Какая форма графита обеспечивает наиболее высоких свойств у чугуна

Графит имеет гексагональную слоистую решетку с небольшой энергией связи между атомами в разных слоях (силы Ван-дер-Ваальса), вследствие чего он обладает очень низкими твердостью, прочностью и пластичностью, значительно более низкими, чем у металлической основы. Графитные включения фактически представляют собой своеобразные трещины или пустоты, заполненные графитом. Чугун в связи с этим можно рассматривать как сталь, испещренную большим количеством таких трещин и пустот (графитных включений), ослабляющих металлическую основу. Чем больше графитных включений, чем они грубее, тем больше они разобщают металлическую основу и тем ниже механические свойства чугуна.

Графитные включения в чугунах имеют пластинчатую, вермикулярную, шаровидную или хлопьевидную форму (рис. 7.2).

Пластинчатый графит, играющий роль острых трещин и надрезов, является резким концентратором напряжений. Под действием нормальных напряжений по концам таких графитных включений легко формируются очаги разруше-

Рис. 7.2. Структуры чугунов с разной металлической основой и формой графитовых включений

ния. По этой причине чугуны с пластинчатым графитом имеют самую низкую прочность при растяжении и изгибе.

Вермикулярный графит отличается от пластинчатого значительно меньшими размерами частиц – это очень мелкие и тонкие прожилки со скругленными концами. Скругленные графитные включения выполняют роль уже не трещин, а пустот и являются менее резкими концентраторами напряжений.

Наименьшая концентрация напряжений отмечается в чугунах с шаровидным графитом. Такие чугуны имеют самую высокую прочность при растяжении и изгибе.

Чугуны с хлопьевидным графитом уступают им по своим прочностным характеристикам, но превосходят чугуны с пластинчатым графитом.

Таким образом, прочность чугунов с графитом определяется строением металлической основы и формой графитных включений. При меньшей степени графитизации (например, в ферритно-перлитном и особенно в перлитном чугунах по сравнению с ферритным) количество (объем) и размеры графитных включений будут меньше.

Уровень пластичности чугунов определяется формой графита (табл. 7.2). Самую низкую пластичность имеет чугун с пластинчатым графитом.

Таблица 7.2

Влияние формы графитных включений на пластичность чугунов

Графит

Пластинчатый

Вермикулярный

Хлопьевидный

Шаровидный

Относительное удлинение δ, %

<0,5

1…3

3…12

2…17

Чугуны с графитом широко применяются в промышленности. Наличие графита в структуре, определяющее низкую прочность чугунов, придает им ряд высоких технологических и эксплуатационных свойств:

  • – графит улучшает литейные свойства, уменьшая усадку чугунов при кристаллизации (см. 11.2.1);
  • – мягкий и хрупкий графит улучшает обрабатываемость чугунов резанием, способствуя образованию стружки надлома (стружка ломается на графитовых включениях);
  • – графит обеспечивает чугунам хорошие антифрикционные свойства, он играет роль смазки в парах трения;
  • – графит гасит вибрации и резонансные колебания;
  • – чугуны с графитом мало чувствительны к надрезам и другим дефектам поверхности деталей, поскольку подобные дефекты в виде графитных включений уже имеются в самом чугуне.

Источник

В промышленности широкое применение нашли чугуны с графитом. Чугуны — литейные сплавы, их используют для производства отливок. Чугуны обладают хорошей жидкотекучестью, а также малой усадкой за счет наличия в структуре свободного углерода — графита (см. разд. 18.1), температура их затвердевания ниже, чем у сталей.

Процесс образования графита в чугунах называется графитизацией. Образование графита может происходить при его непосредственном выделении из жидкой фазы при очень медленном охлаждении, когда степень переохлаждения не превышает 5 °С (при более быстром охлаждении образуется цементит), или в результате распада цементита при длительных выдержках.

