Какая функциональная группировка придает аминокислоте кислые свойства

Какая функциональная группировка придает аминокислоте кислые свойства thumbnail

Цель: расширить знания о функциях белков в живой клетке; научить учащихся выявлять причины происходящих в клетке процессов, используя свои знания о функциях в ней белков.

Оборудование: таблицы по общей биологии, модель первичной структуры белка.

Ход урока

I. Проверка знаний учащихся.

Карточка для работы у доски.

Запишите номера вопросов, против них – правильные ответы.

  1. Какие органические вещества в клетке на первом месте по массе?
  2. Какие элементы входят в состав простых белков?
  3. Сколько аминокислот образует все многообразие белков?
  4. Сколько аминокислот являются незаменимыми для человека?
  5. Какие белки называются неполноценными?
  6. Какая функциональная группировка придает аминокислоте кислые, какое – щелочные свойства?
  7. В результате какой реакции образуется пептидная связь?
  8. Между какими группировками аминокислот образуется пептидная связь?
  9. Какие связи стабилизируют вторичную структуру белков ?
  10. Какую структуру имеет молекула гемоглобина?

Тесты классу.

Тест 1. Какие органические вещества в клетке на первом месте по массе?

  1. углеводы.
  2. белки
  3. липиды.
  4. нуклеиновые кислоты.

Тест 2. Какие элементы входят в состав простых белков?

  1. углерод…
  2. водород
  3. кислород
  4. сера
  5. фосфор
  6. азот
  7. железо
  8. хлор.

Тест 3. Сколько аминокислот образует все многообразие белков?

  1. 170
  2. 26
  3. 20
  4. 10

Тест 4. Сколько аминокислот являются незаменимыми для человека?

  1. таких аминокислот нет.
  2. 20
  3. 10
  4. 7

Тест 5. Какие белки называются неполноценными?

  1. В которых отсутствуют некоторые аминокислоты.
  2. В которых отсутствуют некоторые незаменимые аминокислоты.
  3. В которых отсутствуют некоторые заменимые аминокислоты.
  4. Все известные белки являются полноценными.

Тест 6. Какая функциональная группировка придает аминокислоте кислые, какое –щелочные свойства?

  1. Кислые – радикал, щелочные – аминогруппа.
  2. Кислые – аминогруппа, щелочные – радикал.
  3. Кислые – карбоксильная группа, щелочные – радикал.
  4. Кислые – карбоксильная группа, щелочные – аминогруппа.

Тест 7. В результате какой реакции образуется пептидная связь?

  1. Реакция гидролиза.
  2. Реакция гидратации.
  3. Реакции конденсации.
  4. Все вышеперечисленные реакции могут привести к образованию пептидной связи.

Тест 8. Между какими группировками аминокислот образуется пептидная связь?

  1. Между карбоксильными группами соседних аминокислот.
  2. Между аминогруппами соседних аминокислот.
  3. Между аминогруппой одной аминокислоты и радикалом другой.
  4. Между аминогруппой одной аминокислоты и карбоксильной группой другой.

Тест 9. Какие связи стабилизируют вторичную структуру белков ?

  1. ковалентные
  2. водородные
  3. ионные
  4. такие связи отсутствуют

Тест 10. Какую структуру имеют молекула гемоглобина?

  1. первичную
  2. вторичную
  3. третичную
  4. четвертичную

II. Изучение нового материала.

1. Свойства белков.

У человека более 10 000 видов разных белков.

Свойства белков:

  1. Денатурация (утрата трехмерной конформации без изменения первичной структуры ). Ренатурация.
  2. Нерастворимые белки (кератин, фиброин) и растворимые белки (альбумины, фибринген).
  3. Малоактивные и химически высокоактивные.
  4. Устойчивые и крайне неустойчивые.
  5. Фибриаллярные и глобулярные.
  6. Нейтральные (альбумины, глобулины), основные (гистоны), кислые (казеин)
  7. Инактивация при замерзании.

2. Функции белков в клетке и организме.

1. Строительная.

2. Каталическая (ферментативная).

Напомним некоторые особенности функционирования ферментов:

а) ферменты ускоряют протекание реакции только одного вида, то есть обладают специфичностью действия;
б) ферменты конкретного организма действуют в узких температурных пределах;
в) ферменты эффективно работают при строго определенных показателях среды. Например, в разных участках пищеварительного тракта она может быть слабощелочной, щелочной или кислой.

