Какая кирпичная кладка обладает лучшими теплозащитными свойствами

Какая кирпичная кладка обладает лучшими теплозащитными свойствами thumbnail

Кирпич керамический

Планируя строительство дома, застройщики в первую очередь приступают к выбору оптимального материала, оценивая при этом наиболее приоритетные качества. Одним из таких является способность материала к теплосохранению, обеспечивающее частичную экономию при строительстве и эксплуатации здания.

Что представляют собой изделия из керамики

Для начала вкратце разберемся, что же представляет собой кирпич керамический, и какими свойствами он обладает.

Состав и свойства

Основным компонентом при производстве является мелкозернистая глина. Помимо нее в состав входит песок, вода и добавки, способные повысить исходное качество сырья и готовой продукции.

Например, пластификатор значительно повышает пластичность раствора и препятствует растрескиванию изделий. Соотношение сырья в будущем определяет основной набор свойств изделий, а, точнее, их числовые значения.

Ориентировочные пропорции сырья керамического кирпича

Рассмотрим усредненные показатели при помощи таблицы.

Таблица 1. Характеристики керамического кирпича:

Марка морозостойкости

Морозостойкость – одно из достоинств изделий. Она может достигать 250-300 циклов. Стоит показатель в зависимости от плотности, прочности. Чем они выше, тем большее количество циклов замораживания и оттаивания сможет выдержать изделие.

Теплопроводность

Коэффициент теплопроводности керамического кирпича нельзя назвать его самой сильной стороной. Он – повышен. А с чем это связано, мы рассмотрим чуть ниже.

Плотность и прочность

Марки прочности – М50-М250, 300. Плотность может достигать 2100 кг/м3. Согласитесь, это – завидные показатели для многих материалов.

Усадка

Кирпич усадке подвержен. Точное значение назвать сложно, во многом это зависит от вида изделия. Например, клинкерный кирпич почти не поддается усадке, она составляет не более 3-5%.

Гигроскопичность

Водопоглощение свойственно керамике, значение – около 8-10%. Но, опять же, многое зависит от типа кирпича, его плотности и технологии изготовления.

Экологичность

Об экологичности судить достаточно сложно. Ведь она зависит от месторождения основного сырья. Хотя все производители в один голос заявляют, что изделия абсолютно безопасны и, по сути, так это и должно быть.

Огнестойкость

Не горит. Может противостоять высокой температуре на протяжении длительного периода времени.

Классификация изделий и их основные различия

Существует большое количество различных видов керамического кирпича. Они отличаются между собой назначением, структурой, размером и другими показателями. Рассмотрим подробнее.

По назначению, изделия могут быть:

  • Рядовыми. Их применяют при кладке стен и перегородок. Последующая отделка, как правило, требуется. Материал отличается повышенной плотностью и, как следствие коэффициентом теплопроводности.

Рядовое изделие, фото

  • Лицевыми. Служат они для облицовки строений, возведения заборов и многое другое. К таким изделиям предъявляются повышенные требования в отношении внешнего вида. Сколы и иные дефекты не допустимы.

Лицевое изделие

Структура кирпича определяет существование следующих видов:

  • Пустотелые изделия. Они – более легковесные и менее плотные, серьезной нагрузке подвергаться не могут.

Пустотелый кирпич

  • Полнотелые же – наоборот: прочные и тяжелые, а теплопроводность керамического кирпича полнотелого сравнительно завышена.

На основе размеров изделий также сформирована классификация:

  • Кирпич с маркировкой 1НФ называется одинарный. Он имеет габариты равные 250*120*65 мм.

Размеры и вес одинарного кирпича

  • Маркировка 1,4 НФ указывает на то, что перед вами – полуторный, или утолщенный кирпич. Его высота несколько больше и составляет 88 мм.

Утолщенный кирпич

  • Двойные изделия имеют маркировку 2,1 НФ, высота их – 138 мм.

Кирпич двойной

  • Особенным размером обладают евро-изделия. Они отличаются не только толщиной, но и высотой, которые составляют 85 и 65 мм соответственно.

Евро изделия

Как уже говорилось выше, керамический кирпич может иметь различную марку по прочности и, в зависимости от нее, определяется область применения изделий при строительстве. Марки могут быть следующими: М50, 75, 100, 125, 150, 175, 200, 250.