Цементит (Ц) распадается на свободный углерод в виде графита (Г) и твердый раствор углерода в железе:

• при температуре свыше 727 °С — на аустенит (А) и графит (Г):

• при температуре ниже 727 °С — на феррит (Ф) и графит (Г):

В зависимости от формы графитовых включений различают несколько видов чугунов (рис. 13.1, а):

  • • серые — графит имеет пластинчатую форму;
  • • высокопрочные — форма графита шаровидная (глобулярная);
  • • ковкие — графит имеет хлопьевидную форму.

Распад цементита может проходить полностью или частично. При неполном распаде цементита он присутствует в структуре наряду с графитом. В зависимости от количества углерода, связанного в цементите (Ссвяз), меняется структура металлической основы чугуна:

  • • при ССВяз до 0,02 % — матрица ферритная. Это чугуны на ферритной основе, их структура феррит + графит;
  • • при Ссвяз = 0,8 % структура матрицы —- перлит. Это перлитные чугуны со структурой перлит + графит;
  • • при Ссвяз от 0,02 до 0,8 % ферритно-перлитовые — чугуны, со структурой феррит + перлит + графит.

Таким образом, по структурному признаку различают девять видов чугу- нов: три по форме графита — серый, высокопрочный и ковкий, причем каждый из них может иметь ферритную, ферритно-перлитную или перлитную матрицу (рис. 13.1). Твердость и прочность перлита выше, чем феррита. Поэтому наибольшей прочностью и износостойкостью обладают чугуны (с одинаковой формой графита) на перлитной основе, наименьшей — на ферритовой.

Серый чугун получил название по виду излома, имеющего серый цвет. Серые чугуны получают непосредственно литьем. Это доэвтектические чугуны, содержащие 2,4.. .3,8 % углерода, 1.. .4 % кремния (графитизатор), 1,25… 1,4 % марганца (повышает прочность).

Структура металлической основы определяется химическим составом чугуна и скоростью охлаждения отливки (рис. 13.1, б, в). Увеличение в чугуне содержания кремния и углерода способствует более полной графитизации. Аналогично влияние замедленного охлаждения. Графитизация — процесс диффузионный, поэтому он развивается тем полнее, чем дольше отливка находится при высоких температурах, т. е. чем медленнее она охлаждается. Скорость охлаждения отливки определяется ее сечением — чем больше сечение (толщина), тем больше время охлаждения.

Серые чугуны обладают меньшей прочностью, чем ковкие и высокопрочные. Чем крупнее пластинки графита (они играют роль трещин) и менее равномерно они распределены по объему, тем ниже прочность чугуна при растяжении. Минимальной прочностью обладает серый чугун на ферритовой основе. Вместе с тем включения графита не оказывают практического влияния на прочность при сжатии (при сжатии трещины закрываются). Предел прочности при сжатии в 3-5 раз больше, чем при растяжении (примерно такой же, как у низкоуглеродистой стали, например, Ст. 3).

Вместе с тем наличие в структуре свободного графита определяет ряд преимуществ чугуна перед сталью:

  • • лучшая обрабатываемость резанием; обеспечивается хорошее стружкоот- деление — стружка при обработке чугуна сыпучая, а не сливная, как у стали;
  • • более высокие антифрикционные свойства благодаря смазывающему действию графита;
  • • наличие демпфирующих свойств, поскольку графитовые включения гасят вибрации;

Рис. 13.1. Структуры чугунов с графитом: а — по форме графита и металлической основе; б — по химическому составу; в — по скорости охлаждения; I — белый чугун; II — отбеленный чугун;

III — перлитный чугун; VI — перлито-ферритный; V — ферритный

• практически отсутствие чувствительности к поверхностным дефектам (надрезам и т. п.);

Серые чугуны обозначаются буквами СЧ (серый чугун) и цифрами, которые указывают предел прочности при растяжении в кгс/мм2. Например, СЧ20 — серый чугун с пределом прочности при растяжении 20 кгс/мм2 (200 МПа).

Серые чугуны применяют для изготовления отливок станин, поршней цилиндров, зубчатых колес и др.; ферритные (СЧ10, СЧ15) и ферритно-перлитные (СЧ20, СЧ25), обладающие меньшей прочностью, — для менее нагруженных деталей; перлитные (СЧ30, СЧ35) — для более нагруженных.

