Какая форма графита обеспечивает наиболее высокие механические свойства

Какая форма графита обеспечивает наиболее высокие механические свойства thumbnail

Графит имеет гексагональную слоистую решетку с небольшой энергией связи между атомами в разных слоях (силы Ван-дер-Ваальса), вследствие чего он обладает очень низкими твердостью, прочностью и пластичностью, значительно более низкими, чем у металлической основы. Графитные включения фактически представляют собой своеобразные трещины или пустоты, заполненные графитом. Чугун в связи с этим можно рассматривать как сталь, испещренную большим количеством таких трещин и пустот (графитных включений), ослабляющих металлическую основу. Чем больше графитных включений, чем они грубее, тем больше они разобщают металлическую основу и тем ниже механические свойства чугуна.

Графитные включения в чугунах имеют пластинчатую, вермикулярную, шаровидную или хлопьевидную форму (рис. 7.2).

Пластинчатый графит, играющий роль острых трещин и надрезов, является резким концентратором напряжений. Под действием нормальных напряжений по концам таких графитных включений легко формируются очаги разруше-

Рис. 7.2. Структуры чугунов с разной металлической основой и формой графитовых включений

ния. По этой причине чугуны с пластинчатым графитом имеют самую низкую прочность при растяжении и изгибе.

Вермикулярный графит отличается от пластинчатого значительно меньшими размерами частиц – это очень мелкие и тонкие прожилки со скругленными концами. Скругленные графитные включения выполняют роль уже не трещин, а пустот и являются менее резкими концентраторами напряжений.

Наименьшая концентрация напряжений отмечается в чугунах с шаровидным графитом. Такие чугуны имеют самую высокую прочность при растяжении и изгибе.

Чугуны с хлопьевидным графитом уступают им по своим прочностным характеристикам, но превосходят чугуны с пластинчатым графитом.

Таким образом, прочность чугунов с графитом определяется строением металлической основы и формой графитных включений. При меньшей степени графитизации (например, в ферритно-перлитном и особенно в перлитном чугунах по сравнению с ферритным) количество (объем) и размеры графитных включений будут меньше.

Уровень пластичности чугунов определяется формой графита (табл. 7.2). Самую низкую пластичность имеет чугун с пластинчатым графитом.

Таблица 7.2

Влияние формы графитных включений на пластичность чугунов

Графит

Пластинчатый

Вермикулярный

Хлопьевидный

Шаровидный

Относительное удлинение δ, %

<0,5

1…3

3…12

2…17

Чугуны с графитом широко применяются в промышленности. Наличие графита в структуре, определяющее низкую прочность чугунов, придает им ряд высоких технологических и эксплуатационных свойств:

  • – графит улучшает литейные свойства, уменьшая усадку чугунов при кристаллизации (см. 11.2.1);
  • – мягкий и хрупкий графит улучшает обрабатываемость чугунов резанием, способствуя образованию стружки надлома (стружка ломается на графитовых включениях);
  • – графит обеспечивает чугунам хорошие антифрикционные свойства, он играет роль смазки в парах трения;
  • – графит гасит вибрации и резонансные колебания;
  • – чугуны с графитом мало чувствительны к надрезам и другим дефектам поверхности деталей, поскольку подобные дефекты в виде графитных включений уже имеются в самом чугуне.

Источник

Графитовые включения можно рассматривать как соответствующией формы пустоты в структуре чугуна. Около таких дефектов при нагружении концентрируются напряжения, значение которых тем больше, чем острее дефект. Отсюда следует, что графитовые включения пластинчатой формы в максимальной мере разупрочняют металл. Более благоприятна хлопьевидная форма, а оптимальной является шаровидная форма графита. Пластичность зависит от формы таким же образом. Относительное удлинение для серых чугунов составляет 0,5 %, для ковких – до 10 %, для высокопрочных – до 15%.

Наличие графита наиболее резко снижает сопротивление при жестких способах нагружения: удар; разрыв. Сопротивление сжатию снижается мало.