  • М50 – наименее прочны. Применяются обычно при строительстве, например, столбов для ограждений, заборов.
  • М 75 и М100 могут использоваться при возведении стен почти любых, помимо несущих.
  • А вот М 125 вполне может быть применена при строительстве несущей конструкции.

Более высокие марки изделий используют при возведении цоколя и иных конструкций, на которые будет оказываться существенная нагрузка.

Значение теплопроводности и ее зависимость от иных характеристик и факторов, понятие теплой керамики

Как становится очевидным, теплоемкость керамического кирпича стоит в прямой зависимости от плотности и прочности изделий. Чем они выше, тем способность к теплосохранению ниже.

  • Например, теплопроводность керамического полнотелого кирпича плотностью 1800 кг/м3 составляет около 0,85 Вт*мС, а вот пустотелое изделие с показателем средней плотности в 1400 кг/м3 может похвастать более низким значением, равным около 0,55 Вт*мС.
  • Поризованные изделия обладают самым низким из всех перечисленных коэффициентом, он может составлять около 0,25.
  • Самой низкой способностью к сохранению тепла обладает клинкерный кирпич. Это опять же связано в его крайне высокой плотностью, которая достигает 2100 кг/м3.

Рассмотрим при помощи таблицы соотношения плотности и теплопроводности различных видов кирпича.

Таблица 2.  Кирпич керамический: теплопроводность различных видов изделий:

Вид изделияПлотность, кг/м3Коэффициент теплопроводности в сухом виде, Вт*мС.

Рядовой керамический кирпич полнотелый

1600-19000,5-0,7

Клинкерный кирпич

21000,8-0,9

Кирпич теплая керамика

1150-14000,22-0,35

Печной кирпич керамический

1600-19000,5-0,7

Обратите внимание! На данный момент крайне популярным стало строительство кирпичных домов «теплая керамика». Изделия, используемые для их возведения, отличаются высоким показателем плотности и, при этом, пониженным коэффициентом теплопроводности. Привлекает также застройщиков возможность применять изделия самостоятельно. Строительство своими руками поможет значительно сэкономив, компенсировав высокую стоимость на материал, так как цена сравнительно немалая.

Видео в этой статье:

Пример расчета оптимальной толщины стены, практические способы повышения способности к теплосохранению

Каким образом можно повысить способность стены к сохранению тепла?

Существует несколько способов:

  • В первую очередь стоит упомянуть о технологии укладки. Соблюдая ее, вы сможете подчеркнуть высокие показатели качеств керамических изделий.
  • Утепление конструкции, разумеется, значительно снизит коэффициент теплопроводности здания. Важно выбрать наиболее оптимальный метод. Например, создание воздушного зазора при этом будет наиболее эффективным.
  • Крайне популярным вариантом является применение керамического кирпича в качестве облицовочного материала, а вот основные стены можно выложить с использованием ячеистого бетона, например. В этом случае, строение будет наиболее теплым.

А как же рассчитать толщину стены, если застройщик все же решил строить здание исключительно из кирпича? Все достаточно просто. Оптимальным вариантом является кладка в полтора или два кирпича – эти виды наиболее распространены.

Толщина стен зависит от региона и климатических условий в первую очередь, поэтому при расчете следует учитывать так называемый коэффициент сопротивления теплоотдаче, который индивидуален для каждого региона. Указан он в СНиП. Среднее значение равно 3,4, поэтому в нашем примере мы и будем его использовать.

Предположим, что кирпич мы применяем рядовой керамический полнотелый, с плотностью в 1600 кг/м3 и теплопроводностью равной 0,5 Вт*мС.

0,5*3,4=1,7. Значение получается крайне большим. Однако, при расчете необходимо учитывать теплопроводность утеплителей и вычитать ее. Чем интенсивнее будет утепление, тем меньшей будет рекомендуемая толщина стены.

В заключение

Коэффициент теплопроводности керамического кирпича, как мы выяснили, зависит от вида изделий и их плотности. И чем последняя выше, тем способностью к теплосохранению ниже.