Читайте также:  Какие свойства почв вам известны вспомните

Серый чугун с повышенным содержанием фосфора (до 1,6%), обладающий хорошей жидкотекучестью, используют при производстве художественного литья.

Высокопрочный чугун получают при модифицировании магнием или церием перед его заливкой в формы. Под воздействием магния графит приобретает шаровидную (глобулярную) форму. Шаровидная форма графита обеспечивает высокие механические свойства чугуна (прочность на растяжение и пластичность). Это объясняется тем, что шаровидный графит значительно меньше, чем пластинчатый, ослабляет металлическую основу. Среди всех чугунов максимальная прочность у высокопрочного на перлитной основе.

Маркируют чугуны буквами ВЧ — высокопрочный чугун и цифрами, которые указывают предел прочности при растяжении в кгс/мм2. Например, ВЧ60 — высокопрочный чугун с пределом прочности при растяжении 60 кгс/мм2 (600 МПа).

Наибольшую прочность имеют чугуны на перлитной основе (ВЧ80, ВЧ60), она снижается у чугунов с ферритно-перлитной основой (ВЧ50, ВЧ45) и минимальна у чугунов с ферритной основой (ВЧ42, ВЧ38).

В целях получения особых свойств (жаростойкости, антифрикционнности, коррозионной стойкости) высокопрочные чугуны легируют хромом, никелем, молибденом, титаном, алюминием.

Высокопрочные чугуны эффективно заменяют сталь. Из них изготавливают валки прокатных станов, коленчатые валы автомобилей и др.

Ковкий чугун получают из белого чугуна путем графитизирующего отжига. Его проводят в две стадии (рис. 13.2), что обеспечивает необходимый распад цементита.

Рис. 13.2. Режим отжига белого чугуна для получения ковкого чугуна

Первая стадия отжига заключается в нагреве отливок до температуры

950… 1000 °С и длительной изотермической выдержке при этой температуре (10… 15 ч). При этом цементит распадется на аустенит и графит (Ц —? А -ь Г). Затем осуществляется медленное охлаждение (5… 12 ч) до температуры, лежащей немного ниже линии PSK (см. рис. 10.1), в процессе которого происходит выделение из аустенита вторичного цементита (линия SE на диаграмме Fe — Fe3C, см. рис. 10.1) и его распад (Ц —» А + Г) с образованием хлопьевидного графита.

Вторая стадия отжига—изотермическая выдержка при температуре немного ниже температуры эвтектоидного превращения в течение 25.. .30 ч. При этом происходит эвтектоидное превращение аустенита в перлит (А —» П[Ф + Ц]) и распад цементита, входящего в перлит, на феррит и графит (Ц —> Ф + Г).

В результате такого отжига, когда распался весь цементит, получают ковкий ферритный чугун (излом бархатисто-черный). При сокращении выдержки на второй стадии графитизация происходит не до конца, и получают ковкий феррито-перлитный чугун, а если исключить вторую стадию, — ковкий перлитный чугун (излом светлый).

Хлопьевидный графит ослабляет металлическую основу в меньшей степени, чем пластинчатый. Отсутствие литейных напряжений, которые полностью устраняются во время отжига, обусловливает высокие механические свойства ковких чугунов. Они, уступая высокопрочным чугунам в прочности, существенно превосходят по прочности серые чугуны, а по пластичности — серые чугуны. Именно благодаря своей высокой (для чугунов) пластичности они получили название — ковкие. Однако, это название является условным. Пластичность ковких чугунов недостаточна для проведения пластической деформации. Ковкие чугуны не куют.

Маркируют ковкие чугуны буквами КЧ — ковкий чугун и цифрами. Первые цифры это предел прочности при растяжении (кгс/мм2), вторые — относительное удлинение (%). Например: КЧ45-6 означает — ковкий чугун, с пределом прочности при растяжении а„ = 45 кгс/мм2 (450 МПа) и относительным удлинением при испытаниях на растяжение 5 = 6%.

