Какая физическая величина характеризует электрические свойства

Какая физическая величина характеризует электрические свойства thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 июля 2019; проверки требуют 6 правок.

Электри́ческое сопротивле́ние — физическая величина, характеризующая свойство проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему[1]

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

где

R — сопротивление, Ом;
U — разность электрических потенциалов (напряжение) на концах проводника, В;
I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

История[править | править код]

В 1826 г. Георг Ом экспериментальным путем открыл основной закон электрической цепи, научился вычислять сопротивление металлических проводников и вывел закон Ома. Таким образом, в первом периоде развития электротехники (1800 –1831 годы) были созданы предпосылки для ее развития, для последующих применений электрического тока.

Само понятие «сопротивление» появилось задолго до изысканий Георга Ома. Впервые этот термин применил и употребил русский ученый Василий Владимирович Петров. Он установил количественную зависимость силы тока от площади поперечного сечения проводника: он утверждал, что при использовании более толстой проволоки происходит «более сильное действие… и весьма скорое течение гальвани-вольтовской жидкости». Кроме того, Петров четко указал на то, что при увеличении сечения проводника (при употреблении одной и той же гальванической батареи) сила тока в нем возрастает.[2]

Единицы и размерности[править | править код]

Размерность электрического сопротивления в Международной системе величин: dim R = L2MT −3I −2. В Международной системе единиц (СИ), основанной на Международной системе величин, единицей сопротивления является ом (русское обозначение: Ом; международное: Ω). В системе СГС как таковой единица сопротивления не имеет специального названия, однако в её расширениях (СГСЭ, СГСМ и гауссова система единиц) используются[3]:

  • статом (в СГСЭ и гауссовой системе, 1 statΩ = (109c−2) с/см = 898 755 178 736,818 Ом (точно) ≈ 8,98755·1011 Ом, равен сопротивлению проводника, через который под напряжением 1 статвольт течёт ток 1 статампер);
  • абом (в СГСМ, 1 abΩ = 1·10−9 Ом = 1 наноом, равен сопротивлению проводника, через который под напряжением 1 абвольт течёт ток 1 абампер).

Размерность сопротивления в СГСЭ и гауссовой системе равна TL−1 (то есть совпадает с размерностью обратной скорости, с/см), в СГСМ — LT−1 (то есть совпадает с размерностью скорости, см/с)[4].

Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой в системе СИ служит сименс (1 См = 1 Ом−1), в системе СГСЭ (и гауссовой) статсименс и в СГСМ — абсименс[5].

Физика явления[править | править код]

Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.

В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.

Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:

где ρ — удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, м².

Сопротивление однородного проводника также зависит от температуры.

Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения.

Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры (в некотором диапазоне) растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.

Зависимость сопротивления от материала, длины и площади поперечного сечения проводника[править | править код]

В металле подвижными носителями зарядов являются свободные электроны. Можно считать, что при своем хаотическом движении они ведут себя подобно молекулам газа. Поэтому в классической физике свободные электроны в металлах называют электронным газом и в первом приближении считают, что к нему применимы законы, установленные для идеального газа.

Плотность электронного газа и строение кристаллической решетки зависят от рода металла. Поэтому сопротивление проводника должно зависеть от рода его вещества. Кроме того, оно должно еще зависеть от длины проводника, площади его поперечного сечения и от температуры.

Влияние сечения проводника на его сопротивление объясняется тем, что при уменьшении сечения поток электронов в проводнике при одной и той же силе тока становится более плотным, поэтому и взаимодействие электронов с частицами вещества в проводнике становится сильнее.

Читайте также:  Какие свойства синтетических тканей могут оказывать на человека отрицательное воздействие

Из формулы

видно, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения. Величину ρ, характеризующую зависимость сопротивления проводника от материала, из которого он сделан, и от внешних условий, называют удельным сопротивлением вещества. Удельное сопротивление различных веществ при расчетах берут из таблиц.

Величину, обратную удельному сопротивлению, называют удельной проводимостью вещества и обозначают σ.