Положительные стороны наличия графита:

– графит улучшает обрабатываемость резанием, так как образуется ломкая стружка;

– чугун имеет лучшие антифрикционные свойства, по сравнению со сталью, так как наличие графита обеспечивает дополнительную смазку поверхностей трения;

– из-за микропустот, заполненных графитом, чугун хорошо гасит вибрации и имеет повышенную циклическую вязкость;

– детали из чугуна не чувствительны к внешним концентраторам напряжений (выточки, отверстия, переходы в сечениях);

– чугун значительно дешевле стали;

– производство изделий из чугуна литьем дешевле изготовления изделий из стальных заготовок обработкой резанием, а также литьем и обработкой давлением с последующей механической обработкой.

Серый чугун

Структура не оказывает влияние на пластичность, она остается чрезвычайно низкой. Но оказывает влияние на твердость. Механическая прочность в основном определяется количеством, формой и размерами включений графита. Мелкие, завихренной формы чешуйки графита меньше снижают прочность. Такая форма достигается путем модифицирования. В качестве модификаторов применяют алюминий, силикокальций, ферросилиций.

Серый чугун широко применяется в машиностроении, так как легко обрабатывается и обладает хорошими свойствами. В зависимости от прочности серый чугун подразделяют на 10 марок (ГОСТ 1412).

Серые чугуны при малом сопротивлении растяжению имеют достаточно высокое сопротивление сжатию.

Серые чугуны содержат углерода – 3,2…3,5 %; кремния – 1,9…2,5 %; марганца – 0,5…0,8 %; фосфора – 0,1…0,3 %; серы – < 0,12 %.

Структура металлической основы зависит от количества углерода и кремния. С увеличением содержания углерода и кремния увеличивается степень графитизации и склонность к образованию ферритовой структуры металлической основы. Это ведет к разупрочнению чугуна без повышения пластичности. Лучшими прочностными свойствами и износостойкостью обладают перлитные серые чугуны.

Учитывая малое сопротивление отливок из серого чугуна растягивающим и ударным нагрузкам, следует использовать этот материал для деталей, которые подвергаются сжимающим или изгибающим нагрузкам. В станкостроении это – базовые, корпусные детали, кронштейны, зубчатые колеса, направляющие; в автостроении – блоки цилиндров, поршневые кольца, распределительные валы, диски сцепления. Отливки из серого чугуна также используются в электромашиностроении, для изготовления товаров народного потребления.

Обозначаются индексом СЧ (серый чугун) и числом, которое показывает значение предела прочности, умноженное на 15.

Высокопрочный чугун с шаровидным графитом

Высокопрочные чугуны (ГОСТ 7293) могут иметь ферритную (ВЧ 35), феррито – перлитную (ВЧ45) и перлитную (ВЧ 80) металлическую основу. Получают эти чугуны из серых, в результате модифицирования магнием или цезием (добавляется 0,03…0,07 % от массы отливки). По сравнению с серыми чугунами, механические свойства повышаются, это вызвано отсутствием неравномерности в распределении напряжений из-за шаровидной формы графита.

Чугуны с перлитной металлической основой имеют высокие показатели прочности при меньшем значении пластичности. Соотношение пластичности и прочности ферритных чугунов – обратное.

Высокопрочные чугуны обладают высоким пределом текучести, что выше предела текучести стальных отливок. Также характерна достаточно высокая ударная вязкость и усталостная прочность, при перлитной основе.

Высокопрочные чугуны содержат: углерода – 3,2…3,8 %, кремния – 1,9…2,6 %, марганца – 0,6…0,8 %, фосфора – до 0,12 %, серы – до 0,3 %.

Эти чугуны обладают высокой жидкотекучестью, линейная усадка – около 1%. Литейные напряжения в отливках несколько выше, чем для серого чугуна. Из-за высокого модуля упругости достаточно высокая обрабатываемость резанием. Обладают удовлетворительной свариваемостью.

Из высокопрочного чугуна изготовляют тонкостенные отливки (поршневые кольца), шаботы ковочных молотов, станины и рамы прессов и прокатных станов, изложницы, резцедержатели, планшайбы.

Отливки коленчатых валов массой до 2..3 т, взамен кованых валов из стали, обладают более высокой циклической вязкостью, малочувствительны к внешним концентраторам напряжения, обладают лучшими антифрикционными свойствами и значительно дешевле.

Обозначаются индексом ВЧ (высокопрочный чугун) и числом, которое показывает значение предела прочности, умноженное на 100.

