Какая карбоновая кислота проявляет свойства альдегида

Какая карбоновая кислота проявляет свойства альдегида thumbnail

Химические свойства альдегидов и кетонов

Альдегидами называют соединения, молекулы которых содержат карбонильную группу, соединенную с атомом водорода, т.е. общая формула альдегидов может быть записана как

где R – углеводородный радикал, который может быть разной степени насыщенности, например, предельный или ароматический.

Группу –СНО называют альдегидной.

Кетоны – органические соединения, в молекулах которых содержится карбонильная группа, соединенная с двумя углеводородными радикалами. Общую формулу кетонов можно записать как:

где R и R’ – углеводородные радикалы, например, предельные (алкилы) или ароматические.

Гидрирование альдегидов и кетонов

Альдегиды и кетоны могут быть восстановлены водородом в присутствии катализаторов и нагревании до первичных и вторичных спиртов соответственно:

Окисление альдегидов

Альдегиды легко могут быть окислены даже такими мягкими окислителями, как гидроксид меди и аммиачный раствор оксида серебра.

При нагревании гидроксида меди с альдегидом происходит исчезновение изначального голубого окрашивания реакционной смеси, при этом образуется кирпично-красный осадок оксида одновалентной меди:

В реакции с аммиачным раствором оксида серебра вместо самой карбоновой кислоты образуется ее аммонийная соль, поскольку находящийся в растворе аммиак реагирует с кислотами:

Кетоны в реакцию с гидроксидом меди (II) и аммиачным раствором оксида серебра не вступают. По этой причине эти реакции являются качественными на альдегиды. Так реакция с аммиачным раствором оксида серебра при правильной методике ее проведения приводит к образованию на внутренней поверхности реакционного сосуда характерного серебряного зеркала.

Очевидно, что если мягкие окислители могут окислить альдегиды, то само собой это могут сделать и более сильные окислители, например, перманганат калия или дихромат калия. При использовании данных окислителей в присутствии кислот образуются карбоновые кислоты:

Химические свойства карбоновых кислот

Карбоновыми кислотами называют производные углеводородов, содержащие одну или несколько карбоксильных групп.

Карбоксильная группа:

Как можно видеть, карбоксильная группа состоит из карбонильной группы –С(О)- , соединенной с гидроксильной группой –ОН.

В связи с тем, что к гидроксильной группе непосредственно прикреплена карбонильная, обладающая отрицательным индуктивным эффектом связь О-Н является более полярной, чем в спиртах и фенолах. По этой причине карбоновые кислоты обладают заметно более выраженными, чем спирты и фенолы, кислотными свойствами. В водных растворах они проявляют свойства слабых кислот, т.е. обратимо диссоциируют на катионы водорода (Н+) и анионы кислотных остатков:

Реакции образования солей

С образованием солей карбоновые кислоты реагируют с:

1) металлами до водорода в ряду активности:

2) аммиаком

3) основными и амфотерными оксидами:

4) основными и амфотерными гидроксидами металлов:

5) солями более слабых кислот – карбонатами и гидрокарбонатами, сульфидами и гидросульфидами, солями высших (с большим числом атомов углерода в молекуле) кислот:

Систематические и тривиальные названия некоторых кислот и их солей представлены в следующей таблице:

Формула кислотыНазвание кислоты тривиальное/систематическоеНазвание соли тривиальное/систематическое
HCOOHмуравьиная/ метановаяформиат/ метаноат
CH3COOHуксусная/ этановаяацетат/ этаноат
CH3 CH2COOHпропионовая/ пропановаяпропионат/ пропаноат
CH3 CH2 CH2COOHмасляная/ бутановаябутират/ бутаноат

Следует помнить и обратное: сильные минеральные кислоты вытесняют карбоновые кислоты из их солей как более слабые:

Реакции с участием ОН группы

Карбоновые кислоты вступают в реакцию этерификации с одноатомными и многоатомными спиртами в присутствии сильных неорганических кислот, при этом образуются сложные эфиры:

Данного типа реакции относятся к обратимым, в связи с чем с целью смещения равновесия в сторону образования сложного эфира их следует осуществлять, отгоняя более летучий сложный эфир при нагревании.