Сопротивление тела человека[править | править код]

  • Для расчёта опасной величины силы тока, протекающего через человека при попадании его под электрическое напряжение частотой 50 Гц, сопротивление тела человека условно принимается равным 1 кОм[6] . Эта величина имеет малое отношение к реальному сопротивлению человеческого тела. В реальности сопротивление человека не является омическим, так как эта величина, во-первых, нелинейна по отношению к приложенному напряжению, во-вторых, меняется во времени, в-третьих, гораздо меньше у человека, который волнуется и, следовательно, потеет и т. д.
  • Серьёзные поражения тканей человека наблюдаются обычно при прохождении тока силой около 100 мА. Совершенно безопасным считается ток силой до 1 мА. Удельное сопротивление тела человека зависит от состояния кожных покровов. Сухая кожа обладает удельным сопротивлением порядка 10000 Ом·м, поэтому опасные токи могут быть достигнуты только при значительном напряжении. Однако при наличии сырости сопротивление тела человека резко снижается и безопасным может считаться напряжение только ниже 12 В. Удельное сопротивление крови 1 Ом·м при 50 Гц[7].

Метрологические аспекты[править | править код]

Приборы для измерения сопротивления[править | править код]

  • Омметр
  • Измерительный мост
  • Амперметр и вольтметр (сопротивление находится по формуле)

Средства воспроизведения сопротивления[править | править код]

  • Магазин сопротивлений — набор резисторов
  • Катушки электрического сопротивления

Государственный эталон сопротивления[править | править код]

  • ГЭТ 14-91 Государственный первичный эталон единицы электрического сопротивления. Институт-хранитель: ВНИИМ.

Статическое и динамическое сопротивление[править | править код]

В теории нелинейных цепей используются понятия статического и динамического сопротивлений. Статическим сопротивлением нелинейного элемента электрической цепи в заданной точке его ВАХ называют отношение напряжения на элементе к току в нем. Динамическим сопротивлением нелинейного элемента электрической цепи в заданной точке его ВАХ называют отношение бесконечно
малого приращения напряжения к соответствующему приращению тока.

См. также[править | править код]

  • Сверхпроводимость
  • Закон Ома
  • Закон Барлоу
  • Удельное электрическое сопротивление
  • Электрическая проводимость
  • Отрицательное сопротивление
  • Внутреннее сопротивление
  • Импеданс
  • Волновое сопротивление
  • Активное сопротивление
  • Реактивное сопротивление

Примечания[править | править код]

Ссылки[править | править код]

  • Таблица удельного сопротивления проводников
  • Электрическое сопротивление проводников

Литература[править | править код]

  • В. Г. Герасимов, Э. В. Кузнецов, О. В. Николаева. Электротехника и электроника. Кн. 1. Электрические и магнитные цепи. — М.: Энергоатомиздат, 1996. — 288 с. — ISBN 5-283-05005-X.

Источник

Рассмотрим основные электрические величины, которые мы изучаем сначала в школе, затем в средних и высших учебных заведениях. Все данные для удобства сведем в небольшую таблицу. После таблицы будут приведены определения отдельных величин, на случай возникновения каких-либо непониманий.

ВеличинаЕдиница измерения в СИНазвание электрической величины
qКл – кулонзаряд
RОм – омсопротивление
UВ – вольтнапряжение
IА – амперСила тока (электрический ток)
CФ – фарадЕмкость
LГн – генриИндуктивность
sigmaСм – сименсУдельная электрическая проводимость
e08,85418781762039*10-12 Ф/мЭлектрическая постоянная
φВ – вольтПотенциал точки электрического поля
PВт – ваттМощность активная
QВар – вольт-ампер-реактивныйМощность реактивная
SВа – вольт-амперМощность полная
fГц – герцЧастота

Существуют десятичные приставки, которые используются в названии величины и служат для упрощения описания. Самые распространенные из них: мега, мили, кило, нано, пико. В таблице приведены и остальные приставки, кроме названных.

Десятичный множительПроизношениеОбозначение (русское/международное)
10-30куэктоq
10-27ронтоr
10-24иоктои/y
10-21зептоз/z
10-18аттоa
10-15фемтоф/f
10-12пикоп/p
10-9нанон/n
10-6микромк/μ
10-3миллим/m
10-2сантиc
10-1децид/d
101декада/da
102гектог/h
103килок/k
106мегаM
109гигаГ/G
1012тераT
1015петаП/P
1018экзаЭ/E
1021зетаЗ/Z
1024йоттаИ/Y
1027роннаR
1030куэккаQ

Сила тока в 1А – это величина, равная отношению заряда в 1 Кл, прошедшего за 1с времени через поверхность (проводник), к времени прохождения заряда через поверхность. Для протекания тока необходимо, чтобы цепь была замкнутой.

Сила тока измеряется в амперах. 1А=1Кл/1c

В практике встречаются

1кА = 1000А

1мА = 0,001А

1мкА = 0,000001А

Электрическое напряжение – разность потенциалов между двумя точками электрического поля. Величина электрического потенциала измеряется в вольтах, следовательно, и напряжение измеряется в вольтах (В).