Ковкий чугун

Получают отжигом белого доэвтектического чугуна.

Хорошие свойства у отливок обеспечиваются, если в процессе кристаллизации и охлаждения отливок в форме не происходит процесс графитизации. Чтобы предотвратить графитизацию, чугуны должны иметь пониженное содержание углерода и кремния.

Ковкие чугуны содержат: углерода – 2,4…3,0 %, кремния – 0,8…1,4 %, марганца – 0,3…1,0 %, фосфора – до 0,2 %, серы – до 0,1 %.

Формирование окончательной структуры и свойств отливок происходит в процессе отжига. Отливки выдерживаются в печи при температуре 950…1000 оС в течении 15…20 часов. Происходит разложение цементита.

Структура после выдержки состоит из аустенита и графита (углерод отжига). При медленном охлаждении в интервале 760…720 оС, происходит разложение цементита, входящего в состав перлита, и структура после отжига состоит из феррита и углерода отжига (получается ферритный ковкий чугун).

При относительно быстром охлаждении вторая стадия полностью устраняется, и получается перлитный ковкий чугун.

Структура отожженного чугуна состоит из перлита, феррита и графита отжига (получается феррито-перлитный ковкий чугун)

Отжиг является длительной 70…80 часов и дорогостоящей операцией. В последнее время, в результате усовершенствований, длительность сократилась до 40 часов.

Различают 7 марок ковкого чугуна: три с ферритной (КЧ 30 – 6) и четыре с перлитной (КЧ 65 – 3) основой (ГОСТ 1215).

По механическим и технологическим свойствам ковкий чугун занимает промежуточное положение между серым чугуном и сталью. Недостатком ковкого чугуна по сравнению с высокопрочным является ограничение толщины стенок для отливки и необходимость отжига.

Отливки из ковкого чугуна применяют для деталей, работающих при ударных и вибрационных нагрузках.

Из ферритных чугунов изготавливают картеры редукторов, ступицы, крюки, скобы, хомутики, муфты, фланцы.

Из перлитных чугунов, характеризующихся высокой прочностью, достаточной пластичностью, изготавливают вилки карданных валов, звенья и ролики цепей конвейера, тормозные колодки.

Обозначаются индексом КЧ (высокопрочный чугун) и двумя числами, первое из которых показывает значение предела прочности, умноженное на 100, а второе – относительное удлинение – КЧ 30 – 6.

Отбеленные и другие чугуны

Отбеленные – отливки, поверхность которых состоит из белого чугуна, а внутри серый или высокопрочный чугун.

В составе чугуна 2,8…3,6 % углерода, и пониженное содержание кремния – 0,5…0,8 %.

Имеют высокую поверхностную твердость (950…1000 НВ) и очень высокую износостойкость. Используются для изготовления прокатных валов, вагонных колес с отбеленным ободом, шаров для шаровых мельниц.

Для изготовления деталей, работающих в условиях абразивного износа, используются белые чугуны, легированные хромом, хромом и марганцем, хромом и никелем. Отливки из такого чугуна отличаются высокой твердостью и износостойкостью.

Для деталей, работающих в условиях износа при высоких температурах, используют высокохромистые и хромоникелевые чугуны. Жаростойкость достигается легированием чугунов кремнием (5…6 %) и алюминием (1…2 %). Коррозионная стойкость увеличивается легированием хромом, никелем, кремнием.

Для чугунов также можно применять термическую обработку.

Тесты для самоконтроля



Источник

Графи́т (от др.-греч. γράφω «записывать, писать») — минерал из класса самородных элементов, одна из аллотропных модификаций углерода. Структура слоистая. Слои кристаллической решётки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный), до тригональной (дитригонально-скаленоэдрический). Слои слабоволнистые, почти плоские, состоят из шестиугольных слоёв атомов углерода. Кристаллы пластинчатые, чешуйчатые. Образует листоватые и округлые радиально-лучистые агрегаты, реже — агрегаты концентрически-зонального строения. У крупнокристаллических выделений часто треугольная штриховка на плоскостях (0001). Природный графит имеет разновидности: плотнокристаллические (жильный), кристаллический(чешуйчатый), скрытокристаллический (аморфный, микрокристаллический) и различается по размерам кристаллов.