Обратный реакции этерификации процесс называют гидролизом сложного эфира:

Необратимо данная реакция протекает в присутствии щелочей, поскольку образующаяся кислота реагирует с гидроксидом металла с образованием соли:

Реакции замещения атомов водорода в углеводородном заместителе

При проведении реакций карбоновых с хлором или бромом в присутствии красного фосфора при нагревании происходит замещение атомов водорода при α-атоме углерода на атомы галогена:

В случае большей пропорции галоген/кислота может произойти и более глубокое хлорирование:

Читайте также:  Алгоритмы не обладают каким свойством они обладают

Реакции разрушения карбоксильной группы (декарбоксилирование)

Особые химические свойства муравьиной кислоты

Молекула муравьиной кислоты, несмотря на свои малые размеры, содержит сразу две функциональные группы:

В связи с этим она проявляет не только свойства кислот, но также и свойства альдегидов:

При действии концентрированной серной кислоты муравьиная кислота разлагается на воду и угарный газ:

Источник

Карбоновые кислоты – класс органических соединений, молекулы которых содержат одну или несколько карбоксильных групп
COOH.

Имеют разнообразное промышленное применение и большое биологическое значение.
Общая формула одноосновных карбоновых кислот CnH2nO2 .

Карбоксильная группа

Классификация карбоновых кислот

По количеству карбоксильных групп в молекуле карбоновые кислоты подразделяются на:

  • Одноосновные – 1 карбоксильная группа
  • Двухосновные – 2 карбоксильных группы
  • Трехосновные – 3 карбоксильных группы

Классификация карбоновых кислот

Высшие карбоновые кислоты называют жирными кислотами. Более подробно мы изучим их теме, посвященной жирам, в состав
которых они входят.

Номенклатура и изомерия карбоновых кислот

Названия карбоновых кислот формируются путем добавления суффикса “овая” к названию алкана с соответствующим числом атомов углерода
и слова кислота: метановая кислота, этановая кислота, пропановая кислота, и т.д.

Многие карбоновые кислоты имеют тривиальные названия. Наиболее известные:

  • Метановая – HCOOH – муравьиная кислота
  • Этановая – CH3-COOH – уксусная кислота
  • Пропановая – C2H5-COOH – пропионовая кислота
  • Бутановая – C3H7-COOH – масляная кислота
  • Пентановая – C4H9-COOH – валериановая кислота

Номенклатура карбоновых кислот

Для предельных карбоновых кислот характерна структурная изомерия: углеродного скелета, межклассовая изомерия со сложными
эфирами.

Изомерия карбоновых кислот

Получение карбоновых кислот
  • Окисление алканов
  • При повышенной температуре и в присутствии катализатора становится возможным неполное окисление алканов, в результате которого
    образуются кислоты.

    Окисление алканов

  • Окисление спиртов
  • При реакции спиртов с сильными окислителями, такими как подкисленный раствор перманганата калия, спирты окисляются
    до соответствующих кислот.

    Окисление спиртов

  • Окисление альдегидов
  • При окислении альдегиды образуют соответствующие карбоновые кислоты. Окисление можно проводить качественной реакцией
    на альдегиды – реакцией серебряного зеркала.

    Окисление альдегидов, реакция серебряного зеркала

    Обратите особое внимание, что при написании реакции с аммиачным раствором серебра в полном виде, правильнее будет указать не кислоту, а ее аммиачную соль. Это связано с тем, что выделяющийся аммиак, который обладает основными свойствами, реагирует с кислотой с образованием соли.

    Реакция серебряного зеркала

    Окисление альдегидов также может быть успешно осуществлено другим реагентом – свежеосажденным гидроксидом меди II.
    В результате такой реакции образуется осадок кирпично-красного цвета оксида меди I.