1Вольт – напряжение, которое необходимо для выделения в проводнике энергии в 1Ватт при протекании по нему тока силой в 1Ампер.

1В=1Вт/1А.

В практике встречаются

1кВ = 1000В

1мВ = 0,001В

Электрическое сопротивление – характеристика проводника препятствовать протеканию по нему электрического тока. Определяется как отношение напряжения на концах проводника к силе тока в нем. Измеряется в омах (Ом). В некоторых пределах величина постоянная.

Читайте также:  Какое свойство ткани нужно учитывать для изготовления летней одежды

1Ом – сопротивление проводника при протекании по нему постоянного тока силой 1А и возникающем при этом на концах напряжении в 1В.

Из школьного курса физики все мы помним формулу для однородного проводника постоянного сечения:

R=ρlS – сопротивление такого проводника зависит от сечения S и длины l

где ρ – удельное сопротивление материала проводника, табличная величина.

Между тремя вышеописанными величинами существует закон Ома для цепи постоянного тока.

Ток в цепи прямо пропорционален величине напряжения в цепи и обратно пропорционален величине сопротивления цепи – закон Ома.

I=U/R

Электрической емкостью называется способность проводника накапливать электрический заряд.

Емкость измеряется в фарадах (1Ф).

1Ф = 1Кл/1В

1Ф – это емкость конденсатора между обкладками которого возникает напряжение 1В при заряде в 1Кл.

В практике встречаются

1пФ = 0,000000000001Ф

1нФ = 0,000000001Ф

Индуктивность – это величина, характеризующая способность контура, по которому протекает электрический ток, создавать и накапливать магнитное поле.

Индуктивность измеряется в генри.

1Гн = (В*с)/А

1Гн – величина, равная ЭДС самоиндукции, возникающей при изменении величины тока в контуре на 1А в течение 1секунды.

В практике встречаются

1мГн = 0, 001Гн

Электрическая проводимость – величина, показывающая способность тела проводить электрический ток. Обратная величина сопротивлению.

Электропроводность измеряется в сименсах.

1См = Ом-1

Сохраните в закладки или поделитесь с друзьями

Самое популярное

Источник

Электрические свойства – совокупность свойств, характеризующих способность веществ и материалов проводить электрический ток в электрическомполе.

К электрическим свойствам, наиболее широко используемым для исследования материалов (особенно металлических) и оценки возможности их практического применения, в первую очередь, относится удельная электропроводность и обратная ей величина – удельное электрическое сопротивление ρ, атакже температурный коэффициент удельного электросопротивления αρ0

Электропроводность (электрическая проводимость) – способность материала пропускать электрический ток под воздействием электрического поля,а также физическая величина, количественно характеризующая эту способность.

Электропроводность определяется наличием подвижных носителей заряда.

Механизмы переноса заряда при различных агрегатных состояниях веществасильно различаются. Однако величина переносимого заряда всегда равна целому числу элементарных электрических зарядов.

Электрическое сопротивление (электросопротивление) – свойство материала, определяющее силу его противодействия электрическому току при заданном напряжении электрического поля.

Удельное электрическое сопротивление ρ0– характеристика, применяемая

для оценки электросопротивления, Ом·мм2 /м (в единицах СИ Ом·м).

ρ0=RS / L,

где R, S и L– соответственно электрическое сопротивление, площадь и длинапроводника электрического тока.

Значения удельных электрических сопротивлений для металлов и сплавов приводятся в справочной литературе.

Все материалы, применяемые в технике, по своим электрическим свойствам делят на три группы: проводники, полупроводники и диэлектрики. Различаются эти материалы по величине электросопротивления, по характеру его температурного изменения и по типу проводимости. Резкой границы между диэлектриками и полупроводниками провести нельзя. По величине удельногоэлектросопротивления принято следующее деление:

– проводники – 10-5…10-8Ом·м и менее;

– полупроводники –10–6…107Ом·м;

– диэлектрики – 107…1018Ом·м.

Электрическое сопротивление у диэлектриков и полупроводников с повышением температуры уменьшается, а у проводников – растет. У некоторых металлов при внешних воздействиях (например, при уменьшении температуры)сопротивление скачком уменьшается практически до нуля (явление сверхпроводимости).

Характер изменения электрических свойств различных материалов привнешних воздействиях можно объяснить, если рассмотреть, что является в нихносителем зарядов.