Из ковкого чугуна можно получить заготовки только небольших размеров — толщиной не более 40.. .50 мм. Это связано с тем, что получение крупногабаритных отливок из белого чугуна невозможно (при их замедленном охлаждении будет происходить графитизация), а именно отжигом белого чугуна получают ковкий.

Из ковких чугунов изготавливают детали относительно небольших размеров, работающие при статических и динамических нагрузках (картер заднего моста, чашки дифференциала, тормозные колодки, ступицы колес для автомобилей и др.).

Источник

Маркировка серых,ковких и высокопрочных чугунов.

Чугунами называются сплавы железа (Fe) с углеродом (С > 2,14%). Кроме того, в состав чугуна входят полезные и вредные примеси (сера и фосфор). Полезные примеси вводятся в чугун специально для улучшения физико-химических свойств и называются легирующими элементами.

Чугуны классифицируют по следующим признакам.

Углерод в чугуне может находится в связанном состоянии в виде карбида, называемого цементитом (Fe3C), а также в частично или полностью свободном состоянии в виде графита. Состояние углерода в чугуне его прочностные свойства.

В зависимости от состояния углерода в чугуне различают:

серый чугун – углерод находится в частично или полностью свободном состоянии в виде графитовых включений

белый чугун – весь углерод находится в виде цементита Fe3C;

Серый чугун образуется при низких скоростях охлаждения изделия, белый – при высоких.

Графитовые включения имеют следующую форму:

-пластинчатый графит (рис. 28Л, а);

-хлопьевидный графит (рис. 28Л, б);

-шаровидный (глобулярный) графит (рис. 28Л, в);

-вермикулярный графит (рис. 28Л, г)

Графитовые включения являются концентраторами напряжений. Чем острее концентратор напряжений, тем при меньших нагрузках происходит разрушение изделия. Поэтому форма графитовых включений определяет прочность чугуна. Пластины графита обладают острыми краями по сравнению с другими формами графитовых включений. В связи с этим, наименьшей прочностью обладают чугуны с пластинчатой формой графитовых включений, а наибольшей – с шаровидной (глобулярной). Чугуны с хлопьевидным и вермикулярным графитом занимают промежуточное положение.

 а–пластинчатый графит;б- хлопьевидный графит; в- шаровидный (глобулярный) графит; г- вермикулярный графит 

Форма графитовых включений.      

В зависимости от формы графитовых включений различают:

-серые чугуны – чугуны с пластинчатым графитом;

-высокопрочные чугуны – чугуны с шаровидным (глобулярным) графитом;

-чугуны с вермикулярным графитом;

-ковкие чугуны – чугуны с хлопьевидным графитом.

Маркировка чугунов

1. Серый чугун.

Серый чугун получают в домне из руды. Структура серого чугуна формируется при низких скоростях охлаждения. В серых чугунах углерод в значительной степени или полностью находится в свободном состоянии в форме пластинчатого графита. Из-за этого излом имеет серый цвет.

Маркировка. Маркируется серый чугун буквами СЧ и цифрами, которые обозначают предел прочности при растяжении (σ в). Например, марка СЧ18 показывает, что чугун этой марки имеет σ в=180 МПа (18 кгс/мм2).

Литейные свойства: высокая жидкотекучесть и малая усадка

Область применения : серый чугун обладает высокой способностью рассеивать вибрационные колебания при переменных нагрузках ( высокая циклическая вязкость), поэтому из серого чугуна изготавливают станины станков , прокатных станков , шкивы, маховики, корпуса механических редукторов, блоки и гильзы автомобильных и тракторных двигателей, поршневые кольца, корпуса и др.

В высокопрочном чугуне графитовые включения имеют шаровидную форму. Это достигается модифицированием чугуна магнием до 0,5 % от массы чугуна. Шаровидная форма графита не создает резкой концентрации напряжений, поэтому чугун имеет высокую прочность при растяжении и изгибе.