История[править | править код]

Графит известен с древних времён, однако точных сведений об истории его использования получить не удаётся из-за сходства красящих свойств с другими минералами, например, молибденитом. Одним из наиболее ранних свидетельств применения графита является глиняная посуда культуры Боян-Марица (4000 лет до н. э.), раскрашенная с помощью этого минерала[1]. Название «графит» предложено в 1789 году Абраамом Вернером, встречаются также названия «чёрный свинец» (англ. black lead), «карбидное железо», «серебристый свинец»[2].

Физические свойства[править | править код]

Хорошо проводит электрический ток. Обладает низкой твёрдостью (1 по шкале Мооса). Относительно мягкий. После воздействия высоких температур становится немного более твёрдым и очень хрупким. Плотность 2,08—2,23 г/см³. Цвет тёмно-серый, блеск металлический. Неплавкий, устойчив при нагревании в отсутствие воздуха. Жирный (скользкий) на ощупь. Природный графит содержит 10—12 % примесей глин и окислов железа. При трении расслаивается на отдельные чешуйки (это свойство используется в карандашах).

Теплопроводность графита от 100 до 354,1 Вт/(м·К), зависит от марки графита, от направления относительно базисных плоскостей и от температуры[3].

Электрическая проводимость монокристаллов графита анизотропна, в направлении, параллельном базисной плоскости, близка к металлической, в перпендикулярном — в сотни раз меньше. Минимальное значение проводимости наблюдается в интервале 300—1300 К, причём положение минимума смещается в область низких температур для совершенных кристаллических структур. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Коэффициент теплового расширения графита до 700 К отрицателен в направлении базисных плоскостей (графит сжимается при нагревании), его абсолютное значение с повышением температуры уменьшается. Выше 700 К коэффициент теплового расширения становится положительным. В направлении, перпендикулярном базисным плоскостям, коэффициент теплового расширения положителен, практически не зависит от температуры и более чем в 20 раз выше среднего абсолютного значения для базисных плоскостей.

Теплоёмкость графита в диапазоне температур 300÷3000 К хорошо согласуется с дебаевской моделью[4]. В высокотемпературной области после Т>3500K наблюдается аномальное поведение теплоёмкости графита аналогично алмазу: экспериментальные данные по теплоёмкости резко отклоняются вверх от нормальной (дебаевской) кривой и аппроксимируются экспоненциальной функцией[5][6][7], что обуславливается больцмановской компонентой поглощения тепла кристаллической решеткой[8].

Пределы температуры плавления — 3845—3890 °C, кипение начинается при 4200 °C[источник не указан 523 дня]. Во время сжигания 1 кг графита выделяется 7832 ккал тепла.

Монокристаллы графита диамагнитны, магнитная восприимчивость незначительна в базисной плоскости и велика в ортогональных базисным плоскостях. Коэффициента Холла меняется с положительного на отрицательный при 2400 К.

Химические свойства[править | править код]

Со многими веществами (щелочными металлами, солями) образует соединения включения.

Реагирует при высокой температуре с кислородом, сгорая до углекислого газа. Фторированием в контролируемых условиях можно получить (CF)x.

В неокисляющих кислотах не растворяется.

Структура[править | править код]

Каждый атом углерода ковалентно связан с тремя другими окружающими его атомами углерода.

Различают две модификации графита: α-графит (гексагональный P63/mmc) и β-графит (ромбоэдрический R(-3)m).
Различаются упаковкой слоёв. У α-графита половина атомов каждого слоя располагается над и под центрами шестиугольника (укладка …АВАВАВА…), а у β-графита каждый четвёртый слой повторяет первый. Ромбоэдрический графит удобно представлять в гексагональных осях, чтобы показать его слоистую структуру.

β-графит в чистом виде не наблюдается, так как является метастабильной фазой. Однако, в природных графитах содержание ромбоэдрической фазы может достигать 30 %. При температуре 2500-3300 К ромбоэдрический графит полностью переходит в гексагональный.

