белками. Одним из наиболее известных белков-гормонов является инсулин. Этот простой белок состоит только из аминокислот. Функциональная роль инсулина многопланова. Он снижает содержание сахара в крови, способствует синтезу гликогена в печени и мышцах, увеличивает образование жиров из углеводов, влияет на обмен фосфора, обогащает клетки калием. Регуляторной функцией обладают белковые гормоны гипофиза – железы внутренней секреции, связанной с одним из отделов головного мозга. Он выделяет гормон роста, при отсутствии которого развивается карликовость. Этот гормон представляет собой белок с молекулярной массой от 27000 до 46000.Также одним из важных и интересных в химическом отношении гормонов является вазопрессин. Он подавляет мочеобразование и повышает кровяное давление.

*Ферментативная функция. Белки в виде ферментов, катализирующих химические реакции, участвуют в регуляции многих обменных процессов и совершенно необходимы для нормального обмена самих белков и других пищевых веществ, в частности, углеводов, жиров, минералов, витаминов. Витамины, например, при недостатке белков не усваиваются организмом. Белковая пища помогает усвоению кальция, в то время как снижение уровня белка в пище ухудшает всасываемость этого элемента слизистой кишечника. Усвоение питательных веществ в организме возможно только в присутствии определенных ферментов. А ферменты – это белковые структуры, и соответственно недостаток белка приведет к серьезным нарушениям в питании организма.

*Защитная функция. К белкам относятся антитела, которые связывают, нейтрализуют и способствуют выведению токсичных веществ из организма. Дефицит белка в питании уменьшает устойчивость организма к инфекциям, так как снижается уровень образования антител. Нарушается синтез и других защитных факторов — лизоцима, иммуноглобулина, из-за чего обостряется течение воспалительных процессов. Белковыми веществами являются все факторы свертывающей и противосвертывающей системы.

*Транспортная функция. Белки участвуют в транспорте кровью липидов, углеводов, некоторых витаминов, гормонов, лекарственных веществ. Это прежде всего гемоглобин, переносящий кислород из легких к клеткам. В мышцах эту функцию берет на себя еще один транспортный белок – миоглобин. Многие белки, расположенные внутри клетки и на клеточной мембране, выполняют регуляторную, транспортную функцию распределения некоторых веществ, минеральных солей и витаминов между клеткой и межклеточным пространством. Поддержание водного баланса в тканях. Белки участвуют в распределении жидкости между внутри– и внеклеточной средой в организме. При дефиците белка вода не удерживается в клетках и переходит в межклеточную жидкость.

*Энергетическая функция. Хотя белки и не служат главным источником энергии, тем не менее они при определенных условиях могут выполнять эту функцию. Это происходит тогда, когда использование двух других источников энергии – углеводов и жиров затруднено, как, например, при голодании или на несбалансированных диетах. Однако, в качестве энергетической субстанции белки очень не выгодны и требуют большое количество энергии на свое усвоение и синтез, а также на вывод азота, входящего в их состав. Некоторые белки, способные реагировать на внешние воздействия (свет, запах) и служат в органах чувств рецепторами, воспринимающими раздражение. Белки входит в состав хромосом, обеспечивая нормальную работу ДНК – носителя наследственности. С другой стороны, в генах – участках ДНК – закодированы не просто наследственные признаки сами по себе, а состав белков, которые синтезируются организмом.

Недостаток белков в питании вызывает серьезные нарушения в организме: у детей замедляются рост и развитие, у взрослых возникают глубокие изменения в печени (жировая инфильтрация), а при длительной недостаточности — даже цирроз, нарушение деятельности желез внутренней секрецию (щитовидная, половые, поджелудочная), изменяется белковый состав крови, снижается устойчивость организма к инфекционным заболеваниям, страдает умственная деятельность человека — снижается память, нарушается работоспособность.

Наряду с этим установлено, что избыточное поступление белков неблагоприятно отражается на функции многих органов и систем организма, в частности при этом перегружаются ферментные системы и в крови накапливаются продукты неполного метаболизма, повышается количество мочевины, свободных аминокислот и т. д.

Биологическая ценность белка.

По современным представлениям под биологической ценностью белков понимают зависящую от их аминокислотного состава и других структурных особенностей степень задержки азота пищи в растущем организме или эффективность его утилизации для поддержания азотистого равновесия у взрослых.