Ферментативный белок соединятся реагирующими веществами, ускоряет их превращения ения и выходит из реакции неизменным.

3. Регуляторная.

Осуществляется с помощью гормонов. Многие гормоны являются белками. Рассмотрим их действия на некоторых конкретных примерах.

Пример 1

Пример 2

Ослабленное функционирование поджелудочной железы может привести к нарушению (замедлению) процесса превращения глюкозы в гликоген, вследствие чего возникает серьезное заболевание – сахарный диабет.

4. Двигательная функция белка проявляется при работе мускулатуры человека и животных. В мышечных клетках имеются специальные сократительные белки, обеспечивающие специфическое функционирование этих клеток.

5. Транспортная функция белка проявляется в переносе кислорода и углекислого газа с помощью белка глобина.

6. Защитная функция белка заключается в выработке белков – антител, уничтожающих возбудителей болезней, попавших в организм.

Читайте также:  Какие есть свойства у золота

Защитная функция белка приносит… человеку не только пользу. Могут возникнуть серьезные проблемы при пересадке органов и тканей от одного человека другому. Пересаженный орган воспринимается иммунной системой нового «хозяина» этого органа как чужеродный белок. Воздействие антител приводит к отторжению пересаженного органа со всеми вытекающими отсюда последствиями.

Аналогичные проблемы могут возникнуть при беременности, в том случае, если мать будущего ребенка является резус-отрицательной, а отец имеет резус-положительную кровь. В том случае может возникнуть серьёзный конфликт между материнским организмом и организмом развивающего плода.

Напомним, что ген резус-положительности доминирует над геном резус-отрицательности.

Следствием указанного выше конфликта являются задержка и нарушение процесса развития плода, в ряде случаев – его гибель. Связи с ответным воздействием антител плода на чужеродный белок материнского организма женщина испытывает симптомы обостренно протекающего токсикоза беременности.

Защитные функции могут быть могут быть ослаблены либо с помощью медицинских средств (когда это необходимо),либо в результате негативного воздействия природных факторов(ухудшение условий жизни организма, агрессия вируса СПИДа) (см. схему).

7. Энергетическая функция белка проявляется в выделении свободной энергии при последовательном расщеплении полипептидной молекулы

Биологическую роль, которую играют белки в живой клетке и организме, трудно переоценить. Вероятно, жизнь на нашей планете действительно можно рассматривать как способ существования белковых тел, осуществляющих обмен веществом и энергией с внешней средой.

III. Закрепление.

«Свойства и функции белков. »

Тест 1. Что образуется при окислении 1 г белка?

  1. Вода
  2. Углекислый газ.
  3. Аммиак.
  4. 17,6 кДж энергии.
  5. Мочевина.
  6. 38,9 кДж энергии.

Тест 2. В пробирке с пероксидом водорода поместили кусочек варенной колбасы, хлеба, моркови, рубленного яйца. В одной из пробирок выделялся кислород. В какой?

  1. С кусочком вареной колбасы.
  2. С кусочком хлебы.
  3. С кусочком моркови.
  4. С кусочком рубленного яйца.

Тест 3. Какие суждения верны?

  1. Ферменты специфичны, каждый фермент обеспечивает раекции одного типа.
  2. Ферменты универсальны и могут катализировать реакции разных типов.
  3. Каталическая активность ферментов не зависит от рН и температуры.
  4. 4. Каталическая активность ферментов напрямую зависит от рН и температуры.

Тест 4. Какие суждения верны?

  1. Фермент – ключ, субстрат – замок, согласно теории Фишера.
  2. Фермент – замок, субстрат – ключ, согласно теории Фишера.
  3. После каталитической реакции фермент и субстрат распадаются, образуя продукты реакции.
  4. После каталитической реакции фермент остается неизменным, субстрат распадается, образуя продукты реакции.

Тест 5. Какие суждения верны?

  1. Витамины являются кофакторами ферментов.
  2. Все белки являются биологическими катализаторами, ферментов.
  3. При замерзании происходит необратимая денатурация ферментов.
  4. Ренатурация – утрата трехмерной конфигурации белка без изменения первичной структуры

Тест 6. Какая функциональная группировка придает аминокислоте кислые, какое –щелочные свойства?