Читайте также:  Какие свойства вещества определяются ковалентным видом химической связи

Однако, несмотря на мало конкурентный показатель, существуют методы повышения данной способности, которые помогут застройщику построить теплый дом.

Читать далее…

Источник

Подпишитесь на канал и стройте качественно дом!

Любой человек, желающий построить дом в курсе того, что из-за наружных стен теряется тепло в доме, вследствие этого возникает главный вопрос, каким образом возвести стены, чтоб они не теряли тепло. По логике нужно сделать стены толще, используя полнотелый кирпич, однако лучше применить стройматериал утеплитель. Ну а самый оптимальный вариант – это возведение стен из действенного материала – теплосберегающего кирпича.

Пенодиамтомитовые кирпичи

Требования к постройке незаметно меняются, из-за роста цен на высококачественные стройматериалы возникают сомнения на счет их эффективности. Теплоизоляционный кирпич помогает снизить потерю тепла. При разработке теплосбрегающего кирпича выяснилось, что в большинстве случаев использование простого полнотелого кирпича неразумно, так как нужно очень много силикатного и керамического кирпича по причине его невысокой продуктивности. А вот применение теплоизоляционного кирпича, который в свою очередь имеет разновидности – самое заманчивое и экономное решение.

Пустотелый кирпич

Противоположные качества, такие как сбережение тепла зимой и теплоотдача – летом кажутся несовместимы, но пустотелый кирпич поможет справиться с этой задачей.

Воздух, которых находится в неоднородных пустотах, представляет собой натуральный теплоизолятор. Видимо немного меньший вес и плотность уменьшают нагрузку на фундамент. Но все же, не забывайте, что нельзя создавать облегченную кладку в подвальных помещениях, фундаментах, несущих стенах, в местах, где повышенная влажность. Во время изготовления кирпича уменьшается его плотность из-за сделанных вертикальных и горизонтальных пустот разной формы. Отверстия в изделии могут достигать до половины самого объёма кирпича и в соответствии с гос. стандартом кирпич является действенно теплопроводным при показателе до 0, 24 Вт/мС. Согласно ГОСТу, на каждой стадии производства теплоизоляционный кирпич испытывается в строжайших условиях. Благодаря высоким показателям прочности полнотелый кирпич уступает по стоимости из-за того, что при производстве требует больше сырья. По причине отверстий кирпич изнутри лучше пропекается.

Пустотелый облицовочный кирпич

Сохранение тепла – не одно лишь преимущество пустотелого кирпича, из-за отверстий при одинаковых размерах с полнотелым он может быть легче его до 1,5 кг. Вследствие этого снижаются нагрузки на фундамент, помогает уменьшить площадь, при этом сэкономив на материалах.

Очень близок по свойствам пустотелому кирпичу поризованный кирпич, не уступающий своим качеством, его еще называют суперэффективным. Эффект поризованного кирпича аналогична пустотному — тепло не выходит из-за внутреннего воздуха, и не пропускаются сторонние звуки. Благодаря маленьким пустотам кирпич лучше «дышит». Пустоты в поризованном кирпиче или поры образуются при добавлении в глину сгорающих веществ, таких как уголь, солома, опилки и т.п. Во время обжигания материалы выгорают, создавая замкнутые пустоты, благодаря этому кирпич приобретает особенные продуктивные свойства. Выбирая такой  кирпич, вы ещё и экономите, так как его требуется небольшое количество для возведения стен. Кроме того, используя такую технологию можно получить габаритные камни, ускоряющие ход кладки и тем самым уменьшая трату раствора и число «мостиков холода».

Усовершенствование технологии, заключающее в использовании пенополистирольных шариков в виде сгорающего наполнителя, преподнесло суперпоризированный кирпич. Размер пор увеличивается, снижая теплопроводимость без потери прочности.

При строительстве в большинстве случаев, пустотные кирпичи совмещают с полнотелым. Такое сочетание с декоративным футеровочным кирпичом повышает теплопроводимость стены, и фасад приобретает привлекательный вид.

Если неаккуратно класть утеплитель, то это поспособствует образованию мостиков холода в качестве растворных швов, это негативно скажется на будущем доме. Вследствие этого, чтобы защитить стену от холода применяется облицовочный кирпич.