Маркировка. Маркируется высокопрочный чугун буквами ВЧ и цифрами, из которых первые две обозначают предел прочности при растяжении, а последние – относительное удлинение в процентах (δ%). Относительное удлинение характеризует пластические свойства материала. Например, марка ВЧ42-12 показывает, что чугун данной марки имеет σв =420 МПа (42 кгс/мм2) и δ = 12 %.

Читайте также:  Какие лечебные свойства у перекиси водорода

Литейные свойства: высокая жидкотекучесть и малая усадка

Область применения : высокопрочные чугуны по своим механическим свойствам приближаются к стали. Из него изготавливают ответственные детали: коленчатые валы двигателей автомобилей и тракторов, шестерни и звездочки, детали турбин, изложницы и.т.д.

3. Чугуны с вермикулярным графитом

Эти чугуны содержат в структуре графит вермикулярной формы и не более 40 % шаровидного графита. Чугуны с вермикулярным графитом получают из серого чугуна в результате его модифицирования магнием (Mg от 0,02 до 0,08 % от массы чугуна) и церием (Се 0,03 до 0,07 % от массы чугуна)

Маркировка. Маркируется чугун с вермикулярным графитом буквами ЧВГ и цифрами, которые обозначают предел прочности при растяжении (σ в). Например, марка ЧВГ30 показывает, что чугун этой марки имеет σ в=300 МПа (30 кгс/мм2).

Литейные свойства: высокая жидкотекучесть и малая усадка

Область применения : чугун с вермикулярным графитом по механическим свойствам занимают промежуточное положение между серым и высокопрочным чугунами. Кроме того, чугуны с вермикулярным графитом отличаются хорошей теплопроводностью, что обеспечивает их стойкость к резким перепадам температур. Из этого чугуна изготавливают детали, работающие в условиях износа и переменных температур.

Источник

Классификация чугунов

Чугун отличается от стали: по составу – более высокое содержание углерода и примесей; по технологическим свойствам – более высокие литейные свойства, малая способность к пластической деформации, почти не используется в сварных конструкциях.

В зависимости от состояния углерода в чугуне различают:

· белый чугун – углерод в связанном состоянии в виде цементита, в изломе имеет белый цвет и металлический блеск;

· серый чугун – весь углерод или большая часть находится в свободном состоянии в виде графита, а в связанном состоянии находится не более 0,8 % углерода. Из-за большого количества графита его излом имеет серый цвет;

· половинчатый – часть углерода находится в свободном состоянии в форме графита, но не менее 2 % углерода находится в форме цементита. Мало используется в технике.

Диаграмма состояния железо – графит.

В результате превращения углерод может не только химически взаимодействовать с железом, но и выделяться в элементарном состоянии в форме графита. Жидкая фаза, аустенит и феррит могут находиться в равновесии и с графитом.

Диаграмма состояния железо – графит показана штриховыми линиями на рис. 11.1. Линии диаграммы находятся выше линий диаграммы железо – цементит. Температуры эвтектического и эвтектоидного преврашений,соответственно, 1153oС и 738oС. Точки C, E, S – сдвинуты влево, и находятся при концентрации углерода 4,24, 2,11 и 0,7 %, соответственно.

Рис.11.1. Диаграмма состояния железо – углерод: сплошные линии – цементитная система; пунктирные – графитная

При высоких температурах цементит разлагается с выделением графита, поэтому диаграмма состояния железо – цементит является метастабильной, а диаграмма железо – графит – стабильной. Процесс образования графита в сплавах железа с углеродом называется графитизацией.

Процесс графитизации.

Графит – это полиморфная модификация углерода. Так как графит содержит 100% углерода, а цементит – 6,67 %, то жидкая фаза и аустенит по составу более близки к цементиту, чем к графиту. Следовательно, образование цементита из жидкой фазы и аустенита должно протекать легче, чем графита.

С другой стороны, при нагреве цементит разлагается на железо и углерод. Следовательно, графит является более стабильной фазой, чем цементит.

Возможны два пути образования графита в чугуне.