Условия нахождения в природе[править | править код]

Сопутствующие минералы: пирит, гранаты, шпинель.
Образуется при высокой температуре в вулканических и магматических горных породах, в пегматитах и скарнах. Встречается в кварцевых жилах с вольфрамитом и др. минералами в среднетемпературных гидротермальных
полиметаллических месторождениях. Широко распространён в метаморфических породах — кристаллических сланцах, гнейсах, мраморах. Крупные залежи образуются в результате пиролиза каменного угля под воздействием траппов на каменноугольные отложения (Тунгусский бассейн, Курейское месторождение скрытокристаллического (аморфного) графита, Ногинское месторождение (в настоящее время не разрабатывается). Акцессорный минерал метеоритов.
С помощью ионной масс-спектрометрии российским учёным удалось обнаружить в составе графита золото, серебро и платиноиды (платина, палладий, иридий, осмий и проч.) в форме металлоорганических нанокластеров.

Искусственный синтез[править | править код]

Искусственный графит получают разными способами:

  • Ачесоновский графит: нагреванием смеси кокса и пека до 2800 °C;.
  • Рекристаллизованный графит: термомеханической обработкой смеси, содержащей кокс, пек, природный графит и карбидообразующие элементы.
  • Пиролитический графит: пиролизом из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит; в электротехнической промышленности применяется наименование «электрографит»).
  • Доменный графит: выделяется при медленном охлаждении больших масс чугуна.
  • Карбидный графит: образуется при термическом разложении карбидов.

Переработка[править | править код]

Переработкой графита получают различные марки графита и изделия из них.

Товарные сорта графита получают обогащением графитовых руд. В зависимости от степени очистки графитовые концентраты классифицируют на промышленные марки по областям применения, каждая из которых выдвигает специфические требования к физико-химическим и технологическим свойствам графитов.

В свете последних открытий российских учёных появилась перспектива получения из графитовых руд золота и платиноидов.

Переработка графита в терморасширенный графит[править | править код]

На первом этапе исходный кристаллический графит окисляют. Окисление сводится к внедрению молекул и ионов серной или азотной кислоты в присутствии окислителя (пероксид водорода, перманганат калия и др.) между слоями кристаллической решетки графита. Окисленный графит отмывают и сушат. Затем окисленный графит подвергают термообработке до Т=1000 °C со скоростью 400—600 °C/с. Благодаря чрезвычайно высокой скорости нагрева происходит резкое выделение газообразных продуктов разложения внедренной серной кислоты из кристаллической решетки графита. Газообразные продукты создают большое (до 300—400 атм) расклинивающее давление в межкристаллитном пространстве, при этом образуется терморасширенный графит, отличающийся высокой удельной поверхностью и низкой насыпной плотностью. В полученном материале остается некоторое количество серы при применении сернокислой технологии. Далее полученный терморасширенный графит прокатывают, иногда армируют, добавляют присадки и прессуют для получения изделий.

Переработка графита для получения различных марок искусственного графита[править | править код]

Для производства искусственного графита используют в основном нефтяной кокс как наполнитель и каменноугольный пек как связующее. Для конструкционных марок графита в качестве добавок к наполнителю применяют природный графит и сажу. Взамен каменноугольного пека как связующего или пропитывающего вещества используют некоторые синтетические смолы, например, фурановые или фенольные.

Производство искусственного графита складывается из следующих основных технологических этапов:

  • подготовки кокса к производству (предварительного дробления, прокаливания, размола и рассева кокса по фракциям);
  • подготовки связующего;
  • приготовления углеродной массы (дозировки и смешивания кокса со связующим);
  • формования так называемых «зелёных» (необожжённых) заготовок в глухую матрицу или через мундштук прошивного пресса;
  • обжига заготовок;
  • графитации заготовок;
  • механической обработки заготовок до размеров изделий.

Кокс дробят до величин кусков 30—40 мм, затем прокаливают в специальных прокалочных печах при 1300 °C. При прокаливании достигается термическая стабильность кокса, уменьшается содержание в нём летучих веществ, увеличиваются его плотность, электро- и теплопроводность. После прокаливания кокс размалывают до необходимой крупности. Порошки кокса дозируют и смешивают с пеком в смесильных машинах при 90—130 °C.