  1. Кислые – радикал, щелочные – аминогруппа.
  2. Кислые – аминогруппа, щелочные – радикал.
  3. Кислые – карбоксильная группа, щелочные – радикал.
  4. Кислые – карбоксильная группа, щелочные – аминогруппа.

Тест 7. В результате какой реакции образуется пептидная связь?

  1. Реакция гидролиза.
  2. Реакция гидратации.
  3. Реакции конденсации.
  4. Все вышеперечисленные реакции могут привести к образованию пептидной связи.

Тест 8. Между какими группировками аминокислот образуется пептидная связь?

  1. Между карбоксильными группами соседних аминокислот.
  2. Между аминогруппами соседних аминокислот.
  3. Между аминогруппой одной аминокислоты и радикалом другой.
  4. Между аминогруппой одной аминокислоты и карбоксильной группой другой.

Тест 9. Какие связи стабилизируют вторичную структуру белков?

  1. ковалентные
  2. водородные
  3. ионные
  4. такие связи отсутствуют.

Тест 10. Какие связи стабилизируют третичную структуру белков?

  1. ковалентные
  2. водородные
  3. ионные
  4. гидрофильно-гидрофобное взаимодействие.

На дом: стр. 94-99, вопросы в конце параграфа.

Источник

Аминокислоты классифицируют по следующим структурным признакам.

I. Классификация по взаимному положения функциональных групп

В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α- , b- , g- , d- , e- и т. д.

Какая функциональная группировка придает аминокислоте кислые свойства

Какая функциональная группировка придает аминокислоте кислые свойства

Греческая буква при атоме углерода обозначает его удаленность от карбоксильной группы.

II. Классификация по строению бокового радикала (функциональным группам)

Алифатические аминокислоты

Читайте также:  Какими свойствами обладает клетка человека

Моноаминомонокарбоновые кислоты: глицин, аланин, валин, изолейцин, лейцин.

Оксимоноаминокарбоновые кислоты (содержат-ОН-группу): серин, треонин.

Моноаминодикарбоновые кислоты (содержат СООН-группу): аспартат, глутамат (за счёт второй карбоксильной группы несут в растворе отрицательный заряд).

Амиды моноаминодикарбоновых кислоты (содержат NH2СО-группу): аспарагин, глутамин.

Диаминомонокарбоновые кислоты (содержат NH2-группу): лизин, аргинин (за счёт второй аминогруппы несут в растворе положительный заряд).

Серусодержащие кислоты: цистеин, метионин.

Ароматические аминокислоты: фенилаланин, тирозин, триптофан.

Гетероциклические аминокислоты: триптофан, гистидин, пролин.

Иминокислоты: пролин.

Важнейшие α–аминокислоты

III. Классификация по полярности бокового радикала (по Ленинджеру)

Выделяют четыре класса аминокислот, содержащих радикалы следующих типов.

Какая функциональная группировка придает аминокислоте кислые свойства

Гидрофобные аминокислоты располагаются внутри молекулы белка, тогда как гидрофильные – на внешней поверхности, что делает гидрофильными и хорошо растворимыми в воде молекулы белка.

Благодаря этому свойству белки хорошо связывают воду, удерживая жидкость в крови, в межклеточном пространстве и внутри клеток.

1. Неполярные (гидрофобные)

К неполярным (гидрофобным) относятся аминокислоты с неполярными  R-группами и одна серусодержащая аминокислота:

— алифатические: аланин, валин, лейцин, изолейцин

— ароматические: фенилаланин, триптофан.

— серусодержащие: метионин

— иминокислота: пролин.

Какая функциональная группировка придает аминокислоте кислые свойства

Какая функциональная группировка придает аминокислоте кислые свойства

Какая функциональная группировка придает аминокислоте кислые свойства

2. Полярные незаряженные

Полярные незаряженные аминокислоты по сравнению с неполярными лучше растворяются в воде, более гидрофильны, так как их функциональные группы образуют водородные связи с молекулами воды.

К ним относятся аминокислоты, содержащие:

— полярную ОН-группу (оксиаминокислоты): серин, треонин  и тирозин

—  HS-группу: цистеин

— амидную  группу: глутамин,  аспарагин

— и глицин (R-группа глицина, представленная одним атомом водорода, слишком мала, чтобы компенсировать сильную полярность a-аминогруппы и a-карбоксильной группы).