Пенодиамтомитовый кирпич

Пенодиамтомитовый кирпич

Подвиды теплоизоляционного кирпича включают себя ряд эффективных специальных кирпичей. Один из них это пенодиатомитовый кирпич, в состав которого входит устойчивая пена, которая добавляется в порошковую смесь диатомитов, потом создается форма и это все сушится и обжигается. Поры, образованные в таком кирпиче создают изоляционные свойства, которые обеспечивают небольшую теплопроводность. Применяется этот кирпич в промышленном строительстве.

Второй вид это цементно-песчаный кирпич, состоящий соответственно из песка и цемента и других промышленных шлаков. Он достаточно дешевый, что никак не влияет на его качество сберегать постоянно степень тепловой защиты помещения.

Новшеством в строительстве является теплоизоляционный кирпич, в основу которого входят зольные микросферы. Изготовление такого кирпича происходит путем сжатия полусухих составов из зольных микросфер и портландцемента, используя пропарочную камеру он затвердевает, а потом сушится. Чтобы изготовить такой кирпич применяется технология плазменной обработки. Его теплоизоляционные свойства в несколько раз выше, чем у обычного глиняного кирпича и применение его возможно при строительстве малоэтажек. Также его используют как облицовку при наружной кладки стен.

Спасибо за просмотр! Остались вопросы? Задавайте в комментариях или пишите на электронную почту – stroitelstvo-tula@yandex.ru.

Подпишись на канал и не забудь поделиться статьей с друзьями!

Источник

Существует два вида кирпичной кладки стен: облегченная или колодцевая кладка и сплошная кладка. Прежде чем приступить к рассмотрению видов кирпичной кладки стен ознакомимся с основными терминами.

Две большие по площади грани кирпича называют верхней и нижней постелью, ими кирпич укладывают на раствор. Длинные боковые стороны называют ложками, короткие – тычками. Кладка в большинстве случаев выполняется на постель, то есть кирпич кладется плашмя. При кладке перегородок и карнизов кирпич обычно кладется на ложковую грань (на ребро). Ложковый ряд кладки образуют кирпичи, которые уложены длинной боковой стороной к наружной поверхности стены. Тычковый ряд кладки образуют кирпичи, уложенные наружу короткой стороной. Версты – крайние ряды кирпича. Ряды кирпичей, расположенные с наружной стороны стены – наружная верста. Ряды кирпичей, расположенные с внутренней стороны – внутренняя верста. Забутка – кирпичи, уложенные между наружной и внутренней верстой.

При строительстве небольших малоэтажных домов стены можно выкладывать сплошной кладкой, при этом лучше использовать дырчатые или щелевидные кирпичи. Стены сплошной кладки имеют достаточно низкие теплозащитные свойства.

Например, наружные стены из полнотелого кирпича сплошной кладки, чтобы защитить от мороза -30 градусов, должны иметь толщину не менее 64 см (два кирпича). Стены с воздушной прослойкой имеют более высокие теплозащитные свойства. При этом виде кладки ложковые (лицевые) ряды связывают с остальной частью стены укладкой через 4 – 5 рядов тычкового ряда кирпичей или устанавливают металлические связи с помощью арматуры. Чтобы наружный воздух не проникал в воздушную прослойку стены, фасад дома необходимо оштукатурить. Оптимальная толщина стен с воздушной прослойкой в 50см составляет 42 см. Для повышения теплозащитных свойств стен со сплошной кладкой их облицовывают изнутри теплоизоляционными плитами При эффективном утеплителе толщина наружных стен для одноэтажных, двухэтажных домов может быть 25 см.

Колодцевая кладка.