В смесильную машину вначале загружают сухие компоненты, а затем добавляют жидкий пек. После смешивания массу равномерно охлаждают до температуры прессования (80—100 °C). Заготовки прессуют или методом выдавливания массы через мундштук, или в пресс-форме. При прессовании холодных порошков изменяют технологию подготовки помола и смешения.

Для карбонизации связующего и скрепления отдельных зёрен в монолитный материал заготовки обжигают в многокамерных газовых печах при температуре 800—1200 °C. Продолжительность цикла обжига (нагрев и охлаждение) составляет 3-5 недель в зависимости от размера и плотности заготовок. Графитация — окончательная термическая обработка — превращает углеродный материал в графит. Графитацию проводят в печах сопротивления Ачесона или в печах прямого нагрева Кастнера при температурах 2400—3000 °C. При графитировании углеродистых нефтяных заготовок идет процесс укрупнения кристаллов углерода. Из мелкокристаллического «аморфного» углерода получается крупнокристаллический графит, атомная решетка которого ничем не отличается от атомной решетки природного графита.

Некоторые изменения технологического процесса получения искусственного графита зависят от требуемых свойств конечного материала. Так, для получения более плотного материала углеродные заготовки пропитывают (после обжига) в автоклавах один или несколько раз пеком с последующим обжигом после каждой пропитки и графитацией в конце всего технологического процесса. Для получения особо чистых материалов графитацию проводят одновременно с газовой очисткой в атмосфере хлора.

Переработка графита для получения композиционных материалов[править | править код]

Антифрикционные углеродные материалы изготавливают следующих марок: обожженный антифрикционный материал марки АО, графитированный антифрикционный материал марки АГ, антифрикционные материалы, пропитанные баббитом, оловом и свинцом марок АО-1500Б83, АО 1500СО5, АГ-1500Б83, АГ-1500СО5, Нигран, Химанит и графитопластовые материалы марок АФГМ, АФГ- 80ВС, 7В-2А, КВ, КМ, АМС.

Антифрикционные углеродные материалы изготавливают из непрокаленного нефтяного кокса, каменноугольного пека с добавкой природного графита. Для получения плотного непроницаемого антифрикционного материала применяют пропитку его металлами. Таким методом получают антифрикционные материалы марок АГ-1500 83, АГ-1500СО5 АМГ-600Б83, АМГ-600СО5 и им подобные. Допустимая рабочая температура на воздухе и в газовых средах, содержащих кислород для АО — 250—300 °C, для АГ — 300 °C (в восстановительных и нейтральных средах 1500 и 2500 °C соответственно). Углеродные антифрикционные материалы химически стойки во многих агрессивных газовых и жидких средах. Они стойки почти во всех кислотах (до температуры кипения кислоты), в растворах солей, во всех органических растворителях и ограниченно стойки в концентрированных растворах едких щелочей.

Графит как золотосодержащее сырьё[править | править код]

Содержание найденного с помощью ионной масс-спектрометрии золота до десятков раз превышает содержание, выявляемое ранее при помощи химического анализа. В изученных российскими учёными пробах графита содержание золота было до 17,8 г/т — это уровень богатых золотых приисков.
О перспективности добычи золота из графитовых руд говорит то, что графитовые месторождения данного типа (позднедокембрийского-раннепалеозойского возраста) широко распространены и в России, и в мире. Они есть в Европе, США, Австралии, Африке — в сущности, легче перечислить где их нет. При этом практически все они когда-то разрабатывались, а сегодня находятся в хорошо обжитых местах, с развитой инфраструктурой, в том числе промышленной. Следовательно, для запуска добычи в них золота и других благородных металлов не нужно затевать стройку на пустом месте, не нужно бороться с суровыми условиями заполярной тундры или пустыни. Это облегчает, ускоряет, а главное, удешевляет производство[9].

Применение[править | править код]

Сувенирный графитовый блок.

Использование графита основано на ряде его уникальных свойств.