    Окисление альдегидов, реакция с гидроксидом меди II

  • Синтез муравьиной кислоты
  • Существует специфический способ получения муравьиной кислоты, который заключается в реакции щелочи с угарным газом – образуется формиат (соль муравьиной кислоты). В результате добавления раствора серной кислоты к формиату получается
    муравьиная кислота.

    Синтез муравьиной кислоты

  • Синтез уксусной кислоты
  • Специфичность синтеза уксусной кислоты заключается в реакции угарного газа с метанолом, в результате которой она образуется.

    Также уксусную кислоту можно получить другим путем: сначала провести реакцию Кучерова, в ходе которой образуется уксусный альдегид.
    Окислить его до уксусной кислоты можно аммиачным раствором оксида серебра или гидроксидом меди II.

    Синтез уксусной кислоты

Химические свойства карбоновых кислот

Для карбоновых кислот не характерны реакции присоединения. Карбоновые кислоты обладают более выраженными кислотными свойствами, чем
спирты.

  • Кислотные свойства
  • Карбоновые кислоты вступают в реакции с металлами, которые способны вытеснить водород (стоят левее водорода в ряду напряжений
    металлов) из кислоты. Реагируют также с основаниями, с солями более слабых кислот, например, угольной кислоты.

    Кислотные свойства карбоновых кислот

  • Галогенирование
  • Галогенирование происходит по типу замещения в радикале, который соединен с карбоксильной группой. Напомню, что наиболее легко
    замещается водород у третичного, чуть сложнее – у вторичного, и значительно сложнее – у первичного атома углерода.

    Галогенирование карбоновых кислот

    Сила карбоновых кислот тем выше, чем меньше электронной плотности сосредоточено на атоме углерода в карбоксильной группе.
    Поэтому самая слабая из трех кислот – уксусная, чуть сильнее – хлоруксусная, за ней – дихлоруксусная и самая сильная –
    трихлоруксусная.

    Перераспределение электронной плотности в молекулах этих кислот для лучшего запоминания лучше увидеть наглядно. Это
    перераспределение обусловлено большей электроотрицательностью хлора, который притягивает электронную плотность.

    Сила карбоновых кислот

  • Особые свойства муравьиной кислоты
  • Муравьиная кислота отличается от своих гомологов. За счет наличия у нее альдегидной группы, она, единственная из карбоновых кислот,
    способна вступать в реакцию серебряного зеркала.

    В такой реакции идет ее окисление до нестойкой угольной кислоты, которая распадается на углекислый газ и воду.

    Реакция серебряного зеркала с муравьиной кислотой

  • Разложение муравьиной кислоты
  • При нагревании и в присутствии серной кислоты (водоотнимающего компонента) муравьиная кислота распадается на воду и угарный газ.

    HCOOH → (t, H2SO4) CO↑ + H2O

Читайте также:  Какие упражнения полезные свойства
Сложные эфиры

Получение сложных эфиров происходит в реакции этерификации (лат. aether – эфир), заключающейся во взаимодействии карбоновой кислоты
и спирта.

Названия сложных эфиров формируются в зависимости от того, какой кислотой и каким спиртом эфир образован. Примеры:

  • Метановая кислота + метанол = метиловый эфир метановой кислоты (метилформиат)
  • Этановая кислота + этанол = этиловый эфир уксусной кислоты (этилацетат)
  • Метановая кислота + этанол = этиловый эфир метановой кислоты (этилформиат)
  • Пропановая кислота + бутанол = бутиловый эфир пропионовой кислоты (бутилпропионат)

Реакция этерификации

Для сложных эфиров характерной реакцией является гидролиз – их разложение. Возможен щелочной гидролиз, при котором образуется соль
кислоты и спирт, и кислотный гидролиз, при котором образуются исходные спирт и кислота.

Кислотный гидролиз протекает обратимо, щелочной – необратимо.
Реакция щелочного гидролиза по-другому называется реакция омыления, и напомнит о себе, когда мы дойдем до темы жиров.

Гидролиз сложных эфиров

Ангидриды

Ангидриды – химические соединения, производные неорганических и органических кислот, образующиеся при их дегидратации.