Самой экономичной, обладающей наилучшими показателями по сохранению тепла, является колодцевая кладка. Колодцевая кладка представляет собой две стены, сооружаемых в полкирпича, расположенных друг от друга на расстоянии 14 – 34 см. Величина расстояния между стенами зависит от зимней температуры региона. Промежуток между стенами заполняют утеплителем. Для повышения прочности стен их необходимо связать друг с другом. Связь между стенами можно обеспечить двумя способами:

Читайте также:  Каким общим свойством обладает белок

• сооружением поперечных стен – диафрагм, которые устраивают на расстоянии 0,5 – 1,0 м друг от друга. Поперечные стены устанавливают с зазором 2 – 3 см относительно соседней стенки. Для повышения теплозащитных свойств стены зазор раствором не заливают (за исключением оконных и дверных проемов);

• использованием диафрагм из арматуры и раствора. Арматурные стержни диаметром не менее 6 мм укладывают через 25 – 50 см длины стены, при этом концы стержней укладывают в горизонтальные швы кладки, заглубляя их в стену на 8 – 10 см. Диафрагму делают следующим образом: в уложенном утеплителе делают борозду глубиной 4 – 5 см, заполняют борозду слоем раствора толщиной в 1 см, укладывают арматурный стержень, утапливая его в растворе, второй слой раствора кладут при кладке следующего кирпичного ряда стены.

Колодцы между поперечными и продольными стенами можно залить шлакобетоном, легким бетоном, саманом или засыпать утеплителем. Бетон, саман и сухие засыпки укладывают слоями толщиной до 15 см с последующим уплотнением. Если в качестве утеплителя используется шлак, то через каждые 50 см их заливают известковым или известково – цементным раствором, что предотвращает усадку утеплителя.

В облегченной кладке удобнее всего использовать плитные утеплители. Плитные утеплители могут быть из арболита, минеральной ваты, фибролита, легкого бетона. Их прикрепляют к внутренней стенке посредством битумных или синтетических связующих или фиксаторами – полосками. Фиксаторы вырезают из тех же плит и ставят враспор к утеплителю и наружной стене на расстоянии не более 50 см друг от друга в результате между наружной стеной и утеплителем остается воздушный зазор. Хорошей засыпкой является смесь опилок, песка и извести – пушонки в весовом соотношении 2: 2:1. Засыпают эту смесь слоями до 40 – 50 см со штыкованием, и каждый слой поливают сметанообразным известковым раствором.

Спасибо за просмотр!

Ставьте лайки и подписывайтесь на канал!

Источник

Физические характеристики строительного материала определяют сферу его применения. Теплопроводность кирпича является важным параметром, который принимается в расчет при сооружении фундамента, перекрытий, внешних стен.

Коэффициент теплопроводности кирпичей

В экономике страны строительная отрасль выделяется как наиболее энергоемкая:

  • 10% энергии потребляют гражданские объекты;
  • 35-45% расходуют сооружения промышленного назначения;
  • 50-55% энергопотребления относится к жилым зданиям.

При проектировании зданий важное значение для строительных конструкций имеют теплоизоляция и тепловая защита. От этого во многом зависят человеческие условия труда и жизни, энергоэффективность строящихся объектов.

Возведение сооружений различного назначения нуждается в правильной оценке влажностного, воздушного и теплового режимов.

Это позволяют разработать специальные методики определения теплофизических параметров стройматериалов и готовых конструкций. Эти методики будут разными для отличающихся материалов изделий.

Теплотехнические показатели по техническим и нормативным документам характеризуются коэффициентом теплопроводности (λ). Для кирпича параметр является показателем того, как изделие передает тепло.

Чем выше значение, тем меньше теплоизолирующая способность. При выборе утеплителя для дома значение λ должно быть как можно меньше.

Коэффициент определяют экспериментальным путем. Это физический показатель, который зависит от давления воздуха, температуры, влажности среды и вещества изделия, плотности и структуры последнего.

Существует формула для определения теплопроводности. В соответствии с ней коэффициент λ прямо пропорционален толщине слоя (в метрах) и обратно пропорционален сопротивлению теплопередаче слоя.

Величина, которую получают при расчетах, используются в проектировании, чтобы сопоставить значение проводимости тепла разных материалов.

Для ограждающих конструкций сопротивление теплопередаче (R0) определяется для зданий и сооружений в соответствии с ГОСТ 26254-84. Для термически однородной зоны оно зависит от:

  1. Сопротивлений передачи тепла наружной и внутренней поверхностей.
  2. Температуры воздуха снаружи и внутри помещения, взятой как среднее значение измерений за расчетный период.
  3. От средней фактической плотности потока тепла за период измерений.