Указанный критерий позволяет установить место пищевых белков по степени сравнительной пользы для организма человека и животных. Биологическая ценность пищевых белков зависит в основном от содержания и соотношения входящих в их состав незаменимых аминокислот.

Читайте также:  Какие продукты белки какие углеводы

Белки животного происхождения (говядина, треска), имеют высокую биологическую ценность.

Растительные белки лимитированы по ряду незаменимых аминокислот и прежде всего — по лизину. Второй лимитирующей аминокислотой для белков пшеницы и риса является треонин.

Биологическая ценность белков коровьего молока по сравнению с белками женского молока значительно лимитирована дефицитом серосодержащих аминокислот (метионин + цистин) и триптофана, что свидетельствует о необходимости коррекции его аминокислотного состава при использовании в питании детей раннего возраста.

Биологическая ценность белков коровьего молока по сравнению с белками женского молока значительно лимитирована дефицитом серосодержащих аминокислот (метионин + цистин) и триптофана, что свидетельствует о необходимости коррекции его аминокислотного состава при использовании в питании детей раннего возраста.

Биологическая ценность белков зависит не только от их аминокислотного состава, но и от доступности отдельных аминокислот.

При избыточном нагревании продуктов, богатых углеводами, в них снижается количество доступного лизина вследствие реакции меланоидинообразования.

Важным показателем качества пищевого белка может служить также степень его усвояемости, которая отражает протеолиз в желудочно-кишечном тракте и последующее всасывание аминокислот.

По скорости переваривания протеолитическими ферментами пищевые белки можно расположить в следующей последовательности:

1 — рыбные и молочные;

2 — мясные;

3 — белки хлеба и круп.

Рассмотренные представления о биологической ценности пищевых белков необходимы для правильного использования различных белковых продуктов при построении сбалансированных рационов питания.

Многие растительные продукты, особенно злаковые, содержат белки пониженной биологической ценности: в кукурузе, например, имеется значительный дефицит триптофана и лизина, в пшенице — лизина и треонина.

Продукты животного происхождения содержат сравнительно высокое количество триптофана, лизина и серосодержащих аминокислот. Поэтому для удовлетворения потребностей организма в аминокислотах целесообразно использовать комбинации пищевых продуктов по принципу взаимного дополнения лимитирующих биологическую ценность аминокислот.

Содержание белка в основных пищевых продуктах

Продукт Белок, г/100 г съедобной части –

Говядина 18,6—20,0

Баранина 15,6—19,8

Свинина мясная 14,3

Печень говяжья 17,9

Куры 18,2—21,2

Утки 15,8—17,2

Яйца куриные 12,7

Колбаса любительская

вареная 12,2

Сервелат 24,0

Сардельки свиные 10,1

Судак 18,4

Треска 16,0

Навага 15,1 — 19,2

Икра осетровых (паюсная) 36,0

Молоко коровье пастеризованное 2,79

Творог нежирный 18,0

Сыры (твердые) 19,0—31,0

Соя 34,9

Горох 20,5

Фасоль 21,0

Грибы сушеные (белые) 20,1

Ядро ореха фундук 16,1

Мука пшеничная 1-го сорта 10,6

Мука ржаная сеяная 6,9

Крупа манная 10,3

» гречневая ядрица 12,3

» рисовая 7,0

Хлеб из муки пшеничной 7,6—8,1

ржаной 4,7—7,0

Макаронные изделия высшего сорта 10,4—11,8

Хлеб безбелковый из пшеничного крахмала 0,7

Диетические безбелковые

макаронные изделия 1,0

Капуста белокочанная 1,8

Морковь 1,3

Свекла 1,5

Томаты 1,1

Картофель 2,0

Апельсины 0,9

Яблоки, груши 0,4

Смородина черная 1,0

Масло сливочное несоленое 0,5

Масло сливочное бутербродное 2,9

Ягоды, фрукты и овощи (за исключением бобов и зеленого горошка, содержащих соответственно 6 % и 5 % белка) включают незначительные количества белка.

Заключение.

Под действием ферментов желудочно–кишечного тракта белки пищи расщепляются на аминокислоты, которые организм человека использует для синтеза собственных белков. Поэтому огромное значение имеет не только количество поступивших белков, но и их аминокислотный состав.