1. При благоприятных условиях (наличие в жидкой фазе готовых центров кристаллизации графита и очень медленное охлаждение) происходит непосредственное образование графита из жидкой фазы.

2. При разложении ранее образовавшегося цементита. При температурах выше 738oС цементит разлагается на смесь аустенита и графита по схеме

.

При температурах ниже 738oС разложение цементита осуществляется по схеме:

.

При малых скоростях охлаждение степень разложения цементита больше.

Графитизацию из жидкой фазы, а также от распада цементита первичного и цементита, входящего в состав эвтектики, называют первичной стадией графитизации.

Выделение вторичного графита из аустенита называют промежуточной стадией графитизации.

Образование эвтектоидного графита, а также графита, образовавшегося в результате цементита, входящего в состав перлита, называют вторичной стадией графитизации.

Структура чугунов зависит от степени графитизации, т.е. от того, сколько углерода находится в связанном состоянии.

Рис. 11.2. Схема образования структур при графитизации

Выдержка при температуре больше 738oС приводит к графитизации избыточного нерастворившегося цементита. Если процесс завершить полностью, то при высокой температуре структура будет состоять из аустенита и графита, а после охлаждения – из перлита и графита.

При незавершенности процесса первичной графитизации, выше температуры 738oС структура состоит из аустенита, графита и цементита, а ниже этой температуры – из перлита, графита и цементита.

При переходе через критическую точку превращения аустенита в перлит, и выдержке при температуре ниже критической приведет к распаду цементита, входящего в состав перлита (вторичная графитизация). Если процесс завершен полностью то структура состоит из феррита и графита, при незавершенности процесса – из перлита, феррита и графита.

Строение, свойства, классификация и маркировка серых чугунов

Из рассмотрения структур чугунов можно заключить, что их металлическая основа похожа на структуру эвтектоидной или доэвтектоидной стали или технического железа. Отличаются от стали только наличием графитовых включений, определяющих специальные свойства чугунов.

В зависимости от формы графита и условий его образования различают следующие группы чугунов: серый – с пластинчатым графитом; высокопрочный – с шаровидным графитом; ковкий – с хлопьевидным графитом.

Схемы микроструктур чугуна в зависимости от металлической основы и формы графитовых включений представлены на рис. 11.3

Рис. 11.3. Схемы микроструктур чугуна в зависимости от металлической основы и формы графитовых включений

Наиболее широкое распространение получили чугуны с содержанием углерода 2,4…3,8%. Чем выше содержание углерода, тем больше образуется графита и тем ниже его механические свойства, следовательно, количество углерода не должно превышать 3,8 %. В то же время для обеспечения высоких литейных свойств (хорошей жидкотекучести) углерода должно быть не менее 2,4 %.

Влияние состава чугуна на процесс графитизации.

Углерод и кремний способствуют графитизации, марганец затрудняет графитизацию и способствует отбеливанию чугуна. Сера способствует отбеливанию чугуна и ухудшает литейные свойства, ее содержание ограничено – 0,08…0,12 %. Фосфор на процесс графитизации не влияет, но улучшает жидкотекучесть, Фосфор является в чугунах полезной примесью, его содержание – 0,3…0,8 %.

Влияние графита на механические свойства отливок.

Графитовые включения можно рассматривать как соответствующей формы пустоты в структуре чугуна. Около таких дефектов при нагружении концентрируются напряжения, значение которых тем больше, чем острее дефект. Отсюда следует, что графитовые включения пластинчатой формы в максимальной мере разупрочняют металл. Более благоприятна хлопьевидная форма, а оптимальной является шаровидная форма графита. Пластичность зависит от формы таким же образом. Относительное удлинение ( ) дпя серых чугунов составляет 0,5 %, для ковких – до 10 %, для высокопрочных – до 15%.

Читайте также:  Какие свойства почвы ты знаешь

Наличие графита наиболее резко снижает сопротивление при жестких способах нагружения: удар; разрыв. Сопротивление сжатию снижается мало.

Положительные стороны наличия графита.