Какая функциональная группировка придает аминокислоте кислые свойства

Какая функциональная группировка придает аминокислоте кислые свойства

Какая функциональная группировка придает аминокислоте кислые свойства

3. Заряженные отрицательно при рН-7 (кислые)

Аспарагиновая и глутаминовая кислоты относятся к отрицательно заряженным аминокислотам.Какая функциональная группировка придает аминокислоте кислые свойства

Они содержат по две карбоксильные и по одной аминогруппе, поэтому в ионизированном состоянии их молекулы будут иметь суммарный отрицательный заряд:

Какая функциональная группировка придает аминокислоте кислые свойства

4. Заряженные положительно при рН-7 (основные)

К положительно заряженным аминокислотам принадлежат лизин, гистидин и аргинин.Какая функциональная группировка придает аминокислоте кислые свойства

В ионизированном виде они имеют суммарный положительный заряд:

Какая функциональная группировка придает аминокислоте кислые свойства

В зависимости от характера радикалов природные аминокислоты также подразделяются на нейтральные, кислые и основные. К нейтральным относятся неполярные и полярные незаряженные, к кислым – отрицательно заряженные, к основным – положительно заряженные.

IV. Классификация по кислотно-основным свойствам

В зависимости от количества функциональных групп различают кислые, нейтральные и основные аминокислоты.

Основные

Аминокислоты, в которых число аминогрупп превышает число карбоксильных групп, называют основными аминокислотами: лизин, аргинин, гистидин:

Какая функциональная группировка придает аминокислоте кислые свойства

Кислые

Если в аминокислотах имеется избыток кислотных групп, их называют кислыми аминокислотами: аспарагиновая и глутаминовая кислоты:

Какая функциональная группировка придает аминокислоте кислые свойства

Все остальные аминокислоты относятся к нейтральным.

V. По числу функциональных групп

Аминокислоты по числу функциональных групп можно разделить моноаминомонокарбоновые, моноаминодикарбоновые, диаминомонокарбоновые:

Какая функциональная группировка придает аминокислоте кислые свойства 

VI.Биологическая классификация (по способности синтезироваться в организме человека и животных)

Заменимые аминокислоты – десять из 20 аминокислот, входящих в состав белков, могут синтезироваться в организме человека. К ним относятся: глицин (гликокол), аланин, серин, цистеин, тирозин, аспарагиновая и глутаминовая кислоты, аспарагин, глутамин, пролин.

Незаменимые аминокислоты (8 аминокислот) – не могут синтезироваться в организме человека и животных и должны поступать в организм в составе белковой пищи.

Абсолютно незаменимых аминокислот восемь: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан.

Незаменимые аминокислоты входят часто в состав пищевых добавок, используются в качестве лекарственных препаратов.

Условно незаменимые (2 аминокислоты) — синтезируются в организме, но в недостаточном количестве, поэтому частично должны поступать с пищей. Такими аминокислотами являются  гистидин, аргинин.

Для детей также незаменимыми являются гистидин и аргинин.

Какая функциональная группировка придает аминокислоте кислые свойства

Для человека одинаково важны оба типа аминокислот: и заменимые, и незаменимые. Большая часть аминокислот идет на построение собственных белков организма, но без незаменимых аминокислот организм существовать не сможет.

При недостатке каких-либо аминокислот в организме человека в течение непродолжительного времени могут разрушаться белки соединительной ткани, крови, печени и мышц, а полученный из них «строительный материал» — аминокислоты идут на поддержание нормальной работы наиболее важных органов — сердца и мозга.

Читайте также:  Какое свойств присуще самоорганизующейся системе

Дефицит аминокислот приводит к ухудшению аппетита, задержке роста и развития, жировой дистрофии печени и другим тяжелым нарушениям.

При этом наблюдается снижение аппетита, ухудшение состояния кожи, выпадение волос, мышечная слабость, быстрая утомляемость, снижение иммунитета, анемия.

Избыток аминокислот может вызвать развитие тяжелых заболеваний, особенно у детей и в юношеском возрасте. Наиболее токсичными являются метионин (провоцирует риск развития инфаркта и инсульта), тирозин (может спровоцировать развитие артериальной гипертонии, привести к нарушению работы щитовидной железы) и гистидин (может способствовать возникновению дефицита меди в организме и привести к заболеваниям суставов, ранней седине, тяжелым анемиям).

В условиях нормального функционирования организма, когда присутствует достаточное количество витаминов (В6, В12, фолиевой кислоты) и антиоксидантов (витамины А, Е, С и селен), избыток аминокислот не наносит вред организму.