  • для изготовления плавильных тиглей, футеровочных плит — применение основано на высокой температурной стойкости графита (в отсутствие кислорода), на его химической стойкости к целому ряду расплавленных металлов.
  • электродов, нагревательных элементов — благодаря высокой электропроводности и химической стойкости к практически любым агрессивным водным растворам (намного выше, чем у благородных металлов).
  • Для получения химически активных металлов методом электролиза расплавленных соединений. В частности, при получении алюминия используются сразу два свойства графита:
  1. Хорошая электропроводность, и как следствие — его пригодность для изготовления электрода
  2. Газообразность продукта реакции, протекающей на электроде — это углекислый газ. Газообразность продукта означает, что он выходит из электролизёра сам, и не требует специальных мер по его удалению из зоны реакции. Это свойство существенно упрощает технологию производства алюминия.
  • твёрдых смазочных материалов, в комбинированных жидких и пастообразных смазках.
  • наполнитель пластмасс.
  • замедлитель нейтронов в ядерных реакторах.
  • компонент состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином).
  • для получения синтетических алмазов.
  • в качестве эталона длины нанометрового диапазона для калибровки сканеров сканирующего туннельного микроскопа и атомно-силового микроскопа.[10][11]
  • для изготовления контактных щёток и токосъёмников для разнообразных электрических машин, электротранспорта и мостовых подъёмных кранов с троллейным питанием, мощных реостатов, а также прочих устройств, где требуется надёжный подвижный электрический контакт.
  • для изготовления тепловой защиты носовой части боеголовок баллистических ракет и возвращаемых космических аппаратов.
  • как токопроводящий компонент высокоомных токопроводящих клеёв.

Примечания[править | править код]

  1. Boardman, John. The Cambridge ancient history. — Vol. 3. — P. 31—32. — ISBN 0521224969. Архивная копия от 24 декабря 2013 на Wayback Machine
  2. Углерод — статья из энциклопедии «Кругосвет»
  3. ↑ Графит. Справочный материал
  4. ↑ Малик В. Р., Ефимович Л. П. Термодинамические функции алмаза и графита в интервале температур 300÷3000 К.//Сверхтвёрдые материалы, 1983, № 3, с. 27—30.
  5. ↑ Hove J.E. Some physical properties of graphite as affected by high temperature and irradiation.//in: Proc.First SCI Conf. on Indastrial Carbons and Graphites (Soc.Chem.Ind.,London.,1958, p.501-507)
  6. ↑ Rasor N.S., Mc Clelland J.D.J. //J.Phys.Chem.Solids, 1960, v.15, № 1—2, p. 17—20
  7. ↑ Sheindlin A.Ye., Belevich I.S., Kozhevnikov I.G.//Physics of Heat at High Temperatures, 1972, 10, p.907
  8. Андреев В. Д. Избранные проблемы теоретической физики. — Киев: Аванпост-Прим,. — 2012.
  9. ↑ Нам нано золото: российские учёные открыли новый вид месторождений золота | Нанотехнологии Nanonewsnet. www.nanonewsnet.ru. Дата обращения: 1 декабря 2015.
  10. R. V. Lapshin. Automatic lateral calibration of tunneling microscope scanners (итал.) // Review of Scientific Instruments (англ.)русск. : diario. — USA: AIP, 1998. — V. 69, n. 9. — P. 3268—3276. — ISSN 0034-6748. — doi:10.1063/1.1149091.
  11. R. V. Lapshin. Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Real mode (англ.) // Applied Surface Science : journal. — Netherlands: Elsevier B. V., 2019. — Vol. 470. — P. 1122—1129. — ISSN 0169-4332. — doi:10.1016/j.apsusc.2018.10.149.

Литература[править | править код]

  • Графит / Р. В. Лобзова // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  • Яковлев В. А. Графит // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Klein, Cornelis and Cornelius S. Hurlbut, Jr. (1985) Manual of Mineralogy: after Dana 20th ed. ISBN 0-471-80580-7
  • Бетехтин А. Г. Группа углерода // Курс минералогии: учебное пособие. — М.: КДУ, 2007. — С. 185. — 721 с.
  • Веселовский В. С. Графит. — 2 изд.. — М.: Металлургия, 1960. — 180 с.

Ссылки[править | править код]

  • Российские учёные открыли новый вид месторождений золота
  • о минерале графит на «Каталоге Минералов»
  • The Graphite Page (англ.)
  • Mineral galleries (англ.)
  • Графит в базе webmineral.com (англ.)
  • Mindat w/ locations (англ.)
  • Manufacturing artificial graphite (англ.)

Источник