· графит улучшает обрабатываемость резанием, так как образуется ломкая стружка;

· чугун имеет лучшие антифрикционные свойства, по сравнению со сталью, так как наличие графита обеспечивает дополнительную смазку поверхностей трения;

· из-за микропустот, заполненных графитом, чугун хорошо гасит вибрации и имеет повышенную циклическую вязкость;

· детали из чугуна не чувствительны к внешним концентраторам напряжений (выточки, отверстия, переходы в сечениях);

· чугун значительно дешевле стали;

· производство изделий из чугуна литьем дешевле изготовления изделий из стальных заготовок обработкой резанием, а также литьем и обработкой давлением с последующей механической обработкой.

Серый чугун.

Структура не оказывает влияние на пластичность, она остается чрезвычайно низкой. Но оказывает влияние на твердость. Механическая прочность в основном определяется количеством, формой и размерами включений графита. Мелкие, завихренной формы чешуйки графита меньше снижают прочность. Такая форма достигается путем модифицирования. В качестве модификаторов применяют алюминий, силикокальций, ферросилиций.

Серый чугун широко применяется в машиностроении, так как легко обрабатывается и обладает хорошими свойствами.

В зависимости от прочности серый чугун подразделяют на 10 марок (ГОСТ 1412).

Серые чугуны при малом сопротивлении растяжению имеют достаточно высокое сопротивление сжатию.

Серые чугуны содержат углерода – 3,2…3,5 %; кремния – 1,9…2,5 %; марганца –0,5…0,8 %; фосфора – 0,1…0,3 %; серы – < 0,12 %.

Структура металлической основы зависит от количества углерода и кремния. С увеличением содержания углерода и кремния увеличивается степень графитизации и склонность к образованию ферритвой структуры металлической основы. Это ведет к разупрочнению чугуна без повышения пластичности. Лучшими прочностными свойствами и износостойкостью обладают перлитные серые чугуны.

Учитывая малое сопротивление отливок из серого чугуна растягивающим и ударным нагрузкам, следует использовать этот материал для деталей, которые подвергаются сжимающим или изгибающим нагрузкам. В станкостроении это – базовые, корпусные детали, кронштейны, зубчатые колеса, направляющие; в автостроении – блоки цилиндров, поршневые кольца, распределительные валы, диски сцепления. Отливки из серого чугуна также используются в электромашиностроении, для изготовления товаров народного потребления.

Обозначаются индексом СЧ (серый чугун) и числом, которое показывает значение предела прочности, умноженное на СЧ 15.

Высокопрочный чугун с шаровидным графитом.

Высокопрочные чугуны (ГОСТ 7293) могут иметь ферритную (ВЧ 35), феррито-перлитную (ВЧ45) и перлитную (ВЧ 80) металлическую основу. Получают эти чугуны из серых, в результате модифицирования магнием или церием (добавляется 0,03…0,07% от массы отливки). По сравнению с серыми чугунами, механические свойства повышаются, это вызвано отсутствием неравномерности в распределении напряжений из-за шаровидной формы графита.

Чугуны с перлитной металлической основой имеют высокие показатели прочности при меньшем значении пластичности. Соотношение пластичности и прочности ферритных чугунов – обратное.

Высокопрочные чугуны обладают высоким пределом текучести,

,

что выше предела текучести стальных отливок. Также характерна достаточно высокая ударная вязкость и усталостная прочность,

,

при перлитной основе.

Высокопрочные чугуны содержат: углерода – 3,2…3,8 %, кремния – 1,9…2,6 %, марганца – 0,6…0,8 %, фосфора – до 0,12 %, серы – до 0,3 %.

Эти чугуны обладают высокой жидкотекучестью, линейная усадка – около 1%. Литейные напряжения в отливках несколько выше, чем для серого чугуна. Из-за высокого модуля упругости достаточно высокая обрабатываемость резанием. Обладают удовлетворительной свариваемостью.

Из высокопрочного чугуна изготовляют тонкостенные отливки (поршневые кольца), шаботы ковочных молотов, станины и рамы прессов и прокатных станов, изложницы, резцедержатели, планшайбы.