Теплопроводность кладки

По ГОСТ 26254 определяют λ для кирпичных и блочных кладок. Для этого действуют следующим образом:

  1. За время наблюдений определяют показания (средние арифметические) для всех термопар и типломеров.
  2. Для поверхностей кладок, которые находятся внутри и снаружи зданий и сооружений, вычисляется средневзвешенная температура по результатам испытаний. Принимается в расчет площадь растворных швов горизонтального и вертикального участков, а также площадь тычкового и ложкового участков.
  3. Определяют для кладки термическое сопротивление.
  4. Коэффициент теплопроводности кладки вычисляется по значению термического сопротивления.

Теплопроводность

Расчет

Теплопроводность кладки прямо пропорциональна ее толщине и обратно пропорциональна термическому сопротивлению.

После проведения испытаний и установления точных значений сопротивления теплопередачи нетрудно рассчитать величину теплопроводности стены, состоящий из несколько слоев.

Для этого нужно определить λ для каждого слоя отдельно и суммировать полученные значения.

Уменьшение коэффициента теплоотдачи стены

Существует несколько способов, которые позволяют снизить тепловые потери.

Технологии укладки

Воздушные зазоры делаются в кирпичной кладке для уменьшения накопления влаги в стенах и снижения коэффициента теплоотдачи.

Прослойку воздуха в стенах правильно обеспечивают следующим образом:

  1. Раствором не заполняют воздушные зазоры толщиной до 10 мм между изделиями начиная с 1 ряда. 1 метр — распространенный шаг между зазорами.
  2. По типу фасада с вентиляцией зазор воздуха толщиной 25-30 мм оставляют по всей высоте кладки между теплоизолятором и кирпичом. При работе зимой отопительной системы температура в доме будет оставаться постоянной. Свойства стены сохранять тепло обеспечат постоянные воздушные потоки, которые будут проходить по предусмотренным воздушным каналам.

Постоянная циркуляция по каналам воздуха внутри кладки возможна, если она на последнем ряду не закрывается перекрытием из любых стройматериалов или стяжкой из раствора.

Для частного строительства важно, чтобы, не понеся больших расходов, добиться от кирпичной стены существенного снижения коэффициента λ.

Технологии

Утепление здания

Дополнительная теплоизоляция строительных объектов способствует повышению их энергоэффективности. Утеплитель может располагаться изнутри и снаружи зданий.

Материал теплоизолятора крепится к стенам дюбелями и клеем, скобами и шурупами с использованием обрешетки и без. Полимерные штукатурные и пеновые смеси могут наноситься с применением армирующей сетки.

Для наружного утепления производятся сборные изделия: термоблоки, вентилируемые фасады, закрепляющиеся к стенам с помощью специальных конструкций.

Недостатки теплоизоляции штукатуркой снаружи:

  1. При частой смене температуры воздуха на границе сред, образуемых элементами утеплителя и стеной, создается зона повышенной влажности. Это важно учитывать для недостаточно толстых слоев штукатурки, сделанной по металлической, стеклотканевой или полимерной сетке.
  2. На 3-4 году эксплуатации отделка фасада начинает разрушаться. Раствор выдерживает в среднем около 50 циклов смены тепло-холод.
  3. На здоровье проживающих в доме может плохо влиять поражение конструкций грибком и плесенью.

Разные системы теплоизоляции способны нарушить паропроницаемость конструкции. Это часто вызывает образование между слоями фасада, штукатуркой и утеплителями конденсата. Он снижает срок службы изоляции и отделки, приводит к разложению пенополистиролов с выделением ядовитых веществ.

Что обозначает показатель

Холодная область материала постоянно получает тепло из более теплых частей. Их этот процесс движения тепла осуществляется через электромагнитные взаимодействие на уровне квазичастиц, электронов и атомов.

Физический смысл показателя теплопроводности — какое за единичный интервал времени через единицу площади сечения проходит количество теплоты.

В зависимости от коэффициента теплопроводности ГОСТ 530-2012 разделяет эффективность складки на следующее виды:

  • малоэффективная (обыкновенная) — от 0,46 и выше;
  • условно-эффективная — 0,36-0,46;
  • эффективная — 0,24-0,36;
  • повышенная — 0,2-0,24;
  • высокая — меньше 0,2.
Читайте также:  Какими свойствами воздействует искусство

Исходя из состава для кладочных смесей величину теплопроводности в инженерных расчетах выбирает от 0,47 и выше.