Образование ангидридов

Хлорангидриды карбоновых кислот образуются в реакции карбоновых кислот с хлоридом фосфора V.

Образование хлорангидридов

Следующая реакция не имеет отношения к ангидридам, однако (из-за их схожести) вы увидите ее здесь для наилучшего запоминания.
Это реакция галогенирования гидроксикислот, в результате которой гидроксогруппа в радикале меняется на атом галогена.

Галогенирование гидроксикислот

Непредельные карбоновые кислоты

Распределение электронной плотности в молекулах творит чудеса: иногда реакции идут против правила Марковникова. Так происходит
в непредельной акриловой кислоте.

Присоединение против правила Марковникова

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Карбоновые кислоты – это вещества, в молекулах которых содержится одна или несколько карбоксильных групп СООН.

Общая формула предельных одноосновных карбоновых кислот: СnH2nO2

Строение, изомерия и гомологический ряд карбоновых кислот

Химические свойства карбоновых кислот

Способы получения карбоновых кислот

.

Для карбоновых кислот характерны следующие свойства:

  • кислотные свойства, замещение водорода на металл;
  • замещение группы ОН
  • замещение атома водорода в алкильном радикале
  • образование сложных эфиров — этерификация


1. Кислотные свойства

Кислотные свойства карбоновых кислот возникают из-за смещения электронной плотности к карбонильному атому кислорода и вызванной этим дополнительной (по сравнению со спиртами и фенолами) поляризацией связи О–Н.

Какая карбоновая кислота проявляет свойства альдегида

Карбоновые кислоты – кислоты средней силы.

В водном растворе карбоновые кислоты частично диссоциируют на ионы:  

R–COOH R-COO– + H+

1.1. Взаимодействие с основаниями 

Карбоновые кислоты реагируют с большинством оснований. При взаимодействии карбоновых кислот с основаниями образуются соли карбоновых кислот и вода.

CH3COOH + NaOH = CH3COONa + H2O

Карбоновые кислоты реагируют с щелочами, амфотерными гидроксидами, водным раствором аммиака и нерастворимыми основаниями. 

Например, уксусная кислота растворяет осадок гидроксида меди (II)

Видеоопыт взаимодействия уксусной кислоты с гидроксидом натрия можно посмотреть здесь.

Например, уксусная кислота реагирует с водным раствором аммиака с образованием ацетата аммония

CH3COOH + NH3 = CH3COONH4

1.2. Взаимодействие с металлами

Карбоновые кислоты реагируют с активными металлами. При взаимодействии карбоновых кислот с металлами образуются соли карбоновых кислот и водород.

Например, уксусная кислота взаимодействует с кальцием с образованием ацетата кальция и водорода.

Видеоопыт взаимодействия уксусной кислоты с магнием и цинком можно посмотреть здесь.

1.3. Взаимодействие с основными оксидами

Карбоновые кислоты реагируют с основными оксидами с образованием солей карбоновых кислот и воды.

Например, уксусная кислота взаимодействует с оксидом бария с образованием ацетата бария и воды.

Читайте также:  Какие из указанных веществ проявляют только окислительные свойства

Например, уксусная кислота реагирует с оксидом меди (II)

2СН3СООН  + CuO  = H2О  +  ( CH3COO)2 Cu

Видеоопыт взаимодействия уксусной кислоты с оксидом меди (II) можно посмотреть здесь.

1.4. Взаимодействие с с солями более слабых и летучих (или нерастворимых) кислот

Карбоновые кислоты реагируют с солями более слабых, нерастворимых и летучих кислот. 

Например, уксусная кислота растворяет карбонат кальция

Качественная реакция на карбоновые кислоты: взаимодействие с содой (гидрокарбонатом натрия) или другими гидрокарбонатами. В результате наблюдается выделение углекислого газа

2. Реакции замещения группы ОН

Для карбоновых кислот характерны реакции нуклеофильного замещения группы ОН с образованием функциональных производных карбоновых кислот: сложных эфиров, амидов, ангидридов и галогенангидридов.