Проводники по типу носителей зарядов делятся на электронные (металлыи сплавы), ионные (электролиты) и смешанные, где имеет место движение каксвободных электронов, так и ионов (например, плазма). Чистые металлы обладают малым удельным электросопротивлением (ρ0= 0,015…0,105 Ом·мм2 /м).

Исключением является ртуть, у которой удельное электросопротивление со-ставляет 0,943…0,952 Ом·мм2 /м. Сплавы имеют более высокие значения удельного электросопротивления (ρ0= 0,30…1,8 Ом·мм2 /м). К группе сплавов с повышенным удельным электросопротивлением относятся жаро- и коррозионностойкие сплавы, которые применяются в электронагревательных приборах иреостатах.

Для полупроводников носителями зарядов являются электроны проводимости (электронная проводимость n-типа) и дырки (дырочная проводимость р-типа). Электронами проводимости являются электроны, способныеперемешаться по кристаллу. Дырка – электронная вакансия в кристалле полу-

проводника, обладающая подвижностью. Дырки – положительно заряженныйноситель тока в полупроводнике.

В чистом полупроводнике, проводимость которого обусловлена тепловымвозбуждением, одинаковое число электронов и дырок движется в противоположных направлениях (собственная проводимость). Собственная проводимостьвозрастает при повышении температуры.

Электроны проводимости в полупроводниковых материалах могут образоваться под действием света (внутренний фотоэффект). При достаточно большой энергии светового потока проводимость полупроводниковых материалов возрастает. Техническое применение: фотосопротивления.

Проводимость полупроводника можно увеличить добавлением атомовдругих элементов (легированием), при этом возникает примесная проводимость. Примесная проводимость может быть обусловлена электронами илидырками. При этом в одном и том же образце полупроводникового материалаодин участок может обладать р-проводимостью, а другой – n-проводимостью.

р-n-переход работает как выпрямитель, пропуская ток только из р-области в n-область. Полупроводниковый материал с р-n-переходом называют диодом ииспользуется для выпрямления переменного тока.

Твердые диэлектрические материалы (полимеры, керамика, неорганиче

ское стекло и др.) делят на неполярные и полярные диэлектрики.

Неполярные диэлектрики могут иметь молекулярное (полиэтилен, фторопласт-4 и др.) или ионное кристаллическое (слюда, кварц и др.) строение.

Молекулярные диэлектрики состоят из электрически нейтральных молекул, которые до воздействия на них электрического поля не обладают электрическимисвойствами. Ионные кристаллические диэлектрики образованы парами ионов,причем каждая пара составляет нейтральную частицу. Ионы располагаются вузлах кристаллической решетки.

Читайте также:  Красные вина какие полезные свойства

Полярные диэлектрики (например, поливинилхлорид) состоят из полярных молекул – диполей. Электрические диполи представляют собой пары зарядов противоположных знаков, которые взаимно уравновешиваются и находятсяна некотором расстоянии друг от друга.

Магнитные свойства

Магнитное состояние веществ определяет магнетизм.

Магнетизм – особая форма взаимодействия, осуществляемого магнитнымполем, между движущимися электрически заряженными частицами (телами)или частицами (телами) с магнитным моментом.

Магнитный момент М – векторная величина, характеризующая веществакак источник магнитного поля. Полный магнитный момент свободного атомаравен геометрической сумме орбитальных и спиновых моментов всех его электронов. Упорядоченно ориентированные магнитные моменты атомов веществасоздают макроскопический магнитный момент.

Характеристикой магнитного состояния вещества является намагниченность J, которая определяется как отношение магнитного момента М веществак его объему V.При этом достижение максимально возможного для данноговещества значения намагниченности J∞называется магнитным насыщением.

Совокупность атомов с упорядоченно ориентированными магнитными

моментами может образовать самостоятельный элемент структуры вещества –домен.

Домен – элемент субструктуры химически однородного вещества, характеризующийся спонтанной (самопроизвольной) намагниченностью. Обычнодомены имеют размеры 10-5…10-2 см и доступны непосредственному наблюдению.

Вещества в соответствии со схемами ориентации магнитных моментов ихатомов классифицируются по магнитному состоянию на парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики (рис. 1.2).

1.2. Схемы ориентации магнитных моментов атомов

для парамагнетиков (а), ферромагнетиков (б), антиферромагнетиков (в)

У парамагнетиков магнитные моменты атомов внутри каждого доменаориентированы хаотично и взаимно компенсируют друг друга, поэтому материал в целом не намагничен. Парамагнетиками являются все переходные металлыс недостроенными f– и d-электронными оболочками; щелочные и щелочноземельные металлы, ряд солей Fe, Co, Ni и редкоземельных элементов; водныерастворы солей, содержащих ионы переходных элементов; из газов – кислородО2.