В настоящее время известно более 80 природных аминокислот. Для гигиены питания представляют интерес 20 аминокислот, наиболее распространенных в пищевых продуктах, и 8 из них: лизин, триптофан, фениланин, лейцин, изолейцин, валин, треонин, метионин – названы незаменимыми, так как они не синтезируются в организме. При недостатке или отсутствии хотя бы одной из них нарушается процесс синтеза белков в организме, и возникают расстройства, характерные для белковой недостаточности. Для детей к незаменимым аминокислотам необходимо отнести аргинин и гистидин, так как они не синтезируются в детском организме в достаточном количестве. С пищей обязательно должны поступать все незаменимые аминокислоты, дефицит хотя бы одной из них может привести к серьезным болезням, так как каждая из незаменимых аминокислот влияет на определенные функции организма. В организме человека постоянно происходит синтез новых белков и удаление из него конечных продуктов белкового обмена. В состав белков входит азот, который не содержится ни в углеводах, ни в жирах. И если он откладывается в запас в организме, то только в составе белков. Если же в результате распада белков азот выходит из их состава, то он удаляется с мочой. Для того, чтобы организм функционировал на оптимальном уровне, необходимо восполнение удаляемого азота. Если количество восполняемого пищей азота соответствует количеству экскретируемого (выделяемого), то такое состояние носит название азотистого (или протеинового) баланса.

Белки по химическому составу делятся на полноценные и неполноценные. Определяющим в полноценности является наличие незаменимых аминокислот, т.к. остальные организм способен синтезировать. Полноценные белки содержат все незаменимые аминокислоты в количествах, соответствующих потребностям человека. Неполноценные белки содержат недостаточное количество одной или нескольких аминокислот. Аминокислоту, которой в данном продукте не хватает в большей степени, чем остальных, называют лимитирующей. При питании неполноценными белками требуется больше белка, пропорционально недостатку лимитирующей аминокислоты. Кроме этого важна эффективность усвоения различных белков и аминокислот.

Важно! Эффективность усвоения и химический состав белков определяют биологическую ценность белков.

А сколько же нужно организму белка? Взрослому человеку необходимо около 1–1,2 г на 1 килограмм массы тела. Для взрослого человека принята следующая формула сбалансированности незаменимых аминокислот (грамм в сутки):

валин — 2,5;

изолейцин — 2,0;

лейцин — 4,6;

лизин — 4,1;

метионин+цистин — 1,8;

треонин — 2,4;

триптофан — 0,8;

фенилаланин+тирозин — 4,4.

Детям и подросткам требуется несколько больше.

Следует отметить, что это количество полноценного белка, т.е. белка, в котором содержание необходимых кислот в соотношении наиболее близком к потребностям человека. Общее количество необходимого белка считается по лимитирующей в питании аминокислоте, неполноценного белка нам необходимо съесть больше, пропорционально недостатку лимитирующей аминокислоты.

При кормлении грудью требуется больше белков, так как они участвуют в образовании молока.

При соблюдении диеты, во время болезни или восстановительного периода, после тяжелой травмы или операций, обширных ожогов и большой кровопотери потребность в белке повышается.

Наиболее полный комплекс незаменимых аминокислот содержат белки, находящиеся в продуктах животного происхождения: мясе, рыбе, яйцах, молоке (и производных от них). В некоторых растительных продуктах также есть все незаменимые аминокислоты. Достаточно полноценных белков с высокой эффективностью усвоения свыше 20% содержит соя. Это высокое содержание полноценного белка. Во многих мясных продуктах этот процент ниже. Полноценные белки присутствуют также и в других бобовых – фасоли, горохе, но из-за очень грубой клетчатки эти продукты плохо перевариваются. В системах с частичным замещением пищи, высокобелковых и низкоуглеводных программах используются комплекс, состоящий из молочных и соевых белков, дополненных аминокислотами до 100% полноценного белка. То есть это оптимальные по составу белки, которые на 100% усваиваются организмом, не нагружая печень и почки за счет избытка нелимитирующих аминокислот. Нужно отметить, что, поскольку аминокислоты в организме практически не запасаются, и для того чтобы мог происходить синтез белка, должны одновременно присутствовать все аминокислоты. Эффект от поступления незаменимых аминокислот можно обнаружить лишь в том случае, если все они поступят в организм одновременно. Состав большей части животных белков близок к составу белков человеческого тела, так что аминокислотная недостаточность нам вряд ли грозит, если наш рацион богат такими продуктами, как мясо, яйца, молоко, сыр и соя.

Литература.

  • https://www.allaltmed.ru/public/news.php?id=11
  • https://www.fitness-online.by/2007/04/08/bio_