Продукты с повышенным содержанием отдельных незаменимых аминокислот 

Качество некоторых пищевых белков относительно белков женского молока

Аминокислоты

Источник

Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы –NH2.

Природные аминокислоты можно разделить на следующие основные группы:

1) Алифатические предельные аминокислоты (глицин, аланин)NH2-CH2-COOH глицин

NH2-CH(CH3)-COOH аланин

2) Серосодержащие аминокислоты (цистеин) Какая функциональная группировка придает аминокислоте кислые свойства

цистеин

3) Аминокислоты с алифатической гидроксильной группой (серин)NH2-CH(CH2OH)-COOH серин
4) Ароматические аминокислоты (фенилаланин, тирозин) Какая функциональная группировка придает аминокислоте кислые свойства

фенилаланин

Какая функциональная группировка придает аминокислоте кислые свойства

тирозин

5) Аминокислоты с двумя карбоксильными группами (глутаминовая кислота)HOOC-CH(NH2)-CH2-CH2-COOH

глутаминовая кислота

6) Аминокислоты с двумя аминогруппами (лизин)CH2(NH2)-CH2-CH2-CH2-CH(NH2)-COOH

лизин

  • Для природных α-аминокислот R-CH(NH2)COOH применяются тривиальные названия: глицин, аланин, серин и т. д.
  • По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе:
  • Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита.

Аминокислоты – твердые кристаллические вещества с высокой температурой плавления. Хорошо растворимы в воде, водные растворы хорошо проводят электрический ток.

  • Замещение галогена на аминогруппу в соответствующих галогензамещенных кислотах:

Какая функциональная группировка придает аминокислоте кислые свойства

  • Восстановление нитрозамещенных карбоновых кислот (применяется для получения ароматических аминокислот):

Какая функциональная группировка придает аминокислоте кислые свойства

При растворении аминокислот в воде карбоксильная группа отщепляет ион водорода, который может присоединиться к аминогруппе. При этом образуется внутренняя соль, молекула которой представляет собой биполярный ион:

Какая функциональная группировка придает аминокислоте кислые свойства

1. Кислотно-основные свойства аминокислот

 Аминокислоты — это амфотерные соединения.

Они содержат в составе молекулы две функциональные группы противоположного характера: аминогруппу с основными свойствами и карбоксильную группу с кислотными свойствами.

Водные растворы аминокислот имеют нейтральную, щелочную или кислую среду в зависимости от количества функциональных групп.

Так, глутаминовая кислота образует кислый раствор (две группы -СООН, одна -NH2), лизин — щелочной (одна группа -СООН, две -NH2).

1.1. Взаимодействие с металлами и щелочами

Как кислоты (по карбоксильной группе), аминокислоты могут реагировать с металлами, щелочами, образуя соли:

Какая функциональная группировка придает аминокислоте кислые свойства

1.2. Взаимодействие с кислотами

По аминогруппе аминокислоты реагируют с основаниями:

Какая функциональная группировка придает аминокислоте кислые свойства

2. Взаимодействие с азотистой кислотой

Аминокислоты способны реагировать с азотистой кислотой.

Например, глицин взаимодействует с азотистой кислотой:

Какая функциональная группировка придает аминокислоте кислые свойства

3. Взаимодействие с аминами

Аминокислоты способны реагировать с аминами, образуя соли или амиды.

Какая функциональная группировка придает аминокислоте кислые свойства

4. Этерификация

Аминокислоты могут реагировать со спиртами в присутствии газообразного хлороводорода, превращаясь в сложный эфир:

Например, глицин взаимодействует с этиловым спиртом:

Какая функциональная группировка придает аминокислоте кислые свойства

5. Декарбоксилирование

Протекает при нагревании аминокислот с щелочами или при нагревании.

Например, глицин взаимодействует с гидроксидом бария при нагревании:

Какая функциональная группировка придает аминокислоте кислые свойства

Например, глицин разлагается при нагревании:

Какая функциональная группировка придает аминокислоте кислые свойства

6. Межмолекулярное взаимодействие аминокислот

 При взаимодействии аминокислот образуются пептиды.  При взаимодействии двух α-аминокислот образуется дипептид.

Например, глицин реагирует с аланином с образованием дипептида (глицилаланин):

Какая функциональная группировка придает аминокислоте кислые свойства

Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH — пептидной связью.

Источник