Нужный температурный режим лучше поддерживается при использовании стройматериалов с высокой теплоемкостью. Этот параметр характеризует, сколько нужно количества тепла, чтобы за единицу времени нагреть объект до заданной температуры. Единицами измерения показателя являются Дж/0С, Дж/К.

Что обозначает

Свойства различных типов

Разные строительные материалы отличаются способностью проводить тепло, которая зависит от следующих параметров:

  1. Влажность. 0,6 — значение λ для воды. Влажный насыщенный воздух или капли жидкости замещают сухой воздух в порох утеплителя и стеновых конструкциях при их намокании. Это приводит к росту показателей теплопроводности.
  2. Плотность. Тепловая энергия лучше передается, если частицы в теле расположены более тесно и в большем количестве. Опытным путем или на основе справочных данных определяется зависимость плотности и теплопроводности материала.
  3. Пористость. Однородность структуры изделий нарушается из-за наличия в ее составе пор. Заполненный воздухом объем, занятый порами, передает часть энергии теплового потока. Для сухого воздуха принимает значение λ отсечной точки 0,02. Теплопроводность стройматериалов будет меньше, если воздушными порами будет занят больший объем.
  4. Структура пор. Тепловой поток снижает скорость при наличии в изделиях небольших пор замкнутого характера. Тепловая конвекция будет участвовать в передаче тепла, когда имеются относительно большие сообщающиеся между собой поры.

Красный керамический

Мелкозернистая глина является при производстве керамического кирпича основным компонентом. В готовую продукцию также входят вода, песок и улучшающие начальное качество сырья присадки.

Изделия меньше растрескиваются, когда в их состав входит более эластичный раствор, качество которого модифицируют с помощью пластификаторов.

Для керамического кирпича хорошая морозостойкость является основным достоинством. Он способен выдерживать 250-300 циклов замораживания и оттаивания.

Красный кирпич из керамики российского производства имеет толщину 6,5 см и 25 см в длину. Для двойного толщина составляет 13,8 см, 8,8 см — для полуторного.

У пустотелых и полнотелых изделий будет разная величина объемного веса. Построенная из кирпича конструкции будут характеризоваться теплопроводностью тем ниже, чем более пористый материал был использован при строительстве. Для полнотелого кирпича показатель пустотности не может составлять более 30%.

Чтобы внутри изделия образовались пустоты, используется «шихта» — торф, крошки угля, опилки, солома мелко порубленная. Ее добавляют в массу глины. Пустоты образуются, когда добавки выгорают при спекании глины в печах с 1000°С температурой.

По показателю плотности кирпич делится на 7 категорий — от 2,4 до 0,7. Каждый класс изделия обладает собственной теплопроводностью.

0,6-0,7 — коэффициент теплопроводности для изделий с цельной структурой. Для пустотелых — 0,5-0,25 Вт/м*0С.

Несущие стены не делают из пустотелых материалов, поэтому чаще всего они нуждаются в дополнительном утеплении.

Красный

Клинкерный

Этот тип кирпича получают из смеси силикатов и минералов, воды, тугоплавкой измельченной глины, которую обрабатывают после формовки при высокой температуре (до 13000). Для этого используют тоннельные печи.

При соблюдении технологии производства получается продукт без мелкодисперсионных пор с высокой прочностью, натуральных оттенков. Параметры готовых изделий определяются ГОСТ 530-2012.

Клинкерный кирпич чаще всего получается с точной геометрией. Для повышения теплоизоляционных качеств и облегчения веса конечной конструкции он выполняется пустотелым.

Характеристики материала:

  1. Морозостойкость более 100 циклов.
  2. Минимальная марка прочности М250.
  3. 1500 кг/см3 — наименьший показатель плотности.
  4. Высокая огнестойкость, устойчивость к биологическим угрозам, воздействию ультрафиолета.
  5. 6% — максимальное водопоглощение.
  6. Коэффициент теплопроводности — 1,15Вт/м*0С.