Отливки коленчатых валов массой до 2..3 т, взамен кованых валов из стали, обладают более высокой циклической вязкостью, малочувствительны к внешним концентраторам напряжения, обладают лучшими антифрикционными свойствами и значительно дешевле.

Обозначаются индексом ВЧ (высокопрочный чугун) и числом, которое показывает значение предела прочности, умноженное на ВЧ 100.

Ковкий чугун

Получают отжигом белого доэвтектического чугуна.

Хорошие свойства у отливок обеспечиваются, если в процессе кристаллизации и охлаждения отливок в форме не происходит процесс графитизации. Чтобы предотвратить графитизацию, чугуны должны иметь пониженное содержание углерода и кремния.

Ковкие чугуны содержат: углерода – 2,4…3,0 %, кремния – 0,8…1,4 %, марганца – 0,3…1,0 %, фосфора – до 0,2 %, серы – до 0,1 %.

Формирование окончательной структуры и свойств отливок происходит в процессе отжига, схема которого представлена на рис. 11.4.

Рис. 11.4. Отжиг ковкого чугуна.

Отливки выдерживаются в печи при температуре 950…1000 С в течении 15…20 часов. Происходит разложение цементита: .

Структура после выдержки состоит из аустенита и графита (углерод отжига).При медленном охлаждении в интервале 760…720oС, происходит разложение цементита, входящего в состав перлита, и структура после отжига состоит из феррита и углерода отжига (получается ферритный ковкий чугун).

При относительно быстром охлаждении (режим б, рис. 11.3) вторая стадия полностью устраняется, и получается перлитный ковкий чугун.

Структура чугуна, отожженного по режиму в, состоит из перлита, феррита и графита отжига (получается феррито-перлитный ковкий чугун)

Отжиг является длительной 70…80 часов и дорогостоящей операцией. В последнее время, в результате усовершенствований, длительность сократилась до 40 часов.

Различают 7 марок ковкого чугуна: три с ферритной (КЧ 30 – 6) и четыре с перлитной (КЧ 65 – 3) основой (ГОСТ 1215).

По механическим и технологическим свойствам ковкий чугун занимает промежуточное положение между серым чугуном и сталью. Недостатком ковкого чугуна по сравнению с высокопрочным является ограничение толщины стенок для отливки и необходимость отжига.

Отливки из ковкого чугуна применяют для деталей, работающих при ударных и вибрационных нагрузках.

Из ферритных чугунов изготавливают картеры редукторов, ступицы, крюки, скобы, хомутики, муфты, фланцы.

Из перлитных чугунов, характеризующихся высокой прочностью, достаточной пластичностью, изготавливают вилки карданных валов, звенья и ролики цепей конвейера, тормозные колодки.

Обозначаются индексом КЧ (высокопрочный чугун) и двумя числми, первое из которых показывает значение предела прочности, умноженное на , а второе – относительное удлинение – КЧ 30 – 6.

Отбеленные и другие чугуны

Отбеленные – отливки, поверхность которых состоит из белого чугуна, а внутри серый или высокопрочный чугун.

В составе чугуна 2,8…3,6 % углерода, и пониженное содержание кремния –0,5…0,8 %.

Имеют высокую поверхностную твердость (950…1000 НВ) и очень высокую износостойкость. Используются для изготовления прокатных валов, вагонных колес с отбеленным ободом, шаров для шаровых мельниц.

Для изготовления деталей, работающих в условиях абразивного износа, используются белые чугуны, легированные хромом, хромом и марганцем, хромом и никелем. Отливки из такого чугуна отличаются высокой твердостью и износостойкостью.

Для деталей, работающих в условиях износа при высоких температурах, используют высокохромистые и хромоникелевые чугуны. Жаростойкость достигается легированием чугунов кремнием (5…6 %) и алюминием (1…2 %). Коррозионная стойкость увеличивается легированием хромом, никелем, кремнием.

Для чугунов можно применять термическую обработку.

Источник