2.1. Образование галогенангидридов

Под действием галогенагидридов минеральных кислот-гидроксидов (пента- или трихлорид фосфора) происходит замещение группы ОН на галоген.

Например, уксусная кислота реагирует с пентахлоридом фосфора с образованием хлорангидрида уксусной кислоты

2.2. Взаимодействие с аммиаком

При взаимодействии аммиака с карбоновыми кислотами образуются соли аммония:

При нагревании карбоновые соли аммония разлагаются на амид и воду:

2.3. Этерификация (образование сложных эфиров)

Карбоновые кислоты вступают в реакции с одноатомными и многоатомными спиртами с образованием сложных эфиров.

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

2.4. Получение ангидридов

С помощью оксида фосфора (V) можно дегидратировать (то есть отщепить воду) карбоновую кислоту – в результате образуется ангидрид карбоновой кислоты.

Например, при дегидратации уксусной кислоты под действием оксида фосфора образуется ангидрид уксусной кислоты

Какая карбоновая кислота проявляет свойства альдегида

3. Замещение атома водорода при атоме углерода, ближайшем к карбоксильной группе 

Карбоксильная группа вызывает дополнительную поляризацию связи С–Н у соседнего с карбоксильной группой атома углерода (α-положение). Поэтому атом водорода в α-положении легче вступает в реакции замещения по углеводородному радикалу.

В присутствии красного фосфора карбоновые кислоты реагируют с галогенами.

Например, уксусная кислота реагирует с бромом в присутствии красного фосфора

4. Свойства муравьиной кислоты

Особенности свойств муравьиной кислоты обусловлены ее строением, она содержит не только карбоксильную, но и альдегидную группу и проявляет все свойства альдегидов.

4.1. Окисление аммиачным раствором оксида серебра (I) и гидроксидом меди (II)

Как и альдегиды, муравьиная кислота окисляется аммиачным раствором оксида серебра. При этом образуется осадок из металлического серебра.

При окислении муравьиной кислоты гидроксидом меди (II) образуется осадок оксида меди (I):

4.2. Окисление хлором, бромом и азотной кислотой

Муравьиная кислота окисляется хлором до углекислого газа.

4.3. Окисление перманганатом калия

Муравьиная кислота окисляется перманганатом калия до углекислого газа:

5HCOOH + 2KMnO4 + 3H2SO4 → 5CO2 + 2MnSO4 + K2SO4 + 8H2O

Видеоопыт взаимодействия муравьиной кислоты с перманганатом калия можно посмотреть здесь.

4.4. Разложение при нагревании

При нагревании под действием серной кислоты муравьиная кислота разлагается с образованием угарного газа:

Видеоопыт разложения муравьиной кислоты можно посмотреть здесь

5. Особенности бензойной кислоты 

5.1. Разложение при нагревании

При нагревании бензойная кислота разлагается на бензол и углекислый газ:

Какая карбоновая кислота проявляет свойства альдегида

4.2. Реакции замещения в бензольном кольце

Карбоксильная группа является электроноакцепторной группой, она уменьшает электронную плотность бензольного кольца и является мета-ориентантом.

Какая карбоновая кислота проявляет свойства альдегида

6. Особенности щавелевой кислоты 

6.1. Разложение при нагревании

При нагревании щавелевая кислота разлагается на угарный газ и углекислый газ:

6.2. Окисление перманганатом калия

Щавелевая кислота окисляется перманганатом калия до углекислого газа:

7. Особенности непредельных кислот (акриловой и олеиновой)

7.1. Реакции присоединения

Присоединение воды и бромоводорода к акриловой кислоте происходит против правила Марковникова, т.к. карбоксильная группа является электроноакцепторной:

К непредельным кислотам можно присоединять галогены и водород. Например, олеиновая кислота присоединяет водород:

6.2. Окисление непредельных карбоновых кислот

Непредельные кислоты обесцвечивают водный раствор перманганатов. При этом окисляется π-связь и у атомов углерода при двойной связи образуются две гидроксогруппы:

Источник