Характеристика шамотного

Этот вид кирпича делают из специальной глины — желтого шамота. Получаемые изделия являются жаростойким материалом, который в сложных условиях высоких температур даже под высоким давлением способен сопротивляться деформациям. Длительный контакт с открытым огнем спокойно им переносится.

Оксид алюминия является главным веществом, которое входит в огнеупорную смесь. Он обеспечивает кирпичу устойчивость к агрессивным средам и высокую прочность при механических воздействиях.

Материал делят на 8 групп по показателям пустотности. Максимальное значение — 85%, минимальное — 3%. Чем меньше удельный вес изделия, тем ниже прочностные характеристики.

Изготовленный в соответствии с государственными стандартами стройматериал обладают следующими показателями:

  • 7% — водопоглощение;
  • высокая устойчивость к кислотам и щелочам;
  • 3,7 кг — средний вес;
  • 1350°С — рабочая температура, 1750° — максимальная;
  • 15-23 Н/мм2 — значение прочности на сжатие;
  • 0,84-1,28 Вт/м*0С — коэффициент теплопроводности.

Силикатный

Материал получают под давлением 12 атм. и температуре 200°С автоклавным методом. В его состав входят, кроме модифицирующих добавок, извести, кварцевый песок в соотношении 1 к 9.

Стойкие к щелочи пигменты, которые добавляют в сырье на этапе прессования, помогают сделать цветные варианты изделий.

ГОСТ379-95, 379-2015 определяют требования к силикатному кирпичу. 15-31% составляет показатель пустотности. Вес изделий — от 3,2 до 5,8 кг.

Характеристики плотности:

  • 1450 кг/м3 — для пустотелого кирпича марки М150;
  • 1700-2100 кг/м3 — для полнотелого М150-200.

Теплопроводность пустотелых силикатных изделий составляет 0,56-0,81 Вт/м*0С, и 0,65-0,88 — для полнотелых.

Какая теплопроводность изделий

Для анализа теплопроводности изделий из кирпича принимается во внимание закон Фурье. Разница температур оказывает влияние на показатели, которые определяет тепловой поток.

Применяемые для отделки фасадов силикатные кирпичи имеют тепловые параметры ниже керамических. Поэтому изделия из силикатных материалов более теплые при одинаковых размерах конструкций.

Изделия из красного пустотелого керамического кирпича имеют коэффициент теплопроводности 0,56.

На показатели готовых зданий сооружений и влияет качество кладки. Важно, чтобы применяемые кладочные растворы были нежирными. Плотность слоя должна быть не больше 1800кг/м3 и минимальной толщины.

Теплотехнические расчеты и требуемая несущая способность определяют то, какая толщина несущей стены будет в здании. Чтобы удовлетворять современным требованиям при реконструкции домов, построенных в советское время, толщину их стен нужно сделать около 1 м. Это не может быть рентабельным, поэтому используют различные системы утепления.

Если утепляющая часть стены и сочетается с каменной, конструкция получается слоистой, то такую укладку называют эффективной. Ее часто применяют в малоэтажном строительстве, для увеличения полезной площади помещений и снижения затрат на материалы.

//www.youtube.com/watch?v=NjQhpwCjYQI

Что влияет на показатели

Теплопроводность стройматериала — способность сквозь свою толщину передавать тепло и стационарные внутренние процессы, происходящие внутри него при этом. Тесный контакт является обязательным условием для передачи теплоты от 1 объекта к другому, поэтому в чистом виде теплопроводность имеют только твердые тела.

На показатель λ оказывает влияние:

  • влажность;
  • температура;
  • пористость;
  • формы и структура пор;
  • фазовый состав влаги;
  • плотность.

Сильно снижает теплопроводность наличие замкнутых и мелких пор. Снижают эффективную теплоизоляцию конвективные потоки воздуха, которые возникают в сообщающихся между собой крупных порах. Ориентация, размер и форма пор важны для теплопередачи.

Входящие в состав материала вещества своей химической природой определяют способность удерживать тепловую энергию. Величина λ тем меньше, чем слабее связаны между собой образующие кристаллическую решетку вещества атомные группы или тяжелые атомы.

Источник