У ферромагнетиков внутри каждого домена магнитные моменты атомоврасположены параллельно друг другу в одном направлении, и поэтому каждыйдомен спонтанно намагничен до величины магнитного насыщения. Вектора намагниченности доменов ферромагнетиков в отсутствие внешнего магнитногополя ориентированы таким образом, что результирующая намагниченность образца в целом, как правило, равна нулю.

Ферромагнетизм проявляется в кристаллах Fe, Co, Ni, ряде редкоземельных металлов (Gd, Dy, Er и др.), в сплавах и соединениях с участием этихэлементов, а также в сплавах Сr, Мn и в соединениях U. Особую группу ферромагнетиков образуют сильно разбавленные растворы замещения парамагнитных атомов (например, Fe или Со) в диамагнитной матрице Pd. Ферромагнитныесвойства обнаружены также в металлических стеклах и аморфных полупроводниках.

У некоторых веществ более выгодным является антипараллельное упорядочение магнитных моментов в доменах. В этом случае домен состоит из двухподрешеток с противоположной ориентацией магнитных моментов атомов. Если магнитные моменты двух подрешеток скомпенсированы, то такие веществаназывают антиферромагнетиками, а если не скомпенсированы, то возникаетрезультирующий магнитный момент, и такие тела называют ферримагнетиками. Антиферромагнитные материалы относятся к группе парамагнетиков, аферримагнитные – к группе ферромагнетиков.

К антиферромагнетикам относятся ряд элементов (твердый кислород, Сr,

α-марганец и др.) и порядка тысячи известных химических соединений метал

лов (NiF2, FeО и др.). Значительная часть ферримагнетиков – это диэлектрические или полупроводниковые ионные кристаллы, содержащие магнитные ионыразличных элементов или одного элемента, но находящиеся в разных кристаллографических позициях (в неэквивалентных узлах кристаллической решетки).

К ферримагнетикам относятся также ряд упорядоченных металлических спла

вов, интерметаллиды и, главным образом, различные оксиды, в том числе ферриты.

Вещества даже одного и того же химического состава в зависимости от

кристаллического строения и фазового состава могут находиться в различныхмагнитных состояниях. Например, Fe, Co и Ni с кристаллическим строениемниже определенной температуры (точка Кюри) обладают ферромагнитнымисвойствами, а выше этой температуры они парамагнитны. Переход из парамагнитного состояния в антиферромагнитное переходит при понижении температуры.

Все материалы по величинам магнитных восприимчивости и проницаемости делятся на ферромагнитные(μ ≥ 1, κ > 0); парамагнитные(μ> 1, κ > 0) и

диамагнитные(μ < 1, κ < 0).

Величина магнитной восприимчивости капа для пара- и диамагнитных материалов очень мала (10-4…10-6); для ферромагнитных материалов (металлов

переходных групп) – от нескольких десятков до тысяч единиц, причем она

сильно и сложным образом зависит от напряженности намагничивающего поля.

По величине магнитной проницаемости существует деление электротехнических материалов нанемагнитные и магнитные.

Немагнитныематериалы– пара-, диа- и слабоферромагнитные материа-

лы с магнитной проницаемостью менее 1,5. К немагнитным материалам отно

сятся большинство металлов и сплавов (в том числе некоторые стали), полимеры, дерево, стекло и т. д.

Магнитныематериалыклассифицируют по их физической природе и ве-

личине коэрцитивной силы.

По физической природе магнитные материалы делят (отраслевое деление)

на три группы: металлическиематериалы, неметаллическиематериалы и маг-

нитодиэлектрики.

К неметаллическим магнитным материалам относятся ферриты– ферри-

магнитные материалы, получаемые из порошкообразной смеси оксидов некото-

рых переходных металлов и оксида железа путем прессования с последующим

спеканием. По магнитным свойствам ферриты аналогичны ферромагнетикам.

Магнитодиэлектрики– композиционные материалы, состоящие из

70…80 % порошкообразного магнитного материала (ферро- или ферримагнетика) и 30…20 % диэлектрического материала (например, полистирола, резины идр.). Магнитодиэлектрики применяются в приборостроении (постоянные магниты, эластичные герметизаторы для разъемных соединений и др.).

Источник